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Amyloid plaques, mainly composed of abnormally aggregated amyloid β-protein

(Aβ) in the brain parenchyma, and neurofibrillary tangles (NFTs), consisting of

hyperphosphorylated tau protein aggregates in neurons, are two pathological hallmarks

of Alzheimer’s disease (AD). Aβ fibrils and tau aggregates in the brain are closely

associated with neuroinflammation and synapse loss, characterized by activated

microglia and dystrophic neurites. Genome-wide genetic association studies revealed

important roles of innate immune cells in the pathogenesis of late-onset AD by

recognizing a dozen genetic risk loci that modulate innate immune activities. Furthermore,

microglia, brain resident innate immune cells, have been increasingly recognized to

play key, opposing roles in AD pathogenesis by either eliminating toxic Aβ aggregates

and enhancing neuronal plasticity or producing proinflammatory cytokines, reactive

oxygen species, and synaptotoxicity. Aggregated Aβ binds to toll-like receptor 4

(TLR4) and activates microglia, resulting in increased phagocytosis and cytokine

production. Complement components are associated with amyloid plaques and NFTs.

Aggregated Aβ can activate complement, leading to synapse pruning and loss by

microglial phagocytosis. Systemic inflammation can activate microglial TLR4, NLRP3

inflammasome, and complement in the brain, leading to neuroinflammation, Aβ

accumulation, synapse loss and neurodegeneration. The host immune response has

been shown to function through complex crosstalk between the TLR, complement and

inflammasome signaling pathways. Accordingly, targeting the molecular mechanisms

underlying the TLR-complement-NLRP3 inflammasome signaling pathways can be a

preventive and therapeutic approach for AD.
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INTRODUCTION

Alzheimer’s disease (AD) is characterized by two neuropathological hallmarks, extracellular
amyloid β (Aβ) deposits in the brain parenchyma (amyloid plaques) and cerebral blood vessels
(cerebral amyloid angiopathy, CAA) and abnormal aggregates of hyperphosphorylated tau protein
in brain neurons (neurofibrillary tangles, NFTs). Amyloid plaques and NFTs are accompanied
with neuroinflammation including activated microglia and increased levels of cytokines (1).
Profound loss of neurons and synapses is also found in AD dementia. Except a small subset of
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early-onset familial AD cases, the causes for the vast majority
of AD cases are unknown and satisfactory therapeutic and
preventive measures for AD are unavailable. Therefore, an urgent
need exists to identify the molecular mechanisms that increase
the risk for the vast majority of AD cases and to develop the
preventive and therapeutic measures. Increasing lines of evidence
indicate that central and systemic inflammation promotes AD
progression and even initiates neurodegeneration (2–7). Indeed,
recent genetic studies on late-onset AD have discovered about
a dozen risk alleles that modulate innate immune activities and
are highly expressed in brain-resident macrophages, microglia,
highlighting the importance of immune responses and microglia
in the pathogenesis of late-onset AD (8–10). Aging is the largest
known risk factor for AD and represents chronic, systemic
inflammation (inflamm-aging) (6, 11–13). Additionally, almost
all highly ranked, modifiable risk factors for AD such as diabetes,
obesity, hyperlipidemia, and hypertension are characterized by
chronic, systemic inflammation (14–19). Inflammation caused
by certain bacterial and viral infections is a risk factor of
dementia (20–23). However, the precise molecular mechanisms
by which inflammation increases the risk of AD remain to be
elucidated. Here we discuss the impact of three innate immune
signaling pathways including TLR4, NLRP3 inflammasome, and
complement on the pathogenesis of AD.

TLRS AND ITS SIGNALING PATHWAYS

In responses to a variety of invading pathogens and tissue
damages, the innate immune system initiates inflammatory
responses through activation of pattern recognition receptors
(PRRs) (24). PRRs recognize pathogen-associated molecular
patterns (PAMPs), conserved structures commonly identified
among different microorganisms, as well as damage-associated
molecular patterns (DAMPS), molecules shed by injured cells.
Currently identified classes of PRR families comprise the Toll-
like receptors (TLRs) and C-type lectin receptors (CLRs), the
Retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) and
the nucleotide-binding oligomerization domain (NOD)-Leucine
Rich Repeats (LRR)-containing receptors (NLRs), and secreted
proteins such as complement proteins (25, 26). TLRs are
composed of an extracellular and cytoplasmic domain that
belongs to a type I transmembrane receptor and recognize
TLR ligands through the extracellular domain. TLR ligands
can be either exogenous (PAMPs) or endogenous (DAMPs).
At least 10 and 12 functional TLRs have been reported in
human and mouse, respectively. The activation of TLRs by TLR
ligands initiates both innate and adaptive immune responses
(25, 27). TLR ligation initiates a signaling cascade that leads
to activation of transcription factors that upregulate a number
of target genes encoding cytokines, chemokines, growth factors,
and other inflammatory mediators. Activation of TLR by
pathogens and injured cells also induces phagocytic activities
of macrophages/microglia and clears pathogens, damaged
tissues and buildup wastes (28–31). The cytoplasmic domain
of TLRs is termed Toll/interleukin-1 (IL-1) receptor (TIR)
domain. TLR activation by TLR ligands initiates interaction
of TLR’s TIR domain with TIR domains of adaptors such as
MyD88 and TRIF. Different TLRs utilize distinctive adaptor

molecules, resulting in different signaling responses (Figure 1).
TLR1, TLR2, TLR4, TLR5, and TLR6 are located on the cell
surface membrane and recognize mostly bacterial products.
TLR3, TLR7, TLR8, and TLR9 sense mostly bacterial and
viral nucleic acids and are localized to intracellular vesicles
including the endoplasmic reticulum, endosomes, lysosomes,
and endolysosomes (32) All TLRs, with the exception of
TLR3, use MyD88 as an adaptor. The ligation of TLR2 and
TLR4 culminates in activation of transcription factors, NF-
κB and AP1, through the MyD88-dependent pathway that
is essential for expression of cytokines, chemokines and co-
stimulatory molecules, such as TNF-α, IL-1β, IL-6, IL-8, IL-
12, and MIP1α. TLR3 and TLR4 ligation can mediate signaling
through the MyD88-indepenent (TRIF-dependent) pathway,
leading to the activation of interferon regulatory factor 3
(IRF3). The activation of IRF3 induces expression of type I
interferon (IFN) genes such as IFNβ and IFN-inducible genes
(Figure 1). TLR3 and TLR4 ligation can activate NF-κB, also,
via the TRIF-dependent pathway, resulting in induction of
inflammatory cytokines (Figure 1). In TRIF-dependent signal
transduction, the TLR4- lipopolysaccharide (LPS) complex on
the plasma membrane is internalized to endosomes, where it
triggers TRIF-dependent signal transduction (33). Importantly,
although robust expression of inflammatory cytokines via MAP
kinase and NF-kB activation is achieved by synergistic activation
of both TRIF-dependent andMyD88-dependent pathways, TLR4
ligands can produce type I IFN solely through TRIF-dependent
pathway activation (27, 34). TLR9 and TLR7 ligation can activate
both IRF7 and NF-κB, leading to induction of type I IFNs and
inflammatory cytokines, respectively [Figure 1; (25, 27)]. TLR
signaling produce a number of genes involved in phagocytosis
and inflammation through activation of transcription factors
such as NF-κB, IRF3 and IRF7 (25, 35, 36).

Neurodegenerative diseases are characterized by progressive
loss of specific synapses and neurons as well as abnormally
aggregated proteins such as Aβ in AD (amyloid plaques) and α-
synuclein in Parkinson’s disease (Lewy bodies). Microglia are the
principal innate immune cells in the CNS and modulate brain
development, homeostasis and neuroinflammation in diseases
and aging. Microglia express multiple classes of PRRs including
all TLRs and respond to a variety of PAMPs and DAMPs through
PRRs (37). DAMPs released from damaged or degenerating
neurons and abnormally aggregated Aβ and α-synuclein (38, 39)
activate microglia via PRRs, which may modulate progression of
neurodegenerative diseases. Since aggregated Aβ has been shown
to activate innate immune cells by interacting with several TLRs
(see below), it may be possible to reduce Aβ load and neuronal
injuries in the AD brain by regulating TLR signaling. However,
it remains to be determined which TLR signaling pathways and
effectors are involved in modulation of Aβ deposition, clearance
and neuronal injuries in the brain.

ROLE OF TLR4 SIGNALING IN
ALZHEIMER’S DISEASE BRAIN

Large-scale genome-wide association studies on late-onset
AD have discovered a dozen genetic risk alleles that are
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FIGURE 1 | Toll-like receptor pathways. TLR1, TLR2, TLR4, TLR5, and TLR6 are mostly expressed on the cell surface and bind to bacterial products. When activated

by LPS, TLR4 is internalized onto an endosome surface. The internalization triggers the release of TIRAP/MyD88, activating the TRAF6 pathway and resulting in

activation of transcription factors, NF-kB and AP-1. The release of TIRAP/MyD88 from TLR4 allows for the signaling by TRAM/TRIF to commence from the endosome,

also activating NF-kB as well as the transcription factor, IRF3. TLR3, TLR7, TLR8, and TLR9 are located on internal vesicles and bind to bacterial and viral nucleic

acids. TLR7, TLR8, and TLR9 each activate NF-kB, as well as the transcription factor, IRF7, through the MyD88 pathway. TLR3 is the only toll-like receptor that does

not activate via the MyD88 pathway and instead activates NF-kB and IRF3 through the TRIF pathway.

involved in immune/inflammatory responses and highly
expressed in microglia, highlighting the importance of microglial
inflammatory responses in the pathogenesis of late-onset AD.
Such risk loci include APOE, TREM2, CLU, CR1, MS4A6A,
MS4A4E, CD33, ABCA7, EPHA1, HLA-DRB5 & DRB1,
INPP5D, and MEF2C (8, 9). Their potential roles and functions
in TLR4-complement-NLRP3 signaling, are summarized in
Table 1. Particularly, APOE (43), CD33 (47), INPP5D (57),
and TREM2 (66) have been shown to negatively regulate
TLR4 signaling. CR1 can inhibit inflammasome activation by
suppressing the complement activation pathways (52). However,

activation of microglial CR1 induces neurotoxic cytokines and
reactive oxygen species (53). Although TREM2 is found to
upregulate complement components during aging (69), it can
inhibit inflammasome activation (67). CD33 may induce NLRP3
inflammasome assembly (48). APOE (46) and CLU (50) inhibit
complement activation and reduce inflammation.

Previously, a coding variant of TLR4 (rs4986790) was
reported to increase longevity and reduce an AD risk in
Italian cohorts (71, 72). Recently, this observation has been
confirmed in independent cohorts (Quebec Founder Population
and presymptomatic individuals with a parental history of
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TABLE 1 | AD risk genes involved in inflammatory responses.

Genes TLR4 References Inflammasome References Complement References Functions

ABCA7 No No No Involved in lipid homeostasis; enhances Aβ

clearance by macrophages (40, 41)

APOE Yes (42–44) Maybe (45) Maybe (46) Involved in lipid metabolism (42–44)

CD33 Yes (47) Maybe (48) Maybe (49) Inhibitory receptor exclusive to immune cells (47)

CLU No No Yes (50) Inhibitor of complement receptors (50)

CR1 Yes (51) Yes (52) Yes (53) Influences complement cascade; binds C1q;

inhibits formation of MAC (52, 54)

EPHA1 No No No Promotes permeability of the blood-brain barrier

(55, 56)

HLA-DRB1 No No No Creates beta chain 1 of the MHC class II protein

complex

HLA-DRB5 No No No Creates beta chain 5 of the MHC class II protein

complex

INPP5D Yes (57, 58) No No Binds DAP12 which inactivates the

TREM2-DAP12 signaling complex (59)

MEF2C Maybe (60) No No Regulates apoptosis of T cells and is necessary

for transcriptional activation of IL-2 (61, 62)

MS4A cluster

(MS4A4E and

MS4A6A)

Maybe (63) No Maybe (63) Ligand binding promotes calcium conductance;

may modulate TREM2 expression (and

TLR/complement through TREM2) (63)

TLR4 variant

(rs4986790)

Yes Yes No Altered ability to recruit MyD88 and TRIF (64)

TREM2 Yes (65, 66) Maybe (67) Yes (68, 69) Found on myeloid cells and alters inflammatory

functions (70)

AD), demonstrating the association of the TLR4 variant with a
reduced AD risk, better visuospatial and constructional skills, an
increased cortical thickness in visual cortices, and stable IL-1β
levels in cerebrospinal fluid (CSF) over time (73). Additionally,
certain TLR4 gene variants are associated with an increased risk
of AD in the Chinese population (74–76). These associations of
TLR4with AD in different populations indicate an important role
of TLR4 in the AD pathogenesis.

Microglia, brain resident phagocytes in the innate immune
system, are thought to be macrophages in the central nervous
system. Fibrillar Aβ deposits are closely associated with
activated microglia in the brain (1). Microglia interact with
fibrillary Aβ through their cell surface receptor complexes
leading to Aβ phagocytosis and inflammation. Using cultured
microglia, the receptor complexes of microglia, which recognize
Aβ fibrils, have been shown to contain TLR2, TLR4 and
their co-receptor, CD14, as indispensable constituents of
the receptor (77–79). Activation of microglia by TLR2,
TLR3, TLR4, TLR7, and TLR9 ligands boosts ingestion
and/or clearance of Aβ by microglia in vitro (78, 80–84).
In line with these in vitro experiments, an acute (one-
time) injection of LPS, a TLR4 ligand, into the brains of
AD mouse models activated microglia and decreased Aβ

plaques (85–87). Additionally, activation of microglia by
intracerebroventricular injection of CpG-oligodeoxynucleotides
(ODN), a TLR9 ligand, reduced brain Aβ deposits and
ameliorated cognitive deficits in Tg2576 mice (an AD mouse
model) (80, 88–91). However, sustained brain injection of

LPS induced premature cerebral Aβ deposits and cognitive
impairments in AD mouse models (92–94).

APP/PS1 mice (an AD mouse model) homozygous for a loss-
of-function mutation (TlrLps−d/TlrLps−d) of TLR4 had greater
cerebral Aβ load and poorer spatial learning than APP/PS1
mice with TLR4 wild-type alleles (81, 95). AD mouse models
show increases in brain cytokine levels including TNF-α, IL-
1β, IL-17, and IL-10. Such increases in the brain cytokines
were abolished in APP/PS1 mice with the TLR4 mutation,
indicating TLR4-dependent upregulation of the cytokines in
APP/PS1 mice (96). However, TLR4-dependent upregulation
of cytokines and microglial activation were not observed in
young APP/PS1mice before Aβ deposition (95, 96). Additionally,
TLR2 deficiency in an AD mouse model [APPSwe/PS1(A246E)]
increased brain Aβ42 levels (toxic form of Aβ) and accelerated
spatial and contextual memory impairments (97). These in vivo
data suggest that activation of certain TLRs can be therapeutic
option for AD. However, APP/PS1 mice defective for CD14
(CD14 gene knockout), a co-receptor for TLR4, showed a
decrease in Aβ plaques (98). MyD88 deficiency decreased
cerebral Aβ load and improved behavioral deficits in APP/PS1
mice (99). Additionally, transplantation of bone marrow cells
with MyD88 deficiency in an AD mouse model ameliorated
brain Aβ levels and cognitive deficits much better than MyD88-
sufficient bone marrow cells (100). The latter experiments
indicate that activation of certain TLRs can be detrimental to the
AD progression. These experimental results also indicate that the
in vitro data can be misleading perhaps due to oversimplification
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of the in vitro systems as well as difficulties in mimicking
chronic activation of TLRs in the in vitro systems. Accordingly,
in vivo experiments in detail in TLR ligand treatment regimen,
age, sex and genetic background of experimental animals are
indispensable for a better understanding of the roles of the TLR
signaling pathways in the AD pathogenesis.

ROLE OF TLR4 SIGNALING IN SYSTEMIC
INFLAMMATION IN ALZHEIMER’S
DISEASE (AD)

There are increasing lines of evidence that systemic inflammation
promotes AD progression and initiates microglial activation
and neurodegeneration (2–7). Aging is the largest known
risk factor for AD and is characterized by chronic, systemic
low-grade inflammation, referred to as “inflamm-aging” (11–
13). Additionally, highly ranked, modifiable risk factors for
AD such as depression, hypertension, diabetes, obesity, and
hyperlipidemia are characterized by a chronic, systemic low-
grade inflammation (14–19). For example, visceral adipose
tissue of obese subjects contains innate and adaptive immune
cells and shows low-grade chronic inflammation, which is
identified as a major contributor to the advancement of
metabolic diseases including type 2 diabetes mellitus and
coronary heart diseases (101, 102). Indeed, when a diabetic AD
mouse model was produced by crossing APP23 mice (an AD
model) with leptin-deficient (ob/ob) mice, the onset of diabetes
exacerbated cognitive deficits, cerebral amyloid angiopathy, and
cerebrovascular inflammation (103). A high-fat diet increased
insoluble cerebral Aβ and soluble tau in the brains of 3xTg-
AD mice (an AD model) (104). Low-grade inflammation plays
a pivotal role in the initiation, progression, and propagation
of the atherosclerotic process (105, 106). Atherogenic diet
exacerbated cognitive deficits and cerebral Aβ deposits in Tg2576
mice (an AD mouse model) and the aortic atherosclerotic
lesion area positively correlated with cerebral Aβ deposits (107).
Certain peripheral, as well as CSF inflammatory markers, such
as IL-6 and C-reactive protein (CRP) have been reported to
forecast dementia or decline in cognitive functions many years
before their onset (106, 108–113). These AD risk factors have
been shown to be associated with altered TLR4 signaling. The
TLR4 +896A/G coding variant (rs4986790) is underrepresented
in patients with myocardial infarction, Alzheimer’s disease
or prostate cancer, whereas it is more frequently found in
centenarians in Italian and Canadian cohorts (71–73). Their
blood samples produce less IL-6, TNF-α, and eicosanoids
(PGE2 and LTB4) in response to LPS, compared to other
TLR4 genotypes (114). Anti-aging effects of caloric restriction
is associated with downregulation of the TLR4/MyD88/NF-κB
pathway in rodents (115). Apolipoprotein E (ApoE)-deficient
mice are prone to high-fat diet-induced atherosclerosis, which
is reduced in additional TLR4-deficiency or MyD88-deficiency,
indicating an important role of TLR4/MyD88 signaling in
atherosclerosis (116). Activation of TLR4 contributes to insulin
resistance by impairing insulin signal transduction via inhibitory
phosphorylation on serine residues in insulin receptor substrate

(IRS) (117). Therefore, these AD risk factors may contribute to
the AD development via TLR4 signaling.

Systemic infections are also associated with AD although
not all studies found such associations. Infection of certain
bacteria including Helicobacter pylori, Porphyromonas gingivalis,
Chlamydia pneumonia, and Borrelia burgdorferi, has been found
to be risk factors for the development of dementia (20–22,
118, 119) In an AD mouse model (APP/PS1 mice), Bordetella
pertussis respiratory challenge led to T cell infiltration into the
brain and increased microglial activation and Aβ deposition
(120). Peripheral injections of TLR ligands such as LPS and
poly I:C, TLR4 and TLR3 ligand, into animals and humans
have been commonly implemented to mimic bacterial and
viral infections, respectively. Repeated peripheral LPS injection
in wild type mice led to cognitive deficits and increases in
cerebral Aβ levels and apoptotic cells (121, 122). A single
intravenous poly I:C injection into 4-month-old 3xTg-AD mice
increased cerebral Aβ deposits and altered tau phosphorylation
at age 15 months. Additionally, systemic exposure to poly I:C
during late gestation in wild type mice increased cerebral APP
(Aβ precursor protein) levels, altered tau phosphorylation and
cognitive function in old ages and these phenotypic alterations
were exacerbated when the prenatal exposure was followed
by a second challenge during their adulthood (123). Repeated
systemic injection of LPS induced premature cerebral Aβ deposits
and cognitive impairments in AD mouse models (92–94).
Repeated intraperitoneal injection of LPS activated microglia and
increased tau phosphorylation in an AD mouse model (3xTg-
AD) (124). Daily intraperitoneal LPS injection in Kunming
mice for 7 days induced microglia activation, upregulation of
proinflammatory cytokines (both mRNA and protein) including
IL-1β, TNF-α, and IL-6, synapse loss, and impairment of learning
and memory (125). Acute intraperitoneal LPS injection also
increased tau phosphorylation in the hippocampal neurons of
C57BL/6 mice (126, 127). Furthermore, periodontitis evoked
by inoculation of Porphyromonas gingivalis exacerbated brain
Aβ deposition and cognitive deficits in an AD mouse model
(J20 PDGF-APPSw-Ind mice) (128). Repeated intraperitoneal
injection of LPS derived from Porphyromonas gingivalis induced
cognitive deficits, intraneuronal Aβ accumulation, microglial
activation, and increases in IL-1β in middle-aged (12 months)
wild-type C57BL/6 mice but not in young (2 months) mice
(129). These findings support the hypothesis that systemic
inflammation promotes AD progression and even initiates AD-
like pathological changes. Indeed, peripheral LPS administration
has been widely used to model neuroinflammation and
neurodegenerative diseases including AD in rodents and the lists
of such experimental models are found in the following review
papers (130–133). Importantly, TLR4 in brain-resident immune
cells plays a predominant role in sustained neuroinflammation
including IL-1β upregulation, which is induced by systemic
LPS administration rather than TLR4 in peripheral immune
cells (134). However, the precise mechanisms by which systemic
inflammation contributes to AD initiation and progression
remain to be elucidated.

So far, as we discussed above, almost all chronic, systemic
inflammatory events predominantly exert pro-inflammatory
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responses in brain microglia, leading to exacerbation of
neurodegenerative diseases including AD. Recently, Wendeln
et al. (135) reported that one-time peritoneal injection of
LPS prior to brain Aβ deposition (at 3 months of age) in
an AD mouse model primed microglia and exacerbated the
brain Aβ load 6 months later while 4 consecutive peritoneal
injections of LPS (0.5 mg/kg) induced tolerance and reduced
the Aβ load. Additionally, chronic intraperitoneal administration
of CpG-ODN (TLR9 ligand) and monophosphoryl lipid A
(MPL, TLR4 ligand) reduced Aβ plaques and NFTs, and
restored cognitive deficits in AD mouse models (80, 88–91).
However, the precise mechanisms, by which the repeated TLR
ligand treatments improve AD-like pathophysiology are unclear.
One possible explanation is that the repeated TLR ligand
treatments increase stress resistance or adaptation/tolerance
of microglia, leading to reduced inflammatory responses of
microglia, alleviation of AD-like pathology, and cognitive deficits
(136). It is important to understand that systemic inflammatory
events as well as peripheral treatment with TLR ligands can shape
the phenotype of microglia in the CNS. These results suggest
that modulation of brain microglial phenotype by peripheral
treatment with certain TLR ligands at appropriate doses
and treatment intervals can be therapeutic and/or preventive
to AD.

NLRP3 INFLAMMASOME AND AGING

Inflammasomes consist of multimeric protein complexes in the
cytoplasm, which mediate activation of IL-1β and IL-18 and
induce pyroptosis, a programmed cell death. Inflammasomes are
involved in initiation and sustainment of the innate immune
response (137). The NLRP3 inflammasome consists of a sensor
(NLRP3), and adaptor (ASC or PYARD) and an effector
(caspase 1) (138). Activation of the NLRP3 inflammasome
and the production of IL-1β are tightly regulated and require
two triggering steps, a priming step and an activation step
(Figure 2). In the priming step, expression of the inflammasome
components (NLRP3, caspase 1 and pro-IL-1β) needs to be
upregulated to their suitable expression levels for inflammasome
activation. This upregulation can be induced by various PAMPs
or DAMPs, including LPS or amyloid, respectively, through
activation of PRRs and cytokine receptors, including TLRs and
IL-1R, respectively (138). In the activation step, NLRP3 can
be activated by a large number of stimuli such as endogenous
DAMPs, PAMPs, efflux of potassium (K+) or chloride (Cl−) ions
and flux of calcium ions (Ca2+) (138).

The biggest risk factor for Alzheimer’s disease is advanced
age (139). Aging is characterized by systemic low-grade
inflammation, referred to as “inflamm-aging” (11–13) and
senescent cells are characterized by the senescence-associated
secretory phenotype (SASP), indicating proinflammatory
characteristics including increased secretion of IL-1β, IL-6,
IL-8, TGF-β, and TNF-α (140). IL-1β production increases
during aging in the mouse brain, which is exacerbated by
intraperitoneal injection of LPS (1 mg/kg), (141, 142). IL-1β,
IL-6, TGF-β, and TNF-α levels are elevated in AD brain tissue,

as well as in AD patients’ CSF and serum (143). Fibrillar
Aβ induces more IL-1β production in microglia isolated
from aged mice than those derived from young mice (144).
NLRP3 deficiency ameliorates central and peripheral low-grade
inflammation and SASP and improves cognitive function
and motor performance in aged mice (141). IL-1R deficiency
(Il1r−/−) also ameliorates cognitive decline associated with aging
in mice (141). Thus, inhibition of NLRP3 inflammasome can be a
therapeutic and preventive target for age-related chronic diseases
including AD.

ROLE OF NLRP3 INFLAMMASOMES IN
ALZHEIMER’S DISEASE BRAIN

Fibrillary Aβ can induce IL-1β release from cultured microglia
in an NLRP3-dependent and ASC-dependent manner, where
NLRP3 serves as a sensor of aggregated Aβ for inflammasome
activation (145). ASC deficiency decreases brain Aβ deposits
and improves cognitive deficits in APP/PS1 mice. Injection of
ASC specks induces spreading of Aβ deposits in APP/PS1 mice.
However, this is not observed in ASC-deficient APP/PS1 mice,
and co-administration of anti-ASC antibody blocks the spreading
of Aβ pathology. Thus, ASC specks released from pyroptotic
microglia induce seeding and spreading of Aβ oligomers and
aggregates, leading to AD progression (146). NLRP3 or caspase-1
deficiency in APP/PS1 mice leads to reduced brain caspase-1 and
IL-1β activation, increased microglial Aβ phagocytosis, reduced
brain Aβ load, and protection of neuronal spine loss, long-
term potentiation (LTP) decline, and cognitive deficits (147).
However, the reduced Aβ load in NLRP3-deficient APP/PS1mice
is discernible at 16 months of age but not at 4 months of age
(147). In patients with early AD or mild cognitive impairment
due to AD, levels of IL-1β and caspase-1 activity are significantly
increased (147, 148) and ASC-bound Aβ is found in AD
patients’ brains (146). These observations suggest that NLRP3
inflammasome activation represents an early pathogenic event in
AD. Intrastriatal injection of fibrillar Aβ inmice causesmicroglial
activation, which is inhibited in mice with MyD88 deficiency,
ASC deficiency, caspase-1 deficiency, or IL-1R deficiency (145),
suggesting that aggregated Aβ initiates a signaling cascade
involving MyD88, NLRP3 inflammasome, and IL-1β. In line
with these observations, MyD88-deficiency decreases microglial
activation and cerebral Aβ load and improves behavioral deficits
in APP/PS1 mice (99, 149). Moreover, MyD88 deficiency
enhances Aβ phagocytosis bymicroglia/macrophages in vitro and
bone marrow reconstitution by MyD88-deficient cells reduces
Aβ load and improves cognitive functions more efficiently
compared with MyD88-sufficient cells in AD mouse models
including APP/PS1 and TgCRND8 mice (100). Expression
levels of IL-1β mRNA and protein are upregulated in the
brains of APP/PS1 mice compared to those in age-matched
APP/PS1 mice with a loss-of-function TLR4 mutation at 9–
15 months of age but not at 5 months (95, 96). These
findings suggest that TLR4/MyD88 signaling is involved in the
priming step of NLRP3 inflammasome activation in AD mouse
models (Figure 2).
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FIGURE 2 | Crosstalk between TLR4, NLRP3 inflammasome, and complement promotes neuroinflammation in Alzheimer’s disease. Priming of the inflammasome

occurs when the transcription factor, NF-kB, is activated, triggering the production of both NLRP3 and Pro-IL-1β. NF-kB can be activated via the TLR/IL-1R

MyD88-dependent pathway and the C3/C5 MAPK pathway. The TLR pathway can be induced by a bacterial component, such as LPS, and the MAPK pathway can

be induced by C3a/C5a binding to their respective receptors. The activation of NF-kB through complement, TLR and IL-1R pathways may create a synergistic

increase in pro-inflammatory factors. The inflammasome can be activated in several ways, including an increase of endogenous damage-associated and

pathogen-associated molecular patterns or an efflux of potassium or chloride ions. Additionally, aggregated fibrillary Aβ engulfed by the microglia can damage the

lysosome and leak into the cytoplasm, also contributing to the activation of the inflammasome. Activation of the inflammasome can induce pyroptosis, leading to the

secretion of IL-1β and ASC specks. ASC specks bind to Aβ and seed the surrounding parenchyma leading to further Aβ aggregation. Aggregated Aβ can also bind to

TLR and induce activation of the MyD88 pathway. Likewise, IL-1β secreted from the pyroptotic microglia can bind to IL-1R and induce activation of the MyD88

pathway. The induction of the MyD88 pathway through the by-products of microglial pyroptosis may lead to a vicious cycle of inflammasome priming, inflammasome

activation and pyropotosis that will exacerbate Aβ pathology.

In addition to a crucial role of the NLRP3 inflammasome
in Aβ pathophysiology in AD, tau pathology is influenced by
NLRP3 activation (150). NLRP3 or ASC deficiency decreases
tau hyperphosphorylation and aggregation by regulating tau
kinases (GSK-3β and CaMKII-α) and phosphatases (PP2A) in
Tau22 mice that express tau mutations found in frontotemporal
dementia. Intracerebral injection of fibrillar Aβ-containing brain
homogenates enhances tau phosphorylation and aggregation in
Tau22 mice, which is blocked by NLRP3 or ASC deficiency (150),
suggesting that Aβ-induced NLRP3 inflammasome activation
exacerbates tau pathology in AD and its animal models.

ROLE OF NLRP3 INFLAMMASOMES IN
SYSTEMIC INFLAMMATION IN
ALZHEIMER’S DISEASE

LPS is a potent TLR4 ligand and its systemic administration
is widely used to model systemic inflammation. A list of
animal models summarizing the effects of LPS treatment on
NLRP3 inflammasome activation is found in an excellent review
article by Heneka et al. (151). Several papers have reported
microglial NLRP3 inflammasome activation after peripheral LPS
injection. Single intraperitoneal injection of LPS (5 mg/kg) in
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C57BL/6 (B6) mice induced microglial activation, upregulation
of NLRP3, ASC, caspase-1p10, and IL-1β in the hippocampus,
leading to behavioral alterations (depression like behavior and
memory deficits) for 29 days after LPS injection, which were
inhibited by a NLRP3 inhibitor (152). Intraperitoneal injection
of LPS (3.5 mg/kg) in B6 mice induced activation of microglia
and NLRP3 inflammasome, and increased IL-1β expression in
CNS, which were exacerbated by microglia-specific A20 (NF-
κB inhibitor) deficiency but not by deficiency in other cell types
(neuron, astrocyte, and oligodendrocytes) (153). Intraperitoneal
injection of LPS (0.5 mg/kg) in B6 mice induced activation of
microglia, increases in NLRP3, ASC, caspase-1 and IL-1β in the
hippocampus, and depressive behavior (154) and such effects by
LPS (1 mg/kg) were inhibited in NLRP3-deficient mice (155).
Intraperitoneal injection of LPS (1 mg/kg) in APP/PS1 mice at
15 months of age induced decreases in Aβ uptake by microglia,
increases in the number and size of Aβ deposits and in peripheral
myeloid cells that infiltrated into the brain but not at 5 months
of age (156). Such changes by intraperitoneal LPS injection were
blocked by NLRP3 deficiency. These results suggest that systemic
LPS administration induces microglial NLRP3 inflammasome
activation, increased brain Aβ load and brain infiltration of
peripheral myeloid cells in an age dependent manner, leading to
exacerbation of AD pathophysiology.

TLR/IL-1R/MYD88 SIGNALING IN
SUSTAINED VICIOUS CIRCLE OF NLRP3
INFLAMMASOME ACTIVATION IN
ALZHEIMER’S DISEASE

LPS is often used to prime NLRP3 inflammasome (157). LPS
can induce canonical and non-canonical NLRP3 inflammasome
activation (138). In canonical inflammasome priming, activated
TLR4 by LPS signals through the adaptor protein, MyD88,
culminating in activation of transcription factor, nuclear-factor-
kB (NF-κB), that elevates pro-IL-1β and NLRP3 expression (158,
159). Toll-like receptors (TLRs) including TLR2, TLR4, TLR6,
and their co-receptor, CD14, are indispensable constituents of
the receptor complexes for microglial activation by Aβ, leading
to cytokine and chemokine production (78, 79, 95). Extracellular
fibrillary Aβ can prime the canonical inflammasome pathway by
activating the TLR/MyD88/NF-κB signaling pathway [Figure 2;
(160, 161)]. In the activation step, phagocytosed Aβ in microglia
leads to lysosomal damage and liberation of cathepsin B and/or
production of mitochondrial reactive oxygen species, which
trigger formation of the NLRP3 inflammasome complex, causing
caspase 1 activation, IL-1β production and pyroptosis (145, 162).
Oligomeric and fibrillar Aβ can directly interact with NLRP3
and ASC, resulting in NLRP3 inflammasome activation, also
(163). ASC specks released by microglial pyroptosis quickly
bind to extracellular Aβ and induce seeding and spreading
of Aβ oligomers and aggregates (146). Aggregated Aβ further
promotes microglial inflammasome priming via TLR/MyD88
signaling. Additionally, secreted IL-1β also induces microglial
inflammasome priming via IL-1R/MyD88 signaling (164). Thus,
this vicious circle of NLRP3 inflammasome activation by

TLR/IL-1R/MyD88 signaling may lead to chronic/sustained
inflammation and neurodegeneration in AD (Figure 2).

COMPLEMENT IN AGING BRAIN

Complements belong to the pattern recognition receptors in the
innate immune system and involved in recognition and clearance
of pathogens, damaged tissues, aggregated proteins, and toxic
wastes (165, 166). Additionally, complement proteins have
been implicated in diverse processes during brain development,
aging and neurological diseases (26). Virtually all complement
components are locally expressed in the brain and microglia
express almost all classical complement components and their
receptors including C1qR, CR3, C3aR, and C5aR (167, 168).
Particularly, complement and microglia play an important
role in synaptic pruning, that is, complement-tagged synapse
elimination by microglia, during neural development, aging, and
neurodegenerative diseases (169). In the normally developing
brain, opsonization of synapses by complement factors (tagged
by C1q, C3b, and C4) triggers microglial phagocytosis, resulting
in elimination of the tagged synapses.

During normal brain aging in human and mouse, C1q
protein levels dramatically increase in certain regions of the
brain, including the hippocampus, substantia nigra, and piriform
cortex. Aged mice with C1q deficiency exhibit significantly
less cognitive and memory decline compared with wild-type
mice (170). Marked increases in C1q levels are found in
dendritic spines at synapses in the aged rhesus macaque
dorsolateral prefrontal cortex as well as glia ensheathed synapses,
suggesting C1q-tagged synapse elimination by glial phagocytosis
as a possible mechanism for age-related degeneration (171).
C57BL/6J (B6) mice (at 16 months of age) show age-
dependent neuron loss in hippocampal CA3 but not in
CA1, which is not observed complement C3-deficient B6
mice. Additionally, aged C3-deficient B6 mice show better
cognition and LTP than wild-type B6 mice, implying that C3
is also involved in age-dependent synapse loss and cognitive
decline (172).

ROLE OF COMPLEMENT IN ALZHEIMER’S
DISEASE BRAIN

In AD, the degree of region-specific synapse loss better correlates
with cognitive decline than amyloid plaques, NFTs and neuron
loss (173, 174) and genetic variants of complement receptor
1 (CR1) and clusterin (CLU, apolipoprotein J), which are
parts of the complement system, are identified as AD risk
factors by genome wide association studies (175). Certain
components of complements including C1q, C3, C4, and C5b-
C9 (membrane attack complex, MAC) accumulate in amyloid
plaques and NFT in the brains of AD patients (176–179).
A positive correlation is found between expression levels of
C3 and C3a receptor (C3aR1) in the brain and cognitive
decline and Braak staging in AD patients (180). Additionally,
CD57 that prevents MAC assembly is decreased in AD brain
(181). CSF and plasma levels of certain complement proteins
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have been reported as promising biomarkers for AD diagnosis
and progression (182–186). These observations suggest that
activation of the complement system may contribute to the
AD pathogenesis.

C1q deficiency decreases plaque-associated glial activation
and mitigates progressive decreases in synaptic markers in
Tg2576 mice without changes in brain Aβ load (187). In J20
mice (an AD mouse model), upregulation and deposition of
C1q onto synapses precedes synaptic loss in the hippocampus
before overt amyloid plaque formation (188). The toxic effects
of Aβ oligomers on synapse loss and LTP inhibition are
blocked by C1q deficiency or its inhibitor in mice (188).
C1q tags tau-affected synapses and microglia eliminate C1q-
tagged synapses by engulfment in PS19 mice (a frontotemporal
dementia model). This process is inhibited by C1q-blocking
antibodies (189). LPS and Aβ increases production of C3
in primary microglial cultures in a dose dependent manner
(190). Aβ oligomer-induced synaptic engulfment by microglia
is inhibited by CR3 deficiency in adult mice and inhibition of
C3 or microglial CR3 decreases Aβ oligomer-induced synapse
loss (188). C3 deficiency ameliorates age-dependent loss of
synapses and neurons, and cognitive deficits in aged APP/PS1
mice although it increases cerebral Aβ deposits (191). C3
deficiency mitigates amyloid plaque-associated synapse loss
in another AD model mice, PS2APP, and rescues neuron
loss and LTP deficits in PS19 mice (192). Similarly, C3aR1
deficiency mitigates tau pathology, neuroinflammation, synaptic
deficits and neurodegeneration in PS19 mice (180). Activation
of microglia by LPS or Aβ increases sialidase activity and
desialylation of the microglial surface, leading to stimulation of
CR3-mediated phagocytosis of neurons by microglia in primary
glial-neuronal co-cultures. This neuronal loss by microglial
phagocytosis is inhibited by a blocking antibody against CD11b
(a component of CR3) and a sialidase inhibitor (193). Oral
administration of a C5a receptor antagonist (PMX205) decreases
Aβ deposition and glial activation in Tg2576 and 3xTg mice,
improves cognitive deficits in Tg2576 mice and reduces tau
hyperphosphorylation in 3xTg mice (194). These observations
support the hypotheses that complement activation exacerbates
the AD progression and that the complement signaling pathway
that regulates pruning of excess synapses by microglia during
brain development is inadequately initiated andmediates synapse
loss and neurodegeneration in AD.

In contrast with these hypotheses, the other investigators
found beneficial effects of complement activation. C1q has been
reported to have a protective effect against neurotoxic Aβ fibrils
and oligomers by activating cAMP-response element-binding
protein and AP-1, resulting in upregulation of LRP1B and G
protein-coupled receptor 6(GPR6), in cultured neurons as well as
3xTg mice (195). Additionally, genetic deficiency of C3 increases
Aβ deposition and induces neurodegeneration and alternative
activation (M2) of microglia in aged J20 mice (17 months)
(196). Inhibition of C3 by overexpressing soluble complement
receptor related protein y (sCrry) increases Aβ deposition and
neurodegeneration in J20 mice (197). These findings support
the notion that activation of these complement components
is neuroprotective.

ROLE OF COMPLEMENT IN SYSTEMIC
INFLAMMATION IN
NEURODEGENERATION

Intraperitoneal administration of LPS (10 mg/kg) for 7 days
induces marked upregulation of C1q and C3 by activating the
classical complement pathway, microglial activation, synapse
loss in the hippocampus, and cognitive deficits in Kunming
mice (125). Repeated intraperitoneal administration of LPS (1
mg/kg/day for 4 consecutive days) induces dopaminergic neuron
loss in the substantia nigra in mice but a single LPS injection
does not. This loss of dopaminergic neurons is prevented in C3-
deficient mice and associated with increased expression of genes
involved in the classical and alternative complement (Itgam of
CR3, C4, C3, and HF1) and phagosome (Fcer2b, Fcgr3, Fcgr4,
Tyrobp, and Fcer1 g) pathways in the brain, suggesting that
repeated peripheral LPS administration induces complement-
mediated elimination of dopaminergic neurons by microglial
phagocytosis (198). Intraperitoneal injection of LPS (5 mg/kg)
activates microglia and activated microglia induce A1 astrocytes
by releasing TNFα, IL-1α, and C1q in B6 mice. A1 astrocytes can
drive neurodegeneration by releasing a neurotoxin and multiple
complement components including C1q and C3, leading to
microglial CR3-mediated synapse pruning and loss (199). A1
astrocytes are abundantly observed in diverse neurodegenerative
diseases including AD (199). These findings indicate that
systemic inflammation can activate brain complement and
microglia, leading to loss of synapses and neurons, cognitive
deficits, and neurodegeneration.

POTENTIAL COMPLEMENT AND TLR
CROSSTALK IN NEUROINFLAMMATION
AND ALZHEIMER’S DISEASE

As parts of the host defense innate immune system, TLRs and
complements engage in synergistic or antagonistic signaling
crosstalk to orchestrate immune responses. Indeed, most
pathogens activate both TLRs and complements. TLR4 activation
upregulates expression of complement components, potentially
leading to complement activation (200, 201). In responses
to TLR ligands including LPS (TLR4), zymosan (TLR2/6),
and CpG-ODN (TLR9), mice deficient in a major membrane
complement inhibitor, decay-accelerating factor (DAF), show
striking elevation of plasma IL-1β, IL-6, and TNF-α in
a complement-dependent manner. This synergistic effect of
complement on the cytokine production by TLRs in peripheral
tissues has been attributed to activation of NF-κB and mitogen-
activated protein kinases (ERK1/2 and c-Jun N-terminal kinase)
through the C5a-C5aR1 and C3a-C3aR signal pathways in
mice [Figure 2; (200)]. Indeed, co-stimulation of human
monocytes (THP-1 cell line) with aggregated Aβ and C5a
markedly enhances secretion of IL-1β and IL-6 through NF-
κB activation in vitro (202). Therefore, it is possible that
activation of C5aR and C3aR signaling by C5a and C3a,
respectively, synergistically enhances proinflammatory responses
initiated by aggregated Aβ-induced TLR4 activation in the
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brain, leading to AD initiation and progression. Additionally,
the formation of the complement membrane attack complex
(MAC) triggers increased cytosolic Ca2+ concentration, resulting
in mitochondrial dysfunction and NLRP3 activation that causes
caspase 1 activation and IL-1β secretion in vitro (203), whichmay
further promote a pathogenic cycle of the TLR4-complement-
NLRP3 inflammasome interactions in AD.

In human monocytes, C5aR activation by C5a enhances
LPS/TLR4-induced expression of IL-6 and TNF-α production
while, in macrophages, C5a increases IL-10 secretion and
inhibits LPS/TLR4-induced upregulation of IL-6 and TNF-α
via C5aR/MEK/ERK signaling (204). This distinct regulation
of LPS/TLR4 signaling by C5a in different cell types supports
the concept that monocytes in circulation act as danger sensor
and heighten inflammatory responses to PAMPs and DAMPs,
while tissue macrophages restrain excess inflammation for host
protection/tissue repair (204). Therefore, it is also possible that,
in homeostatic/resting microglia, C5a and/or C3a synergistically
enhance pro-inflammatory responses triggered by Aβ-TLR4
activation for removal of toxic Aβ aggregates while, in activated
microglia, C5a and/or C3a antagonizes Aβ-TLR4-induced pro-
inflammatory responses for neuroprotection. This host defense
function of complement appears to be altered to host-offensive
actions during aging (205). This detrimental alteration of
complement-TLR signaling during aging may be exacerbated
in AD.

CONCLUDING REMARKS

TLRs function as a host defense mechanism against pathogens
and tissue damages. In peripheral tissues, complement and
NLRP3 inflammasome modulate immune and inflammatory
responses initiated by TLRs through crosstalk between their
signaling pathways. TLR4 primes NLRP3 inflammasome
in the peripheral tissues as well as in the central nervous
system (CNS). As Aβ forms aggregates, a vicious cycle of Aβ-
TLR4-NLRP3 inflammasome-IL-1β in microglia sustains
neuroinflammation in AD. Systemic inflammation can
exacerbate neuroinflammation and neurodegeneration in
AD via TLR4 and complement activation. In the peripheral

tissues, the crosstalk between TLR and complement is complex
and contextual depending on cell type, tissue, species and disease
models and complement seems to function as a molecular
switch of TLR signaling (pro- or anti-inflammatory) and as a
coordinator between innate and adaptive immune responses.
However, such regulatory functions of complement have not
been investigated in the CNS or brain-resident immune cells
including microglia. One of the obstacles that hamper the
investigation is that available microglial cell lines and primary
microglia derived from the brain have characteristics different
from brain resident microglia because microglia are sensitive to
environmental changes. Such obstacles may be circumvented
by use of new technologies such as the RiboTag and BacTRAP
(Translating Ribosome Affinity Purification) methods (206, 207),
single-nuclei or single cell RNAseq, genome editing tools, and
iPSC-derived 3D co-culture brain models (208). Repeated
failures of Aβ-targeted therapeutics indicate the need for a
new approach for AD therapy and prevention based on disease
mechanisms alternative to the amyloid cascade hypothesis.
Inflammation and immune cells play a central role in the
initiation and progression of AD. It is crucial to elucidate the
molecular mechanisms by which inflammatory responses and
immune cells drive the AD initiation and progression.
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