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Microbial production of value-added products is a promising alter-
native to plant- and chemical-based routes [1]. However, only few of 
interested chemicals are producing at bulk scale with microbial cell 
factories (eg. artemisinic acid) while most are staying at bench level. To 
enable the microbes toward efficient bioproduction, extensive en-
deavors have been expended on enzyme exploration and pathway 
decoration, leaving the role of cofactors, especially the rare cofactors 
like SAM, FMN(H2) and FAD (H2), largely unconsidered [2,3]. 

Cofactors are highly demanded organic compounds in propelling 
various biochemical processes, where particularly the knot-controlling 
enzymes may suffer from inadequate cofactor supply. Unveiling novel 
cofactor manipulation strategies would benefit microbial production of 
target products, especially the complex ones. Nevertheless, challenges 
including the complexity of metabolism network and the lack of 
necessary information always render the efforts. In the recent work 
published in Nature Chemical Biology [4], Yongjin J. Zhou and 
co-workers systematically engineered the supply and recycling of three 
cofactors (NADPH, FAD(H2) and SAM) for the production of caffeic acid 
and ferulic acid in Saccharomyces cerevisiae (Fig. 1). 

Phenolic acids are essential precursors for complex lignan chemicals, 
whose de novo biosynthesis involves multiple oxidation and esterifica-
tion steps that are fueled by cofactor circulating. The authors first 
enhanced the upper metabolic flux of shikimate pathway, and then 
reconstructed a plant-derived, and NADPH dependent pathway for caf-
feic acid production [4]. To boost the caffeic acid titer, they sought to 
enhance NADPH generation by streamlining the pentose phosphate 
pathway (PPP). Pulling the non-oxidative PPP downstream steps 
improved caffeic acid production from 286.3 mg/L to 385.2 mg/L with 
an elevated level of NADPH/NADP+. NADPH is generally taken in pri-
ority due to its higher cellular concentration, and the easiness in rational 
rewiring. However, introducing multiple NADPH-dependent steps 
would disturb significantly the intrinsic redox equilibrium, and abate 
the host cell viability. To further enhance the caffeic acid production, a 
FAD (H2) dependent biosynthetic pathway was constructed in the 
cytosol. FAD (H2) mainly localizes in mitochondrion for maintaining 
redox homeostasis, and is at least 20 times less than NADPH in the 

cytosol. Upon this, they enhanced the cytosolic FAD (H2) supply by 
recruiting a de novo FAD (H2) biosynthetic pathway and a mitochondrial 
FAD exporter to avoid the perturbation of the mitochondrial FAD (H2) 
homeostasis, which significantly improved the caffeic acid production. 
Interesting, they found that enhancing the biosynthesis of riboflavin (the 
FAD precursor), and expressing its importer MCH5 successfully elevated 
the caffeic acid production by 93%, indicating that the availability of the 
FAD precursor might be a limiting step for efficient FAD (H2)-based 
biosynthesis route. The present research suggested that both the 
regeneration and relocation of FAD (H2) played critical roles in driving 
natural product biosynthesis when an elevated metabolic flux estab-
lished, and the synergy between metabolic flux and cofactors supply 
should be finely handled [5]. Though pathway compartmentalization 
has been extensively developed for enhancing the biosynthesis effi-
ciency [6], this study showed that engineering the cofactor metabolism 
among sub-organelles could further drive the bioproduction of natural 
products in yeast and even other eukaryotes. 

The most innovative part of their work is expediting the SAM recy-
cling to drive the SAM-dependent methylation during the ferulic acid 
biosynthesis from caffeic acid that catalyzed by the O-methyl-transferase 
(Omt). Boosting the SAM supply failed in increasing the ferulic acid titer 
through the strategies that were previously documented successfully in 
full-filling the SAM pool [5], which included (1) expressing the 
rate-limiting methionine adenosyl-transferase (Mat), (2) increasing the 
supply of 5-methyl-tetrahydrofolate in methionine biosynthesis, and (3) 
feeding methionine during yeast cultivation. Alternatively, the authors 
constructed the drainage system for the degradation of S-adeno-
syl-L-homocysteine (SAH), a byproduct of transmethylation and potent 
inhibitor of the Omt, which lead to an accelerated methyl cycle, and a 
significantly increased ferulic acid production from caffeic acid (64% 
(w/w) conversion). This study is a typical example for recycling the 
cofactor SAM to support de novo biosynthesis of complex compounds, 
and should expand our in-depth understanding of the fundamentals for 
fine-tuning cofactors to drive cellular metabolism [7,8]. 

In summary, this study has developed tailored strategies for manip-
ulating the cofactors such as NADPH, FAD (H2) and SAM to support the 
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high-level production of caffeic acid (5.5 g/L) and ferulic acid (3.8 g/L) 
in yeast (Fig. 1). These results demonstrate that cofactors supply and 
recycling play an essential role in driving natural product biosynthesis. 
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Fig. 1. Cofactor engineering strategies applied for 
biosynthesis of caffeic acid and ferulic acid. The 
production of caffeic acid from p-coumaric acid is 
heavily driven by both NADPH and FAD(H2), while 
the ferulic acid biosynthesis from caffeic acid invovles 
an essential methylation step with SAM as the methyl 
donor. F6P: fructose 6-phosphate; PEP: ribulose 5- 
phosphate; RU5P: ribulose 5-phosphate; E4P: 
erythrose-4-phosphate; DAHP: 3-deoxy-D-arabino- 
heptulosonate-7-phosphate; NADPH: reduced nico-
tinamide adenine dinucleotide phosphate; PPA: pre-
phenate; CA: cinnamic acid; pCA: p-coumaric acid; 
GTP: guanosine triphosphate; FMN: flavin mono-
nucleotide; FAD(H2): (reduced) flavin adenine dinu-
cleotide; Ade: adenosine; SAM: S- 
adenosylmethionine; SAH: S-adenosy-L-homocyste-
ine. The dotted lines indicate multiple biosynthetic 
steps.   
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