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Objective: This study aimed to evaluate the performance of the deep convolutional neural
network (DCNN) to discriminate between benign, borderline, and malignant serous
ovarian tumors (SOTs) on ultrasound(US) images.

Material and Methods: This retrospective study included 279 pathology-confirmed
SOTs US images from 265 patients from March 2013 to December 2016. Two- and
three-class classification task based on US images were proposed to classify benign,
borderline, andmalignant SOTs using a DCNN. The 2-class classification task was divided
into two subtasks: benign vs. borderline & malignant (task A), borderline vs. malignant
(task B). Five DCNN architectures, namely VGG16, GoogLeNet, ResNet34, MobileNet,
and DenseNet, were trained and model performance before and after transfer learning
was tested. Model performance was analyzed using accuracy, sensitivity, specificity, and
the area under the receiver operating characteristic curve (AUC).

Results: The best overall performance was for the ResNet34 model, which also achieved
the better performance after transfer learning. When classifying benign and non-benign
tumors, the AUC was 0.96, the sensitivity was 0.91, and the specificity was 0.91. When
predicting malignancy and borderline tumors, the AUC was 0.91, the sensitivity was 0.98,
and the specificity was 0.74. The model had an overall accuracy of 0.75 for in directly
classifying the three categories of benign, malignant and borderline SOTs, and a sensitivity
of 0.89 for malignant, which was better than the overall diagnostic accuracy of 0.67 and
sensitivity of 0.75 for malignant of the senior ultrasonographer.
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Conclusion: DCNN model analysis of US images can provide complementary clinical
diagnostic information and is thus a promising technique for effective differentiation of
benign, borderline, and malignant SOTs.
Keywords: deep convolutional neural network, deep learning, ultrasound, serous ovarian tumor, transfer learning
INTRODUCTION

Serous ovarian tumors comprise benign, borderline, and
malignant lesions which have distinct clinicopathological
characteristics, therapeutic schemes, and prognoses (1, 2).
Accurate identification of SOTs prior to operation is critical to
the development of appropriate treatments to avoid inadequate
excision or surgical overtreatment (3). Pathology results revealed
by fine-needle aspiration cytology are considered the gold
standard for the diagnosis of SOTs before surgery or
neoadjuvant chemotherapy. However, this method cannot be
used to precisely identify the histological types of SOTs because
of inadequate cytologic samples and the heterogeneous nature of
the tissue composition (4).

Adnexal ultrasound is currently the first-line imaging
modality for diagnosis of SOTs (5, 6). Although US imaging
cannot replace biopsies, it can provide additional information
that biopsies cannot deliver, such as intra-tumor heterogeneity.
Diagnostic analysis of US images depends mainly on the
physician’s expertise. However, in recent years, the emergence
of artificial intelligence has brought hope for more objective and
accurate diagnosis (7). Sakshi et al. (8) used a fine-tuned VGG-16
deep learning network in order to detect whether an ovarian cyst
is present or not. Wu et al. (9) explored deep learning approaches
for ovarian tumor classification based on ultrasound images.
Zhang et al. (10) used an image diagnosis system for classifying
the ovarian cysts in color ultrasound images.The application of
deep convolutional neural network in medical image diagnosis
has become a hot research topic (11–14). As of May 2020, more
than 50 deep learning-based imaging applications have been
approved by the US Food and Drug Administration or European
Union, spanning most imaging modalities including X-ray,
computerized tomography, magnetic resonance imaging,
retinal optical coherence tomography, and ultrasound (15–19).

In the present study, we conducted 2- and 3-class
classification task (Figure 1) using US images and deep
learning methods to classify benign, borderline, and malignant
SOTs. The results were compared with a senior sonographers
with extensive diagnostic experience.
MATERIAL AND METHODS

Dataset
This study was approved by the Institute Review Board of Tianjin
Medical University Cancer Hospital Institutional. Due to its
retrospective nature, the informed consent requirement was waived.

A data set of US images in patients with SOTs from Tianjin
Medical University Cancer Institute and Hospital(412 imaging
2

studies, 265 patients)was collected. As shown in Figure 1, The
patient inclusion criteria were as follows: (1) a histologic
diagnosis of benign, borderline, or malignant SOTs between
March 2013 and December 2016 (Figure 2); (2) availability of
diagnostic-quality preoperative US images; and (3) US scanning
before neoadjuvant therapy or surgical resection. The exclusion
criteria were: (1) no ultrasound results or the ovarian mass was
not completely in the images(10 images); and (2) mucinous(37
images), clear cell(32 images), endometrioid(25 images), or
metastatic cancer(29 images). The included cases(279 images)
were randomly assigned to either the training set (70%) or the
validation set (30%).

US imaging was performed using equipment manufactured
by Philips (EPIQ5, EPIQ7 and IU22), Samsung (RS80A), and GE
Healthcare (LOGIQ E9, LOGIQ S7). The images were collected
by transabdominal examination according to standard protocols
and analyzed by ultrasound specialists.

Data Preprocessing
All US images were retrieved from the Picture Archiving and
Communication Systems for image segmentation and analysis in
the hospital. Lesions were segmented using Image J software
(https://imagej.nih.gov/ij/) by a sonographer with more than
eight years of experience. All images were pre-processed: Due to
the limited amount of training data, we used data augmentation
techniques for image processing in order to avoid overfitting. The
original images were randomly cropped and flipped using data
enhancement technology, andall augmented imageswere resized to
224 * 224 pixels for input to the DCNN model. All pre-processing
steps were conducted in Python (version 3.7.3; Python Software
Foundation,Wilmington,Del) using the transforms imported from
Torchvision (version 0.7.0).

DCNN Model Training and Interpretation
At present, DCNNs are the most well-known type of deep learning
architecture in the field of medical image analysis. Given their
advantages, five representative DCNN architectures, namely VGG,
GoogLeNet, ResNet, MobileNet, andDenseNet (20–24), were used
to identify the histological types of SOTsbased onUS images. In the
2-class classification task, two tasks were trained and validated by
the DCNN. The cohort with three classes was split into two-class
datasets, and each sub-dataset was then evaluated by two-category
classification (Figure 1). This yielded the following sub-datasets:
benign vs. borderline & malignant (task A) and borderline vs.
Malignant (task B). The 3-class classification task (task C)was
used to directly identify benign, borderline, and malignant SOTs
using the three-category classification DCNN.

During the training phase, the dropout strategy on the fully
connected layers with a probability of 0.5 and L2 regularization
December 2021 | Volume 11 | Article 770683
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FIGURE 1 | Flowchart of patient recruitment and the experimental design.
A B C

FIGURE 2 | Three examples of ultrasound images with different types SOTs, benign (A), borderline (B), and malignant (C).
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strategy on weight and bias were used to prevent the overfitting
problem, the initial learning rate was set to 0.0003 with a batch
size of 32 and the Adam optimizer was used to update the
weights of the neural network. All models were trained for 500
epochs; the learning rate is decayed every 20 epochs with a decay
rate of 0.9. An Intel I7-9700K CPU and Nvidia GeForce RTX
2080 GPU were used for models training. In addition, we used
the transfer learning methods of these networks for classification
in order to compare the diagnostic efficiency of different
methods (25–27). The weights of each network were initialized
according to the weights from the pretrained model on ImageNet
(28). We then fine-tuned the parameters of the fully connected
layer of the network on our dataset via back propagation. The
standard DCNN used comes from the Torchvision (version
0.7.0) package included in the PyTorch software framework.
All programs were run in Python version 3.7.3.

To improve the interpretability of our model, we used the
method of Class Activation Mapping (CAM) to visualize the
important regions leading to the decision of the deep learning
model (29). Such a localization map is completely generated by
the fully trained network without additional manual annotation.
By using a global average pooling layer and visualizing the
weighted combination of the resulting feature maps at the
penultimate (pre-softmax) layer, we obtained heat maps that
explained what parts of an input US images were focused by the
DCNN for assigning a diagnostic label. All heat maps were
produced using the package OpenCV (version 4.3.0.36).

Statistical Analysis
In the present study, we carried out 3-fold cross validation on
different DCNN models, obtains the experimental results and
Frontiers in Oncology | www.frontiersin.org 4
calculates their indicators. The performance of the 2-class
classification task was evaluated by the area under the receiver
operating characteristic curve, accuracy, sensitivity, specificity,
and F1 score. The performance of the 3-class classification task
was evaluated by accuracy, sensitivity, and specificity only.
Differences between the AUC values were considered
statistically significant when P < 0.05. The method described
by Hanley and McNeil was used to calculate the 95% confidence
interval (CI) of the AUC values (30). These measurements were
calculated using the numpy (version 1.16.2) Python library.
RESULTS

Patient Characteristics
A total of 265 patients (median age 51 years, range 15–79 years)
with 279 ovarian tumors (108 benign ovarian tumors, 65
borderline ovarian tumors, 106 malignant ovarian tumors),
were retrospectively enrolled in this study.

Performance of the Two-Class
Classification Task
Table 1 show the performance of the 2-class classification
DCNN model using transfer learning and the full training
methods on the validation sets. The AUC values of all models
for the classification tasks were within the range of 0.827–0.963.
In general, the transfer learning methods trained to distinguish
benign from non-benign or borderline from malignant SOTs
appear to perform better than the full training methods.

When using migration learning methods for SOT
classification in the validation sets of Task A (Figure 3A),
TABLE 1 | Performance of the two-class classification deep convolutional neural network models in the validation set.

AUC ( ± SD) ACC ( ± SD) SEN ( ± SD) SPEC ( ± SD) F1-Score ( ± SD)

Transfer learning
Task A VGG16 0.897 ( ± 0.016) 0.871 ( ± 0.018) 0.931 ( ± 0.015) 0.771 ( ± 0.023) 0.843 ( ± 0.019)

GoogLeNet 0.924 ( ± 0.017) 0.883 ( ± 0.019) 0.828 ( ± 0.020) 0.972 ( ± 0.017) 0.894 ( ± 0.019)
ResNet34 0.963 ( ± 0.016) 0.914 ( ± 0.017) 0.914 ( ± 0.015) 0.914 ( ± 0.018) 0.914 ( ± 0.017)
MobileNet 0.885 ( ± 0.018) 0.871 ( ± 0.018) 0.931 ( ± 0.015) 0.771 ( ± 0.021) 0.843 ( ± 0.019)
DenseNet 0.877 ( ± 0.019) 0.871 ( ± 0.021) 0.983 ( ± 0.016) 0.686 ( ± 0.022) 0.808 ( ± 0.019)

Task B VGG16 0.865 ( ± 0.018) 0.882 ( ± 0.019) 0.944 ( ± 0.015) 0.714 ( ± 0.024) 0.813 ( ± 0.021)
GoogLeNet 0.896 ( ± 0.018) 0.860 ( ± 0.019) 0.917 ( ± 0.016) 0.762 ( ± 0.023) 0.832 ( ± 0.020)
ResNet34 0.914 ( ± 0.017) 0.893 ( ± 0.019) 0.983 ( ± 0.016) 0.743 ( ± 0.020) 0.846 ( ± 0.019)
MobileNet 0.907 ( ± 0.017) 0.842 ( ± 0.021) 0.889 ( ± 0.019) 0.762 ( ± 0.021) 0.821 ( ± 0.020)
DenseNet 0.898 ( ± 0.017) 0.825 ( ± 0.022) 0.806 ( ± 0.022) 0.857 ( ± 0.019) 0.831 ( ± 0.021)

Full training
Task A VGG16 0.886 ( ± 0.018) 0.839 ( ± 0.020) 0.931 ( ± 0.016) 0.686 ( ± 0.023) 0.790 ( ± 0.020)

GoogLeNet 0.914 ( ± 0.017) 0.872 ( ± 0.019) 0.845 ( ± 0.022) 0.917 ( ± 0.017) 0.880 ( ± 0.019)
ResNet34 0.909 ( ± 0.017) 0.893 ( ± 0.018) 0.966 ( ± 0.016) 0.771 ( ± 0.021) 0.858 ( ± 0.019)
MobileNet 0.870 ( ± 0.018) 0.850 ( ± 0.019) 0.948 ( ± 0.016) 0.686 ( ± 0.024) 0.796 ( ± 0.021)
DenseNet 0.900 ( ± 0.018) 0.850 ( ± 0.020) 0.966 ( ± 0.017) 0.657 ( ± 0.025) 0.782 ( ± 0.021)

Task B VGG16 0.827 ( ± 0.021) 0.842 ( ± 0.021) 0.972 ( ± 0.016) 0.619 ( ± 0.025) 0.756 ( ± 0.022)
GoogLeNet 0.843 ( ± 0.020) 0.842 ( ± 0.021) 0.999 ( ± 0.016) 0.571 ( ± 0.024) 0.727 ( ± 0.021)
ResNet34 0.905 ( ± 0.018) 0.882 ( ± 0.019) 0.983 ( ± 0.015) 0.714 ( ± 0.023) 0.827 ( ± 0.020)
MobileNet 0.845 ( ± 0.019) 0.825 ( ± 0.020) 0.917 ( ± 0.017) 0.667 ( ± 0.024) 0.772 ( ± 0.021)
DenseNet 0.886 ( ± 0.018) 0.807 ( ± 0.020) 0.999 ( ± 0.017) 0.476 ( ± 0.025) 0.645 ( ± 0.023)
D
ecember 2021 | Volume 1
Task A: discriminating benign vs. borderline & malignant. Task B: discriminating borderline vs. Malignan.
AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPEC, specificity; SD, standard deviation.
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the AUC values of VGG16, GoogLeNet, ResNet34, MobileNet
and DenseNet models were more than 0.877( ± 0.019). When the
full training method was used for differential diagnosis
(Figure 3C), the AUC values of the above models were over
than 0.870( ± 0.018). When using migration learning methods
for SOT classification in the validation sets of Task B
(Figure 3B), the AUC values of five DCNN models were more
than 0.865( ± 0.018). When the full training method was used for
differential diagnosis (Figure 3D), the AUC values of the above
models were over than 0.843( ± 0.020).

In the validation sets, the ResNet34 models with the transfer
learning method performs more comprehensively and better
than other models in the 2-class classification task. When
classifying benign and non-benign tumors, the AUC was 0.963
( ± 0.016), the sensitivity was 0.914( ± 0.015), and the specificity
was 0.914( ± 0.018), and the F1-Score was 0.914( ± 0.017).
When predicting malignancy and borderline tumors, the
AUC was 0.914( ± 0.017), the sensitivity was 0.983( ± 0.016),
Frontiers in Oncology | www.frontiersin.org 5
and the specificity was 0.743( ± 0.020), and the F1-Score was
0.846( ± 0.019).
Performance of the Three-Class
Classification Task
Table 2 shows the performance of the 3-class classification DCNN
model using transfer learning and the full training methods on the
validation sets. The ResNet34 model using transfer learning
methods exhibit higher discrimination performance than
sonographer with 12 years of experience, with ACC values of
0.753( ± 0.019) and the sensitivity of this model to malignant
tumors reached 0.889( ± 0.017). The sonographer’s overall
diagnostic accuracy based on the semantic features of the images
for differentiating benign, borderline, and malignant SOTs was
0.667( ± 0.021) and the sensitivity to malignant tumors reached
0.750( ± 0.018). Confusion matrix for 3-class classification DCNN
modles are described in Supplementary Figure 2.
A B

DC

FIGURE 3 | In the validation set, ROC curve analysis of two classification tasks with different convolutional neural network models before and after transfer learning.
Task A (A, C) discriminating benign vs. borderline & malignant, Task B (B, D) discriminating borderline vs. malignant. In the convolutional neural network model, the
models that use transfer learning are (A, B), and the fully trained models are (C, D).
December 2021 | Volume 11 | Article 770683
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Visualizing and Understanding DCNN
As shown in the heatmaps produced using the means of the
CAM results (Figure 4), Such a localization map is completely
generated by the fully trained Restnet34 model without
additional manual annotation.The red and yellow regions
represent areas activated by the Restnet34 model and have the
greatest predictive significance; the blue and green backgrounds
reflect areas with weaker predictive values. The redder the feature
color, the greater the possibility of the high DCNN score
(Figure 4A DCNN score is 0.99, Figure 4B DCNN score is
0.71).We compared these findings with clinicians’ justifications.
For the correctly diagnosed images (Figures 4A–C), the DCNN
focused on the same areas as the clinicians. However, there were
also some images that both the clinicians and DCNNs incorrectly
diagnosed (Figures 4D, E). We also compared the areas of
interest for the Advanced Sonographer and Resnet34, as
detailed in the Supplementary Figure 5.
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

Predicting the specific histopathological condition fromUS images
of patients with SOTs can help avoid unnecessary surgery on
physiological hemorrhagic cysts. In this study using US images
and a DCNN, we used 2- and 3-class classification task to
distinguish benign, borderline, and malignant SOTs: 2-class
classification task involved two task, task A distinguished benign
vs. borderline vs. malignant tumors, and task B differentiated
borderline vs. malignant tumors; 3-class classification task was a
direct three-category classification. The results showed that the
performance of the 2-class classification task was better than that of
the 3-class classification task, although the process was more
complicated. The use of transfer learning further improved the
performance of the DCNNmodels.

In the present study, we also examined the capabilities of fine-
tuning in comparison with a training scheme from scratch in the
December 2021 | Volume 11 | Article 770683
TABLE 2 | Performance of the three-class classification deep convolutional neural network models and the senior sonographer in the validation set.

Class SEN ( ± SD) SPEC ( ± SD) ACC ( ± SD)

Transfer learning
Task C VGG16 Class 0 0.750 ( ± 0.022) 0.825 ( ± 0.018) 0.699 ( ± 0.021)

Class 1 0.409 ( ± 0.025) 0.873 ( ± 0.017)
Class 2 0.829 ( ± 0.020) 0.845 ( ± 0.017)

GoogLeNet Class 0 0.889 ( ± 0.016) 0.772 ( ± 0.021) 0.720 ( ± 0.020)
Class 1 0.455 ( ± 0.024) 0.944 ( ± 0.016)
Class 2 0.800 ( ± 0.020) 0.897 ( ± 0.017)

ResNet34 Class 0 0.889 ( ± 0.017) 0.754 ( ± 0.022) 0.753 ( ± 0.019)
Class 1 0.455 ( ± 0.024) 0.958 ( ± 0.015)
Class 2 0.800 ( ± 0.019) 0.897 ( ± 0.017)

MobileNet Class 0 0.861 ( ± 0.018) 0.772 ( ± 0.021) 0.720 ( ± 0.020)
Class 1 0.500 ( ± 0.023) 0.873 ( ± 0.017)
Class 2 0.714 ( ± 0.022) 0.931 ( ± 0.016)

DenseNet Class 0 0.917 ( ± 0.017) 0.772 ( ± 0.021) 0.699 ( ± 0.023)
Class 1 0.191 ( ± 0.027) 0.986 ( ± 0.019)
Class 2 0.857 ( ± 0.019) 0.759 ( ± 0.021)

Full training
Task C VGG16 Class 0 0.917 ( ± 0.017) 0.632 ( ± 0.022) 0.667 ( ± 0.020)

Class 1 0.917 ( ± 0.018) 0.772 ( ± 0.020)
Class 2 0.771 ( ± 0.019) 0.845 ( ± 0.021)

GoogLeNet Class 0 0.944 ( ± 0.016) 0.684 ( ± 0.020) 0.710 ( ± 0.021)
Class 1 0.500 ( ± 0.024) 0.901 ( ± 0.018)
Class 2 0.600 ( ± 0.023) 0.966 ( ± 0.018)

ResNet34 Class 0 0.778 ( ± 0.017) 0.825 ( ± 0.021) 0.710 ( ± 0.020)
Class 1 0.500 ( ± 0.023) 0.845 ( ± 0.018)
Class 2 0.771 ( ± 0.017) 0.897 ( ± 0.022)

MobileNet Class 0 0.861 ( ± 0.018) 0.719 ( ± 0.021) 0.688 ( ± 0.022)
Class 1 0.409 ( ± 0.023) 0.916 ( ± 0.020)
Class 2 0.686 ( ± 0.021) 0.879 ( ± 0.020)

DenseNet Class 0 0.889 ( ± 0.018) 0.737 ( ± 0.022) 0.677 ( ± 0.023)
Class 1 0.318 ( ± 0.025) 0.901 ( ± 0.019)
Class 2 0.686 ( ± 0.020) 0.862 ( ± 0.020)

Doctor diagnoses
Task C Doctor Class 0 0.750 ( ± 0.018) 0.825 ( ± 0.022) 0.667 ( ± 0.021)

Class 1 0.474 ( ± 0.023) 0.851 ( ± 0.019)
Class 2 0.684 ( ± 0.019) 0.818 ( ± 0.022)
Task C: discriminating benign vs. borderline vs. malignant tumors.
Class 0: malignant tumors; Class 1: borderline tumors; Class 2: benign tumors.
ACC, accuracy; SEN, sensitivity; SPEC, specificity; SD, standard deviation.
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context of ultrasonic medical image analysis. Our experiments,
which were based on five DCNN architectures, demonstrated that
transfer learning DCNNs are useful for ultrasonic medical image
analysis, performing as well as – and sometimes even
outperforming – fully trained DCNNs. Another advantage of
fine-tuned DCNNs is the training speed. To demonstrate this
advantage, we compared the training times for a fine-tuned
DCNN and a DCNN trained from scratch in Table 3. However,
our results showed that transfer learning using a pre-trainedmodel
on ImageNet does not significantly improve the training of all
DCNN models. Probably for this reason, ImageNet classes are
images of animal, plants, and objects. Transfer learning may be
better used for ultrasound image analysis if pre-trained models on
medical image dataset are available in the future.

To improve convincingness in our DCNN, we used
“interpretable” method(CAM) that explains why they predict
what they do. We also provided some heatmaps of the CAMs
output, with visual examples of the explanation maps presented
in Figure 4. Most SOTs are cystic-solid tumors. When
identifying malignancy, doctors typically pay attention to the
amount of solid area: the more solid components present in the
US images, the higher the degree of malignancy. Figures 3A, B
showed that the DCNN focuses on the solid components of the
Frontiers in Oncology | www.frontiersin.org 7
tumor, while Figures 3D, E showed cases in which both the
DCNN and clinician made incorrect decisions in diagnosis.
However, the imaging features of borderline and malignant
SOTs greatly overlap. Therefore, it can be very difficult to
distinguish between these two types of images. In future work,
we plan to increase the training of cases to improve the accuracy
of diagnosis. Furthermore, the prior knowledge of senior
sonographers could also be integrated into the learning process.

Our research is subject to several limitations. Firstly, this was
a retrospective study from a single center with a limited cohort
size. External multi-center validation in a larger cohort is
necessary to perform a better analysis. Secondly, since this was
a retrospective study, there were cross marks left by the
sonologist who made the diagnosis that could not be removed
from the images. However, it can be seen from the CAM images
that the DCNN did not pay attention to these cross marks, and
they thus did not affect diagnosis (Figure 3). Thirdly, the
performance reported for the different models may not be the
best performance that can be achieved for each task, as
performance is related to the hyper-parameters of DCNNs that
influence the speed of convergence and final accuracy of the
model. Identifying the optimal values for these hyper-parameters
is rather difficult because each DCNN is a time-consuming
A B D EC

FIGURE 4 | Examples of class activation mapping using the transfer learning ResNet34 model. The model correctly identified malignant (A), borderline (B), and
benign (C) SOTs. Both the model and the senior sonographer made the same mistakes: borderline SOT misdiagnosed as malignant SOT (D); and malignant SOT
misdiagnosed as borderline SOT (E).
TABLE 3 | The training time of transfer learning and full training method with epoch=500.

VGG16 GoogLeNet ResNet34 MobileNet DenseNet

Transfer learning
Method1 Step1 890 650 428 385 684

Step2 584 431 281 259 684
Method2 Step1 912 654 436 387 690
Full training
Method1 Step1 1791 626 707 567 1213

Step2 1125 626 465 376 784
Method2 Step1 1776 638 720 581 1216
Decemb
er 2021 | Volume 11 | Art
Unit of time: second.
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process, even using high-end GPUs. Finally, US protocols and
scanners, acquisition procedures, and parameter selection
change over time, which may result in imaging variability and
heterogeneity between patient cohorts.
CONCLUSIONS

In conclusion, we demonstrated that DCNNs and transfer learning
technology can achieve high accuracy at distinguishing benign,
borderline, and malignant SOTs from ovarian ultrasound images.
With further verification and model calibration in a larger cohort
population, our DCNN-based model could be a promising tool for
supporting clinical decision-making.
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