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The P2X7 receptor is a cation channel activated by high concentrations of adenosine
triphosphate (ATP). Upon long-term activation, it complexes with membrane proteins
forming a wide pore that leads to cell death and increased release of ATP
into the extracellular milieu. The P2X7 receptor is widely expressed in the CNS,
such as frontal cortex, hippocampus, amygdala and striatum, regions involved
in neurodegenerative diseases and psychiatric disorders. Despite P2X7 receptor
functions in glial cells have been extensively studied, the existence and roles of this
receptor in neurons are still controversially discussed. Regardless, P2X7 receptors
mediate several processes observed in neuropsychiatric disorders and brain tumors,
such as activation of neuroinflammatory response, stimulation of glutamate release
and neuroplasticity impairment. Moreover, P2X7 receptor gene polymorphisms have
been associated to depression, and isoforms of P2X7 receptors are implicated in
neuropsychiatric diseases. In view of that, the P2X7 receptor has been proposed
to be a potential target for therapeutic intervention in brain diseases. This review
discusses the molecular mechanisms underlying P2X7 receptor-mediated signaling in
neurodegenerative diseases, psychiatric disorders, and brain tumors. In addition, it
highlights the recent advances in the development of P2X7 receptor antagonists that
are able of penetrating the central nervous system.

Keywords: P2X7 receptor, neurodegenerative diseases, psychiatric disorders, brain tumor, brain diseases, P2X7
receptor antagonists

INTRODUCTION

The P2X7 Receptor
The investigation of receptors activated by adenosine triphosphate (ATP) has been largely widened
since their discovery in 1960s by Geoffrey Burnstock. These receptors are classified into two
main types: P1 and P2 receptors. P1 receptors are usually activated by adenosine, have seven
transmembrane domains, and are coupled to G proteins. P2 receptors can be divided into two
main subtypes, ionotropic P2X receptors and metabotropic P2Y receptors. P2X receptors subunits
have just two transmembrane domains and are assembled as homo- or heterotrimers. Such as
adenosine-activated P1 receptors, P2Y receptors are coupled to G proteins; however, their ligands
are ATP/ADP/ UTP/UDP-glucose (Knight, 2009).

Since the first cloning of the P2X7 receptor from a rat brain cDNA library (Surprenant et al.,
1996), it is the most widely investigated purinergic receptor with the largest amount of specific
pharmacological tools available (Sluyter and Stokes, 2011).
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The P2RX7 gene is comprised of 13 exons encoding the
subunit with 595 amino acids in length that in humans is
located at chromosome position 12q24.31 and in mice at
chromosome 5. The human P2RX7 gene is located at the
chromosome position also associated with inflammatory and
psychiatric disorders (Barden et al., 2006; Lucae et al., 2006). Each
one of the three subunits has intracellular amino and carboxyl
termini with two hydrophobic transmembrane domains, with a
long glycosylated extracellular loop between them, comprising
the ATP-binding site. In addition, the P2X7 receptor usually
assembles as homotrimer (Sluyter and Stokes, 2011). However,
it can also form heteromeric interactions with P2X4 receptor
subunits as evidenced in 2007 by Guo et al. (2007) and later
confirmed by Schneider et al. (2017).

P2X7 receptor activity is triggered by high concentrations
(ranging around 0.05–1 mM) of extracellular adenosine 5′-
triphosphate (ATP), mediating the rapid influx of Na+ and Ca2+

and efflux of K+, and other cations (Burnstock and Kennedy,
2011). Upon long activation, the P2X7 receptor can open pores
large enough to allow the passage of organic ions like N-methyl-
D-glucamine (NMDG+), choline+ and fluorescent dyes such as
ethidium+ and YO-PRO-12+ (Alves et al., 2014).

Available tools for P2X7 receptor research lack specific
agonists. Due to this problem, many literature data need
to be carefully analyzed. Studies regarding the activation of
P2X7 receptors use agonists, such as ATP and 2′(3′)-O-(4-
Benzoylbenzoyl)adenosine 5′-triphosphate (Bz-ATP). ATP is a
broad agonist for P2X receptors. Bz-ATP is 10–50 times more
potent than ATP in activating P2X7 receptors. Besides activating
P2X7 receptors, this compound acts as an agonist for P2Y11,
P2X1, 2 and 4, and as a weak agonist for P2X5 receptors.
Additionally, EC50 values for both agonists vary between species.
Bz-ATP, for example, activates rat and human P2X7 receptor
at 10 times greater concentration than mice P2X7 receptor
(Burnstock and Verkhratsky, 2012). As indicated in Table 1, some
P2X7 receptor antagonists also lack specificity. The widely used
Brilliant Blue G (BBG) also antagonizes P2X1, P2X2, P2X3, and
P2X4 receptors besides the P2X7 receptor. However, the IC50
for the P2X7 receptor is 8–50 times lower compared with other
receptors. A-740003, A-438079 and A-804598 are selective for the
P2X7 receptor (Burnstock and Verkhratsky, 2012).

Another limitation regarding P2X7 receptors studies is
antibody specificity. Available antibodies against the P2X7
receptor are polyclonal, which are prone to cross-reactivity,
or monoclonal. Although they did not detect P2X7 receptors
in knockout (KO) mice, these monoclonal antibodies failed
to consistently and reliably detect and/or block P2X7 receptor
signaling pathway in WT mice (Sim et al., 2004; Li et al., 2020).
There are at least two P2X7 receptor KO mice commercially
available. In the GlaxoSmithKline strain, generated by Chessell
et al. (2005), a lacZ transgene and neomycin cassette were
inserted into exon 1 (Chessell et al., 2005). These animals
express the P2X7K receptor isoform and lack the P2X7A receptor
isoform. P2X7K is widely expressed by T lymphocytes, and
GlaxoSmithKline P2X7 receptor KO mice possess enhanced
P2X7 receptor-mediated responses in T cells. The other available
strain from Pfizer, generated by Solle et al. (2001) by inserting a

neomycin cassette into exon 13, lacks both P2X7A and K receptor
isoforms; however these animals express P2X7 13B and 13C
isoforms in the brain and other tissues (Solle et al., 2001; Bartlett
et al., 2014). The P2X7 13B isoform was reported to negatively
affect P2X7A receptor activity (Masin et al., 2012). Therefore,
P2X7 receptor KO mice should be used carefully as a tool to assess
P2X7 receptor involvement in brain and inflammation.

Nowadays, P2X7 receptor expression is known to be broadly
present throughout diverse tissues and cells, including CNS,
such as microglia, oligodendrocytes, Schwann cells, and possibly
in astrocytes and neurons. The latter one is still controversial
discussed, and various works are still trying to clarify the
issue (see Sluyter and Stokes, 2011). Despite several works that
demonstrate the presence of P2X7 receptor in neurons (Deuchars
et al., 2001; Sperlágh et al., 2002; Wirkner et al., 2005; Yu et al.,
2008), its expression and functionality are widely debated (Sim
et al., 2004; Anderson and Nedergaard, 2006; Illes et al., 2017;
Metzger et al., 2017b). This outlook becomes strengthened when
immunoreactivity for this receptor in P2X7 receptor KO strains
was detected, evidencing low specificity of anti-P2X7 receptor
antibodies (Anderson and Nedergaard, 2006). Recent works with
improved methodologies did not find any expression of P2X7
receptors in neurons (Rubini et al., 2014; Kaczmarek-Hajek et al.,
2018; Khan et al., 2018). Similarly, the presence of functional
P2X7 receptors in astrocytes is also debated c). It is well known,
however, that oligodendrocytes and microglia express functional
P2X7 receptors (Lord et al., 2015; He et al., 2017; Metzger et al.,
2017a; Kaczmarek-Hajek et al., 2018).

Variants of the P2X7 Receptor
The P2X7 receptor has 10 different alternative splicing isoforms
named from P2X7A to P2X7K, the latter has only been identified
in rodents (Figure 1). The full-length isoform is the P2X7A one.
In humans, P2X7B, P2X7H, and P2X7J are the only subunits
reported as expressed proteins (Feng et al., 2006; Adinolfi et al.,
2010) (Figure 1).

The P2X7B isoform is a truncated form, when compared
with P2X7A (Cheewatrakoolpong et al., 2005), and assemble
as functional channels that cannot form large pores as P2X7A,
playing roles in cell proliferation (Adinolfi et al., 2010). The
P2X7H is nonfunctional ion channels (Cheewatrakoolpong et al.,
2005), whereas the P2X7J can assemble with other splicing
variants forming non-functional heterotrimeric receptors (Feng
et al., 2006) that are involved in protection against ATP-induced
cell death (Feng et al., 2006; Guzman-Aranguez et al., 2017).

In mice, four splice variants were detected (P2X7B, P2X7C,
P2X7D, and P2X7K), besides the canonical P2X7A one. Most
of the modifications between isoforms are comprised within
the extracellular loop domain. P2X7D and P2X7B can assemble
to P2X7A and negatively affect the basal activity of the P2X7
receptor. However, if not assembled to P2X7A, they assemble
as receptors forms that show both increased activity and higher
sensitivity to agonists (Schwarz et al., 2012; Xu et al., 2012),
like the rat P2X7K variant (Nicke et al., 2009). Restricted P2X7
receptor variants present multiple mutations, such as the P2X7
receptor-2 variant that contains H270R and A348T mutations,
and the P2X7 receptor-4 variant that has H155Y, H270R, A348T,
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TABLE 1 | P2X7 receptor antagonists.

Structure Compound/IUPAC name BBB-penetrant Type References

GSK-1482160 Yes Preferential P2X7
receptor antagonist

Territo et al., 2017;
Kim et al., 2019(2S)-N-[[2-chloro-3-

(trifluoromethyl)phenyl]methyl]-1-methyl-5-
oxopyrrolidine-2-carboxamide

GSK-314181A Yes Preferential P2X7
receptor antagonist

Broom et al., 2008;
Kim et al., 2019N-(1-adamantylmethyl)-5-[[(3R)-3-

aminopyrrolidin-1-yl]methyl]-2-
chlorobenzamide;hydrochloride

Compound 16 (GSK) Yes Preferential P2X7
receptor antagonist

Beswick et al., 2010;
Kim et al., 2019(2,4-dichlorophenyl)-methylazanide

JNJ-54175446 Yes Preferential P2X7
receptor antagonist

Letavic et al., 2017;
Kim et al., 2019[2-chloro-3-(trifluoromethyl)phenyl]-[(4R)-1-(5-

fluoropyrimidin-2-yl)-4-methyl-6,7-dihydro-4H-
triazolo[4,5-c]pyridin-5-yl]methanone

JNJ-55308942 Yes Non-selective P2X7
receptor antagonist
(also binds to P2X1,
P2X2, P2X3, P2X2/3,
and P2X4 receptors)

Chrovian et al., 2018
(S)-(3-fluoro-2-(trifluoromethyl)pyridin-4-yl)(1-(5-
fluoropyrimidin-2-yl)-6-methyl-1,4,6,7-
tetrahydro-5H-[1,2,3]triazolo[4,5-c]pyridin-5-
yl)methanone

JNJ-42253432 Yes Preferential P2X7
receptor antagonist

Letavic et al., 2013;
Lord et al., 20142-methyl-N-([1-(4-phenylpiperazin-1-

yl)cyclohexyl]methyl)-1,2,3,4-
tetrahydroisoquinoline-5-carboxamide

JNJ-47965567 Yes Preferential P2X7
receptor antagonist

Bhattacharya et al.,
2013; Letavic et al.,
2013; Kim et al., 2019N-[[4-(4-phenylpiperazin-1-yl)oxan-4-yl]methyl]-

2-phenylsulfanylpyridine-3-carboxamide

JNJ-54166060 Yes Preferential P2X7
receptor antagonist

Swanson et al., 2016;
Kim et al., 2019[2-chloro-3-(trifluoromethyl)phenyl]-[(4R)-1-(5-

fluoropyridin-2-yl)-4-methyl-6,7-dihydro-4H-
imidazo[4,5-c]pyridin-5-yl]methanone

(Continued)

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 July 2020 | Volume 13 | Article 124

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-13-00124 July 31, 2020 Time: 8:2 # 4

Andrejew et al. P2X7 Receptor in Brain Diseases

TABLE 1 | Continued

Structure Compound/IUPAC name BBB-penetrant Type References

A-438079 Yes Preferential P2X7
receptor antagonist

Nelson et al., 2006;
Kim et al., 20193-[[5-(2,3-dichlorophenyl)tetrazol-1-

yl]methyl]pyridine

A-740003 Yes Preferential P2X7
receptor antagonist

Honore et al., 2006;
Kim et al., 2019N-[1-[(Z)-[(cyanoamino)-(quinolin-5-

ylamino)methylidene]amino]-2,2-
dimethylpropyl]-2-(3,4-
dimethoxyphenyl)acetamide

A-804598 Yes Preferential P2X7
receptor antagonist

Donnelly-Roberts et al.,
2009; Able et al., 2011;
Kim et al., 2019

1-cyano-2-[(1S)-1-phenylethyl]-3-quinolin-5-
ylguanidine

A-839977 Yes Preferential P2X7
receptor antagonist

Honore et al., 2009;
Kim et al., 20191-(2,3-dichlorophenyl)-N-[(2-pyridin-2-

yloxyphenyl)methyl]tetrazol-5-amine

AFC-5128 Yes Preferential P2X7
receptor antagonist

Fischer et al., 2016

indol-3-carboxamide derivative, chemical
nomenclature disclosed

Brilliant blue G (BBG) Yes Non-selective P2X7
receptor antagonist
(also binds to P2X1,
P2X2, P2X3 and P2X4
receptors)

Savio et al., 2018;
Kim et al., 20193-[[4-[(E)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-

[(3-sulfonatophenyl)methyl]azaniumylidene]-2-
methylcyclohexa-2,5-dien-1-ylidene]methyl]-N-
ethyl-3-methylanilino]methyl]benzenesulfonate

CE-224, 535 No High selective P2X7
receptor antagonist
(500-fold over P2X1
and P2Y1 receptors)

Savall et al., 2015;
Kim et al., 20192-chloro-N-[(1-hydroxycycloheptyl)methyl]-5-[4-

[(2R)-2-hydroxy-3-methoxypropyl]-3,5-dioxo-
1,2,4-triazin-2-yl]benzamide

AZD9056 No Preferential P2X7
receptor antagonist

Bhattacharya, 2018;
Kim et al., 2019N-(1-adamantylmethyl)-2-chloro-5-[3-(3-

hydroxypropylamino)propyl]benzamide

(Continued)
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TABLE 1 | Continued

Structure Compound/IUPAC name BBB-penetrant Type References

AZ-10606120 Not found Negative allosteric
modulator of the
human P2X7 receptor.

Kim et al., 2019

2-(1-adamantyl)-N-[2-[2-(2-
hydroxyethylamino)ethylamino]quinolin-5-
yl]acetamide;dihydrochloride

AZ-11645373 Not found Preferential P2X7
receptor antagonist
(500 times less effective
in rat than in human
P2X7 receptors)

Kim et al., 2019
3-[1-[4-(3-nitrophenyl)phenoxy]-4-pyridin-4-
ylbutan-2-yl]-1,3-thiazolidine-2,4-dione

GW791343 Not found Negative activity
modulator of human
P2X7 receptors,
positive activity
modulator of rat P2X7
receptors

Kim et al., 2019
2-(3,4-difluoroanilino)-N-[2-methyl-5-(piperazin-
1-ylmethyl)phenyl]acetamide

KN-62 Not found Preferential human
P2X7 receptor
antagonist, however
with low affinity to rat
P2X7 receptors

Kim et al., 2019
[4-[(2S)-2-[isoquinolin-5-
ylsulfonyl(methyl)amino]-3-oxo-3-(4-
phenylpiperazin-1-yl)propyl]phenyl]
isoquinoline-5-sulfonate

BBB: blood brain barrier; IUPAC: International Union of Pure and Applied Chemistry.

and Q460R mutations (Stokes et al., 2010). These variants
in heterologous expression cells also exhibited larger agonist-
induced ion currents and dye uptake with a similar agonist
sensitivity (Jiang et al., 2013).

Some alternative splicing isoforms of P2X7 receptor show
diverse downstream signaling properties. Moreover, P2X7
receptor function varies among human individuals because there
are some polymorphisms that can result in loss- or gain-of-
function (Figure 2). Single nucleotide polymorphisms (SNPs) are
widespread in the human P2X7 receptor; some of them are non-
synonymous, meaning that there is a change in the amino acid
sequence, generating a point mutation. Some of those mutations
are related to altered susceptibility to various diseases, shedding
new light on the underlying disease mechanisms (Jiang et al.,
2013). In this article, we review SNPs involved in Alzheimer’s
disease (AD) (rs208294, rs3751143), Parkinson’s disease (PD)
(rs3751143), multiple sclerosis (MS) (rs208294, rs28360457),
depressive disorder (rs7958311, rs2230912), anxiety (rs208294,
rs2230912), and bipolar disorder (BD) (rs208294, rs1718119,
rs2230912, rs3751143) (Figure 2).

P2X7 Receptor Function
P2X7 receptor activation induces a number of well-established
downstream signaling events in various human cell types. The

opening of the channel leads to an increase in the concentration
of cytosolic Ca2+ ([Ca2+]i), responsible for a number of P2X7
receptor-induced responses, as AKT activation in astrocytes
(Jacques-Silva et al., 2004). Phospholipase (PL) C and A2 (Andrei
et al., 2004), src kinase, p38, acid sphingomyelinase (Bianco et al.,
2009), caspase 1 (Keller et al., 2008), and gasdermin (Evavold
et al., 2018) are involved in P2X7 receptor intracellular signaling.

P2X7 receptor activity mediates cell proliferation and
death, rapid and reversible phosphatidylserine exposure,
membrane blebbing, release of microparticles and exosomes
and multinucleated cell formation, as well as the formation of
reactive oxygen and nitrogen species (Sluyter and Stokes, 2011).

P2X7 Receptor in Neuroinflammation
The P2X7 receptor is highly expressed in microglial cells (Lord
et al., 2015; He et al., 2017). In healthy tissues, the concentration
of extracellular ATP is low at the nanomolar range (Falzoni et al.,
2013). Conversely, under stress and cellular damage, the ATP
concentration increases considerably, resulting in P2X7 receptor
activation. Therefore, it is hypothesized that P2X7 receptor acts
as a silent receptor once its activation only occurs in pathological
states when there is a rise of extracellular ATP concentrations
(Bhattacharya and Biber, 2016).
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FIGURE 1 | P2X7 receptor splicing variants. The P2X7 receptor has 10 different isoforms derived from alternative splicing and mutations of the 13 exons of the
gene. The P2X7A isoform is the native form, expressed in every mammal species. The detected alterative isoforms in humans are P2X7B, H and J, while in rodents,
these are P2X7B, C, D and K. The mutations that lead to a stop codon insertion, originate a shortened P2X7 receptor at the carboxy-terminal domain and cannot
form pores that induce cell death. P2X7G and H present a copy of exon 3 (N3) near the amino-terminal. Known basic functions for each isoform are described at the
right site of the panel. Aminoterminal (NH+), Carboxyterminal (COO−), Transmembrane passage 1 (TM1), Transmembrane passage 2 (TM2).

In high concentrations, extracellular ATP can act as a
damage-associated molecular patterns (DAMPs) and activate
P2X7 receptor (Falzoni et al., 2013). DAMP signal activates the
transcription factor NF-κB in the nucleus, which consequently
promote the upregulation of proinflammatory cytokines, pro-IL-
1β and pro-IL-18, and NLRP3 protein (Jo et al., 2016). Although
the precise mechanism is not completely understood, P2X7
receptor it is one of the most potent activators of the NRLP3-
associated inflammasome (He et al., 2017). P2X7 receptor
activation induces K+ efflux, which is needed for efficient
NLRP3 inflammasome activation (Gustin et al., 2015). NLRP3
inflammasome trigger the activation of caspase-1, which causes
the maturation of IL-1β and IL-18 and, consequently, increasing
proinflammatory cytokine release (Bernier, 2012; Jo et al., 2016;
He et al., 2017; Bhattacharya et al., 2018). This signaling appears
to be in functional in microglia and not astrocytes (Gustin et al.,
2015). Additionally, the P2X7 receptor may also stimulate the
release of TNF, IL-6, CCL2, CCL3, and CXCL2 (Suzuki et al.,
2004; Kataoka et al., 2009; Shiratori et al., 2010; Shieh et al., 2014).

It is clear that the P2X7 receptor can modulate the
neuroinflammation induced by LPS, once P2X7 receptor
blockade may reduce inflammatory mediators release (Bianco
et al., 2006; Choi et al., 2007; Monif et al., 2009; He et al.,
2017; Yang et al., 2018). Some works showed that LPS enhanced
P2X7 receptor expression (Choi et al., 2007; Yang et al., 2018),
whereas other studies reported downregulation of P2X7 receptor
expression (Bianco et al., 2006; He et al., 2017). Similarly to the
LPS-induced effects, P2X7 receptor overexpression was sufficient
to trigger microglial activation in primary microglia derived
from hippocampus (Monif et al., 2009). Interestingly, a recent

study evidenced that the selective P2X7 receptor antagonist, JNJ-
55308942, inhibited neuroinflammation development induced
in different rodent models by LPS, BCG or chronic stress
(Bhattacharya et al., 2018). Recently, efforts were made to
detect in vivo neuroinflammation. Therefore, radioligands
targeting P2X7 receptor were used as a tool to identify brain
areas undergoing inflammatory processes. [18F]-JNJ-64413739
and 11C-GSK1482160 were promising in detecting areas of
neuroinflammation upon LPS-stimulation of in rodents (Territo
et al., 2017; Berdyyeva et al., 2019).

One of the possible pathways for ATP release is from
dying cells. Interestingly, diseases that present degeneration
of neural cells, as neurodegenerative diseases, psychiatric
disorders, and brain tumors, as presented below, may present
high local concentrations of extracellular ATP and stimulate
pathophysiological P2X7 receptor activity. In view of that,
here, we provide evidence that AD, PD, MS, depression, and
brain tumors present increased P2X7 receptor expression. P2X7
receptor signal amplification in these diseases is proposed.

P2X7 RECEPTOR ROLES IN
NEURODEGENERATIVE DISEASES

Purinergic receptors play a significant role in neurodegenerative
diseases (Oliveira-Giacomelli et al., 2018). P2X7 receptors
participate in neurodegenerative, neuroinflammatory
and neurogenic processes, tightly related to disease
development and repair.
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FIGURE 2 | P2X7 receptor single nucleotide polymorphisms (SNP) in brain diseases. Various P2X7 receptor SNPs have been detected and studied in humans. The
gene that encodes the P2X7 receptor is located at chromosome 12, and at least seven of the SNPs are related to neurological disorders, such as Alzheimer’s
disease (AD), bipolar disorder (BD), anxiety, multiple sclerosis (MS), major depressive disorder (MDD) and Parkinson’s disease (PD). The red letters represent SNPs
that potentialize the response of the P2X7 receptor upon binding to its ligand and generate increased cell death and worsening of diseases. Further, green letters are
in line with decreased Ca2+ inflow due to loss of function of the P2X7 receptor, and usually lead to neuroprotection. The SNPs are named rs208294, rs7958311,
rs1718119, rs2230912, rs28360457, and rs3751143. Created with BioRender.com.

Alzheimer’s Disease
Alzheimer’s disease is the most common form of dementia
in the elderly population (Ballard et al., 2011; Beinart et al.,
2012), representing a serious public health problem. Recent
estimative indicates that approximately 50 million people have
AD worldwide, and this number is expected to reach 132 million
by 2050 (Alzheimer’s Association, 2015). Processes that trigger
AD may start decades before the onset of initial symptoms
of dementia (Goedert and Spillantini, 2006; De Felice, 2013),
reinforcing the importance of sensitive diagnostic tools for more
effective therapeutic interventions.

The main clinical symptom in AD is the cognitive decline,
which begins with recent memory lapses, and proceeds
with progressively intensified memory loss to total physical
dependence. Familial AD (∼5% of all cases) is more severe
and initiates earlier than the sporadic form, affecting people
from 40 years of age on. Most patients are sporadic cases,
presenting AD symptoms from 65 years of life on, and aging
is indicated as the leading risk factor for the disease (Evans
et al., 1989). The pathophysiologic generation of the neurotoxic

β-amyloid oligomers (AβO) by sequential amyloid precursor
protein (APP) proteolysis is involved in the development of
AD. Familial AD has been directly related to mutations in
the genes of APP and presenilin 1 and 2 (Levy-Lahad et al.,
1995; Sherrington et al., 1995). The etiology of AD is an
association between genetic and environmental factors (Selkoe,
2004; Roberson and Mucke, 2006) which turns disease treatment
more difficult. Indeed, the drugs currently available to treat AD
have only palliative effects and consist of acetylcholinesterase
inhibition to optimize cholinergic activity (Knapp et al.,
1994; Rogers and Friedhoff, 1996; Trinh et al., 2003), and
the NMDA receptor antagonist memantine (Cosman et al.,
2007; Lipton, 2007; Parsons et al., 2007; Xia et al., 2010).
Therefore, the development of more effective drugs for AD
treatment is needed.

There is evidence that inflammation plays a vital role
in AD (Lucin and Wyss-Coray, 2009), as well as in the
modulation of neurogenesis (Mishra et al., 2015). Interestingly,
there is a significant influence of microglia in both processes
(Nunan et al., 2014; De Lucia et al., 2016). AβO also activates
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microglia, resulting in secretion of pro-inflammatory cytokines,
such as tumor necrosis factor alpha (TNF-α) and IL-1β

(Ledo et al., 2013, 2016). Microglial activation may not only
compromise their clearance ability (Heneka et al., 2010) but
also, surprisingly, contribute to the propagation of AβO in the
cerebral parenchyma (Joshi et al., 2014). Interestingly, the P2X7
receptor is involved in these features and in AD as discussed
in the following.

Increased P2X7 receptor expression and activation have been
involved in the progression of several neurodegenerative diseases,
including AD (Savio et al., 2018). Accordingly, P2X7 receptor
expression is increased in the brain of AD patients and appears to
be concentrated in areas of higher density of amyloid plaques, co-
localized with activated microglia (McLarnon et al., 2006). P2X7
receptors expression are also upregulated in the hippocampus of
two animal models of AD, such as transgenic mice that express
the human APP bearing the Swedish mutation (K670N/M671L)
(Parvathenani et al., 2003) and rats injected with amyloid-β
peptide (Aβ) 1-42 (1 nmol) into the hippocampus (McLarnon
et al., 2006) (Figure 3).

Further, the involvement of two P2X7 receptor SNPs were
investigated in AD patients and compared to age-matched non-
demented elderly, the 1513A > C (rs3751143) and 489C > T
(rs208294) (Sanz et al., 2014). This study showed that the
presence of the 1513C allele and the absence of the 489C allele
(i.e., the presence of both SNPs) decreased the probability of
having AD by about four-fold versus the reference subgroup
(Sanz et al., 2014). The 1513A > C substitution is associated to
the loss of P2X7 receptor function and should confer an “anti-
inflammatory” phenotype (Gu et al., 2001). On the other hand,
the 489C > T SNP causes a gain of function of this receptor,
which may potentiate P2X7 receptor-induced phagocytosis, and
subsequent Aβ elimination (Cabrini et al., 2005; Sluyter and
Stokes, 2011) (Figure 2). Therefore, such mutations may be
neuroprotective against AD development (Sanz et al., 2014).

Several studies support the idea that the prolonged activation
of P2X7 receptor may result in increased secretion of pro-
inflammatory cytokines (such as IL1-β and IL-18) and reduced
phagocytic capacity, leading to neuronal damage (Skaper et al.,
2006; Sanz et al., 2009; Lee et al., 2011). In accordance with
this proposal, injection of fibrillar amyloid-β peptide (fAβ1-42)
into the dentate gyrus of the hippocampus enhanced microglial
reactivity, astrogliosis and leakiness of the blood-brain barrier
(Ryu and McLarnon, 2008a,b). Interestingly, a pronounced
increase of P2X7 receptor immunoreactivity was detected in
astrocytes and microglia, but not in neurons (McLarnon et al.,
2006; Ryu and McLarnon, 2008a). Aβ1-42 treatment also induced
ATP release, [Ca2+]i enhancement and IL-1β secretion in
primary microglial cell cultures prepared from wild-type, but
not from P2X7 receptor KO mice (Sanz et al., 2009). Intra-
hippocampal injection of Aβ1-42 caused a large accumulation of
IL-1β in wildtype, but not in P2X7 receptor KO mice (Sanz et al.,
2009). Treatment with Bz-ATP increased IL-1β secretion from
human microglia cells pre-activated with Aβ1–42, which was
completely reversed following pre-incubation with oxidized ATP,
P2X7 receptor antagonist (Rampe et al., 2004). This response
may be mediated by P2X7 receptors, since the treatment with the

selective P2X7 receptor antagonist A-740003 blocked the release
of IL-1β induced by ATP treatment of microglial cells from rat
cortex incubated with serum amyloid A (Figure 3).

Further evidence indicated that P2X7 receptor activation may
also induce neuronal damage in AD through the production
of reactive oxygen species (ROS). In microglial cultures, Aβ1-
42 induced ATP release leading to the production of ROS via
P2X7 receptor activation (Soo et al., 2007). A catalytic subunit
of NADPH oxidase, which catalyzes the production of ROS, was
detected in P2X7 receptor-positive microglial cells in the cerebral
cortex of 6-months-old APP/PS1 mice, a double transgenic mice
commonly used to study familial AD (Lee et al., 2011). Moreover,
postsynaptic density 95-positive dendrites showed significant
damage in P2X7 receptor-positive regions in the cerebral cortex
of these animals (Lee et al., 2011). Up-regulation of P2X7
receptor expression and ROS production in microglia cells were
temporally correlated with Aβ increase and synaptotoxicity in
this animal model, since it occurs around the age of 6 months
(Lee et al., 2011).

Studies demonstrated that P2X7 receptor activation interferes
with processing of APP. APP is proteolytically processed by β-
and γ-secretases to release Aβ, the main component of senile
plaques found in the brains of AD patients (Zhang et al., 2011).
Alternatively, APP can be cleaved by α-secretase, leading to
the formation of the nonpathogenic amyloid-α peptide (Aα)
(Zhang et al., 2011). In two different cellular lines (HEK293T
and neuroblastoma N2a), inhibition of either constitutive
expression or overexpression of the P2X7 receptor increased
α-secretase activity through inhibition of glycogen synthase
kinase 3 (GSK-3) (León-Otegui et al., 2011; Diaz-Hernandez
et al., 2012; Miras-Portugal et al., 2015). In addition, systemic
administration of P2X7 receptor antagonists in APPSweInd mice, a
transgenic animal that expresses the human APP bearing both the
Swedish (K670N/M671L) and the Indiana (V717F) mutations,
decreased the number of hippocampal amyloid plaques (Diaz-
Hernandez et al., 2012; Miras-Portugal et al., 2015). This
reduction is correlated with a decrease in GSK-3 activity and
consequent increase of α-secretase activity, leading to non-
amyloidogenic APP processing (Diaz-Hernandez et al., 2012;
Miras-Portugal et al., 2015).

However, results from Delarasse et al. (2011) showed
the opposite effect: P2X7 receptor stimulation may enhance
α-secretase activity. In this work, four different cell lines (mouse
and human neuroblastoma cells, primary murine astrocytes
and neural progenitor cells) incubated with ATP or Bz-ATP
had activated enzymatic cascades that triggered α-secretase
activity, leading to increased levels of Aα, while Aβ was
undetectable (Delarasse et al., 2011). Moreover, this study
provides evidence to support the idea that ATP- or Bz-ATP-
mediated Aα release is mediated by P2X7 receptor activation:
(1) three pharmacological inhibitors of P2X7 receptor blocked
the release of Aα mediated by Bz-ATP; (2) inhibition of P2X7
receptor synthesis by RNA interference reduced Aα production;
and (3) stimulation by Bz-ATP of mouse primary astrocytes and
neural progenitor cells from P2X7 receptor-deficient mice did not
induce Aα release, while it did in cells derived from wild type
animals (Delarasse et al., 2011). Despite such interesting data, it
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FIGURE 3 | Intracellular signaling pathways triggered by P2X7 receptor activity. The P2X7 receptor is assembled as a homotrimeric protein, and upon ATP binding,
receptor subunits change their conformational state and open a pore for the entrance of cations, mainly Ca2+. In physiological conditions (left panel), the increase of
intracellular Ca2+ concentration levels ([Ca2+]i) leads to the activation of some kinases, like protein kinase C (PKC) and calcium-calmodulin kinase II (CaMKII), which
phosphorylates and activates phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinases 1/2 (ERK1/2), protein kinase B (AKT) and glycogen synthase
kinase 3 (GSK3). This signal transduction results in inhibition of apoptosis or increase of the transcription of cell survival related genes. In pathological conditions
(right panel), such as in Alzheimer’s disease (AD), multiple sclerosis (MS), major depressive disorder (MDD) and Parkinson’s disease (PD), P2X7 receptor expression
rates are increased. Activation of the P2X7 receptor in AD animal model results in increased release of interleukin 1β (IL-1β) and reactive oxygen species (ROS), and
augmented inhibition of GSK3. IL-1β release depends on the formation of the NLRP3 inflammasome together with the activation of the nuclear factor
kappa-light-chain-enhancer activated B cells (NF-κB). In ALS, P2X7 receptor activation also induces overproduction of ROS and ERK1/2 signaling. Administration of
P2X7 receptor antagonists has been suggested to benefit specific features of AD, PD, MS, MDD, and BD, like improvement of behavior and neuroinflammation.
Nevertheless, high concentrations of P2X7 receptor agonists may also enhance in vitro cytotoxic effects of temozolomide, a drug of choice for glioblastoma
treatment. Created with BioRender.com.

is relevant to emphasize that APP processing depends on the
abundance of this protein at the specific cellular model and,
in this case, the equilibrium between the different proteolytic

pathways could be unbalanced, which could explain the contrast
with the results obtained by other authors (León-Otegui et al.,
2011; Diaz-Hernandez et al., 2012; Miras-Portugal et al., 2015).

Frontiers in Molecular Neuroscience | www.frontiersin.org 9 July 2020 | Volume 13 | Article 124

https://biorender.com/
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-13-00124 July 31, 2020 Time: 8:2 # 10

Andrejew et al. P2X7 Receptor in Brain Diseases

Therefore, the roles of P2X7 receptors in α-secretase activity
and APP processing are controversial and should be further
investigated. In addition to the aforementioned effects mediated
by P2X7 receptors, these receptors have also been involved
in memory and cognition impairment, key symptoms of AD
frequently attributed to Aβ deposits and neurofibrillary tangles,
which spread from the trans-entorhinal and hippocampal regions
to the primary areas of the neocortex (Raskin et al., 2015). In
accordance with the detrimental role of P2X7 receptor activation
in AD, systemic administration of a P2X7 receptor antagonist,
BBG, diminished spatial memory impairment and cognitive
deficits along with reduced loss of filopodia and spine density
induced by the injection of soluble Aβ1-42 into the hippocampal
CA1 region of mice, an animal model of AD (Chen et al., 2014).
BBG also inhibits, at a lesser extent, P2X4 receptors, which
could be responsible for the observed neuroprotective effects.
Knockdown of the P2X4 receptor attenuated Aβ1-42-induced
neuronal death in neurons primary culture, whereas induction
of P2X4 receptor expression in a neuronal cell line that does
not express P2 receptors enhanced the toxic effect of Aβ1-42
(Varma et al., 2009).

However, other authors observed that P2X7 receptor
inhibition may induce memory deficits. For instance, P2X7
receptor KO mice displayed spatial memory impairment in
the Y-maze test, despite their performances in the object
recognition task remained unaltered (Labrousse et al., 2009).
Additionally, P2X7 receptor KO mice or wild type animals
treated with A-438079 presented increased contextual fear recall
and impaired acquisition of extinction in mice (Domingos
et al., 2018). The treatment with A-740003 elicited dose-
dependent impairments in memory acquisition, consolidation
and retrieval in rats, whereas P2X7 receptor deletion hampered
the aversive memory processes of mice exposed to the contextual
fear-conditioning task (Campos et al., 2014). The obtained
results indicate that P2X7 receptor inhibition induces memory
impairment associated to anxiogenic-like responses. At this
point, it is important to highlight that such studies were not
conducted in an animal model of AD, but in tests used to
evaluate memory and anxiety-related behaviors. The opposite
effect observed in an animal model of AD is understandable
since experimental conditions were different.

Altogether, literature data indicates that P2X7 receptor
inhibition: (1) ameliorates neuronal damage induced by both
neuroimmune response activation and ROS production; (2)
modulates α-secretase activity and non-amyloidogenic APP
processing, in a non-elucidated manner; and (3) attenuated
spatial memory impairment and cognitive deficits in an animal
model of AD. These results support that P2X7 receptor
antagonism may be a possible strategy for AD treatment.

Parkinson’s Disease
Parkinson’s disease is a neurodegenerative disease that affects
more than 1% of the world’s elderly population (between
60 and 80 years old) (de Lau and Breteler, 2006). Despite
its high incidence, PD etiology is still poorly understood.
Dopaminergic neurons of the nigrostriatal pathway undergo
neurodegeneration, accompanied by neuroinflammation and

oxidative stress. The appearance of protein aggregates formed
by α-synuclein aggravating the disease state is also one of the
hallmarks of the disease, although it is not the main cause of
dopaminergic neuron death (Hornykiewicz, 1966; Hughes et al.,
1992; de Lau and Breteler, 2006).

Patients with PD have characteristic symptoms, such as
shaking palsy, resting tremor and bradykinesia, as well as non-
motor symptoms, including cognitive impairment and mood
and sleep disorders (Thenganatt and Jankovic, 2014). Current
treatments consisting of remission of symptoms trigger several
adverse effects that compromise the quality of life of the
individual. There is no known cure for the disease, highlighting
the importance of elucidating the mechanisms involved in the
disease and possible therapeutic targets (Hornykiewicz, 2002).

In humans, genetic predisposition to PD development was
identified in patients carrying P2X7 receptor polymorphisms.
In a Han Chinese population, the P2X7 receptor polymorphism
rs3751143 (Glu496Ala) was identified as a risk factor for PD (Liu
et al., 2013) (Figure 2).

Animal models of PD show that the P2X7 receptor is
involved in disease development, especially in microglial
cell activation. In an animal model of nigrostriatal injury
induction by 6-OH dopamine (6-OHDA), a toxic dopamine
analog, striatal gene expression of the P2X7 receptor
gradually increased over 5 weeks after injury (Oliveira-
Giacomelli et al., 2019). Neuroprotective effects of P2X7
receptor antagonism were observed after pretreating animals
with A-438079. This treatment prevented the decrease in
striatal dopamine stocks triggered by 6-OHDA injection.
However, this effect was not accompanied by a reduction of
dopaminergic neuron death, indicating that P2X7 receptor
inhibition acts on axonal dopamine stores (Marcellino et al.,
2010) (Figure 3).

Similar results were obtained with BBG treatments. When
administered prior to induction of the 6-OHDA injury,
intracerebroventricular injection of BBG also protected against
decreasing striatal dopamine levels and reduced oxidative stress,
mitochondrial dysfunction and apoptosis (Kumar et al., 2017).
Treatment with BBG (45 mg/kg) in rats prevented the reduction
of striatal and nigral dopamine levels, decreased astrogliosis,
striatal microgliosis, and the number of apomorphine-induced
rotations (Carmo et al., 2014). Controversially, Hracskó et al.,
2011 showed that P2X7 receptor KO animals are equally
susceptible to dopaminergic neuron death induction by MPTP
(Hracskó et al., 2011). In this study, the Pfizer KO mouse strain
was used, known to express P2X7 13C and 13B receptors in the
brain (Bartlett et al., 2014).

Additionally, it is suggested that P2X7 receptor inhibition
may also promote neuroregeneration of dopaminergic neurons
when given 1 week after 6-OHDA-induced injury (Ferrazoli
et al., 2017; Oliveira-Giacomelli et al., 2019). Administration of
BBG (50 mg/kg) in rats during 7 days, starting 1 week after
injury, augmented the number of substantia nigra dopaminergic
neurons (Ferrazoli et al., 2017). Likewise, BBG (75 mg/kg)
treatment also regenerated striatal dopaminergic fibers. This
effect was accompanied by decreased microglial activation in the
substantia nigra (Oliveira-Giacomelli et al., 2019) (Figure 3).
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Treatment of neuronal-differentiated SH-SY5Y cells, an
in vitro model of dopaminergic neurons, with BBG protected cells
from 6-OHDA-induced synaptotoxicity and death (Carmo et al.,
2014; Oliveira-Giacomelli et al., 2019). In addition, assays with
wild-type and α-synuclein mutants of microglial cells showed
that α-synuclein activated microglial P2X7 receptors, inducing
NADPH oxidase, modulating the PI3K/AKT signaling pathway
and increasing oxidative stress (Jiang et al., 2015). Subsequently,
it has been reported that this α-synuclein-promoted effect
on microglial cells in vitro also involves the stimulation of
glutamatergic excitotoxicity (Dos-Santos-Pereira et al., 2018).

Overall, P2X7 receptor inhibition presents neuroprotective
and neuroregenerative effects in cellular and animal models
of PD. This effect involved anti-inflammatory actions and
modulation of the microglial activation state and cytokine release.
However, most of these studies used BBG as a tool to assess
P2X7 receptor antagonism. Therefore, we cannot discard that
P2X4 receptors could be partially responsible for neuroprotective
and/or neuroregenerative effects in PD’s models (Ase et al.,
2015). P2X4 receptor inhibition did not prevent 6-OHDA-
induced cell death in SH-SY5Y cell culture (Oliveira-Giacomelli
et al., 2019). This result indicates that P2X4 receptor antagonism
is not the main mechanism of neuroprotective effect of BBG
treatment. On the other hand, there is no reported study of P2X4
receptor antagonism inducing neuroregenerative effects. Thus,
P2X4 receptor antagonism could be partially responsible for the
regeneration of dopaminergic neurons in the animal model of
PD induced by 6-OHDA. In conclusion, P2X7 receptor is an
interesting research topic and possible target for PD.

Huntington’s Disease
Huntington’s disease (HD) is a dominant hereditary
disease caused by a mutation in IT15 gene that encodes
huntingtin protein (Htt). Abnormal elongation of the (CAG)n
repeats localized in 5′ coding sequence results in massive
neurodegeneration of the basal ganglia and cortex of patients
over the age of 30 (Vonsattel and DiFiglia, 1998; Ross and
Tabrizi, 2011; Ross et al., 2014). The role of P2X7 receptor in HD
has been still poorly investigated. At the moment, the only study
is published by Diaz and collaborators, who by using two distinct
mouse models for HD, Tet/HD94 and R6/1 demonstrated
that P2X7 receptor expression is increased in HD, and that
the receptor channel possesses augmented Ca2+ permeability
(Díaz-Hernández et al., 2009) (Figure 3). The inhibition of
the receptor with BBG mitigated motor coordination deficits,
cachexia and decreases neuronal loss.

Moreover, in vitro analysis revealed that neurons expressing
mutant Htt were more sensitive to apoptosis under P2X7 receptor
stimulation (Díaz-Hernández et al., 2009). Thus, P2X7 receptors
expressed in microglia can promote excitotoxicity in neural cells
by inducing glutamate release (Matute, 2012).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is one of the most prevalent
neuromotor diseases in adulthood. The disease is characterized
by the death of motoneurons in the motor cortex, brainstem
and spinal cord, resulting in muscle impairment and paralysis

(Hardiman et al., 2017). Among the mechanisms involved in
neuronal death, neuroinflammation is one of the most established
factors. ALS patients present alterations in levels of a range of
pro-inflammatory cytokines in the cerebrospinal fluid (Mitchell
et al., 2009; Moreno-Martinez et al., 2019), as well as increased
rates of reactive cerebral microglial cells (Turner et al., 2004).
Depending on the stage of the disease, reactive microglia with
protective or cytotoxic properties is found, demonstrating the
complexity of neuroinflammation in this disorder (Evans et al.,
2013). In this sense, studies relating the P2X7 receptor with ALS
show a delicate regulation depending on different factors.

Several studies have been conducted with superoxide
dismutase 1 transgenic mice harboring the G92A mutation
[SOD1 (G93A)], a well-known ALS model. In this model, onset,
progression, and animal survival depend on the mouse gender.
Cervetto et al. (2013) showed that inhibition of the P2X7 receptor
by BBG at a dose of 45 mg/kg slowed down disease progression
in males, but not in females (Cervetto et al., 2013).

In addition, Apolloni et al. (2013a) demonstrated that female
SOD1 (G93A) mice with the KO of the P2X7 receptor gene
showed increased survival but anticipated the onset of the
disease and intensified its progression in males and females.
Further, increased astrogliosis and microgliosis and augmented
motoneuron death were observed, accompanied by increased
pro-inflammatory cytokine production (Apolloni et al., 2013a).
Authors used Pfizer KO mice, known to express P2X7 13B
and 13C receptors in the brain, which present lower membrane
migration and channel function when compared to P2X7A
receptors (Masin et al., 2012).

The beneficial effects of P2X7 receptor blockade in ALS
supposedly did not depend only on the studied gender, but
also on the stage of the disease. In the ALS pre-onset phase
in SOD1(G93A) mice, Bartlett et al. (2017) used BBG at a
dose of 45 mg/kg, three times a week. They reported that this
treatment increased female survival without ameliorating motor
performance (Bartlett et al., 2017).

Corroborating these results, treatment of late-pre-onset SOD1
(G93A) mice with BBG at 50 mg/kg, three times a week, delayed
disease onset and improved motor performance (Apolloni
et al., 2014). In addition, this treatment increased motoneurons
survival and decreased microgliosis and expression of pro-
inflammatory markers. However, when treated in the onset
phase, no neuroprotective effect was observed by P2X7 receptor
antagonism. On the other hand, P2X7 receptor activation exerted
a protective effect on skeletal muscles of SOD1 (G93A) mice
(Fabbrizio et al., 2019). Pre-late-onset treatment with Bz-ATP at a
dose of 1 mg/kg for 7 days (i.p.) prevented denervation atrophy of
the skeletal muscle. The neuroprotective effect of Bz-ATP could
be attributed to another purinergic receptor since this compound
is not a selective agonist of P2X7 receptors. Despite that, the P2X7
receptor is known to control proliferation, differentiation, and
regeneration in healthy skeletal muscle (Figure 3).

In vitro, the co-culture of astrocytes and motoneurons from
SOD1 (G93A) mice showed P2X7 receptor involvement in
astrocyte activity. The addition of Bz-ATP and ATP induced
motoneuron death by astrocytic neurotoxicity. When BBG
or apyrase (that increases ATP metabolism and decreases
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its concentration) was used, inhibition of neuron death was
observed (Gandelman et al., 2010). Although BBG treatment
also inhibits P2X4 receptors, activation of these receptors
appears to protect motor neurons in vitro (Cieślak et al., 2019),
indicating that the P2X7 receptor subtype is more likely to
be activated in the detrimental effect of Bz-ATP. Subsequently,
BBG treatment of motoneurons isolated from rat embryonic
spinal cord prevented Bz-ATP-induced cell death. In addition,
although low concentrations of ATP induced neuronal death,
high concentrations of ATP in the cellular media exerted
a protective effect, possibly due to its hydrolysis in ADP
and the adenosine-induced activation of P1 receptors. ATP
and Bz-ATP induced apoptosis by peroxynitrite production,
p38 activation and stimulation of the FAS autocrine signaling
pathway (Gandelman et al., 2013).

In vitro studies also corroborate microglial participation in
disease development in SOD1 (G93A) mice. Using isolated
microglia from these animals, Apolloni et al. (2013b)
demonstrated that Bz-ATP increased ROS production and
activation of the ERK1/2 signaling pathway (Figure 3). The pro-
inflammatory effects were alleviated following BBG application.
Similar results were obtained in SOD1 (G93A) P2X7 receptor KO
microglial cells, strengthening the concept of anti-inflammatory
effects promoted by P2X7 receptor antagonism (Apolloni et al.,
2013a). Besides inducing pro-inflammatory effects, activation of
P2X7 receptors in microglia cells isolated from SOD1 (G93A)
mice supposedly also modulate autophagy processes. Bz-ATP
increased expression of autophagy markers by inhibiting mTOR
phosphorylation. This effect was attenuated by treatment with
the P2X7 receptor antagonist A-804598 (Fabbrizio et al., 2017).

Finally, peripheral blood mononuclear cells of patients
with ALS showed decreased P2X7 receptor expression.
Repeated application of ATP to these cells resulted in
diminished intracellular calcium transients compared to
controls, demonstrating that decreased P2X7 receptor expression
induced dysregulation of intracellular calcium homeostasis
(Liu et al., 2016).

In conclusion, P2X7 receptor inhibition supposedly promotes
dual effects along the course of ALS. Its effects seem to depend
on the time window in which the inhibition started. P2X7
receptor ablation before ALS development in mice seems to be
detrimental (Apolloni et al., 2013a). In the asymptomatic phase,
P2X7 receptor inhibition did not alter disease onset and survival,
although it decreases M1 microglial marker expression (Apolloni
et al., 2014). In the pre-onset phase, treatment with BBG
increased mice’s survival but did not alleviate motor symptoms
(Bartlett et al., 2017). When administered at the late pre-onset
phase, BBG reduced M1 microglial phenotype and increased anti-
inflammatory M2 phenotype along with delayed disease onset
and decreased motor symptoms (Apolloni et al., 2014). BBG
is known to also inhibit P2X4 receptors to a lesser extent, but
the role of P2X4 receptors in the ALS development depends
on the cell type. While P2X4 receptor inhibition in microglia
cells induces the phenotypic change to M1 microglial cells and
promotes inflammation, P2X4 receptor activation appears to
protect motor neurons against kainate-induced excitotoxicity
in vitro (Di Virgilio and Sarti, 2018; Cieślak et al., 2019). Since

BBG treatment induced a decrease in microglial M1 markers, it
is more likely that the neuroprotective effects of BBG treatment
involves P2X7 receptor inhibition rather than P2X4 receptor
inhibition in ALS.

Multiple Sclerosis
Multiple sclerosis is an autoimmune disease with unknown
etiology. It is characterized by chronic inflammation with
astrogliosis and microgliosis, death of oligodendrocytes,
axonal demyelination and subsequent neuronal transmission
impairment. Available drugs alleviate symptoms; however,
there is no known cure for this disease (Goldenberg,
2012). Sustained activation of the P2X7 receptor is known
to induce oligodendrocyte death and demyelination and
neuroinflammatory processes and neurodegeneration, which are
characteristic for MS. Thus, studies unraveling functions of this
receptor in MS development were conducted.

An animal model of autoimmune encephalomyelitis (EAE)
is the gold-standard tool for in vivo studies, presenting similar
features of MS (Lassmann, 1983). In EAE animals, injection
of 10 mM BBG into the optic nerve reduced ATP and Bz-
ATP-induced demyelination, suggesting that P2X7 receptor
activation induced oligodendrocyte excitotoxicity (Matute et al.,
2007). BBG also inhibit P2X4 receptors, but their activation
in microglia cells is proposed to trigger remyelination process
in EAE mice (Di Virgilio and Sarti, 2018), indicating that
P2X7 receptor antagonism could be the responsible for BBG
treatment protective effects. P2X7 receptor expression during
EAE development in rodents has been demonstrated. In the
asymptomatic phase of the disease, overexpression of the
receptor in astrocytes was observed. At the peak of the
characteristic symptoms of the disease, receptor overexpression
occurred not only in astrocytes but also in neuronal terminals
(Grygorowicz et al., 2010). Following recovery from the disease,
the animals showed P2X7 receptor overexpression in glial
cells, whose GFAP labeling was increased in the symptomatic
phase without reduction after recovery (Grygorowicz et al.,
2011) (Figure 3). These results were later confirmed, in which
reactive astrocytes in the early phase of the disease expressed
P2X7 receptors. Treatment with BBG (50 mg/kg) for 6 days
alleviated the appearance of the characteristic symptoms of the
EAE rat model, accompanied by reduction in reactive astrocyte
labeling (Grygorowicz et al., 2016). Microglial cell analysis also
yielded interesting results. In the asymptomatic phase of EAE,
microglial cells showed P2X7 expression in active and resting
phenotypes, and treatment with 50 mg/kg BBG for 6 days
reduced microglial activation and pro-inflammatory cytokine
release (Grygorowicz and Strużyńska, 2019).

In the Pfizer P2X7 receptor KO animals, induction of the
EAE model resulted in a more severe pathological scenario of the
disease. Moreover the authors of this study (Chen and Brosnan,
2006) injected bone marrow cells from P2X7 receptor KO mice
into wild-type animals and detected a greater susceptibility to the
disease. In vitro co-culture of P2X7 receptor KO macrophages
and lymphocytes revealed increased lymphocyte proliferation
together with decreased apoptotic activity. These results suggest
that enhanced disease susceptibility of P2X7 receptor KO
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animals may be due to decreased lymphocyte apoptosis rates
(Chen and Brosnan, 2006). Controversially, Sharp and colleagues
showed that GlaxoSmithKline P2X7 receptor KO mice presented
four times less development of the EAE model, with reduced
astrocyte activation and axonal damage. On the other hand, they
detected an increase in pro-inflammatory cytokine production
in splenic T-cells (Sharp et al., 2008), explained by expression of
P2X7K receptors in these cells (Bartlett et al., 2014). Although
controversial, these results ensure that P2X7 receptors play an
important role in the development of the EAE model, both
peripherally and in the central nervous system.

Activation of P2X7 receptors is known to induce opening of
pannexin-1 associated membrane pores, with increased release
of ATP. In this sense, pannexin-1 KO mice showed a decrease
in EAE onset rates, accompanied by diminished mortality.
In addition, ATP release in the spinal cord was diminished,
accompanied by an increase in P2X7 receptor expression. In
the long term, these animals developed symptoms as severely
as wild-type animals did when submitted to the EAE model.
The authors of the work (Lutz et al., 2013) suggested that
increased P2X7 receptor expression is a mechanism to counteract
the decrease in ATP release due to the absence of pannexin-
1, and that this mechanism may be the reason for the similar
development of symptoms. When treated with the pannexin-1
inhibitor mefloquine wild type EAE animals showed less severity
in EAE development (Lutz et al., 2013).

The P2X7 receptor is associated with reactive microglia,
as shown for microglial cells extracted during the autopsy of
individuals with MS (Beaino et al., 2017). In addition, P2X7
receptor activation may play a role in the upregulation of IL-1β

through nitric oxide synthase expression (Narcisse et al., 2005).
P2X7 receptor expression was detected in reactive astrocytes
in postmortem brains, showing expression upregulation in the
parenchyma of the frontal cortex and in microglial cells from
spinal cord and white brain matter (Narcisse et al., 2005; Yiangou
et al., 2006; Amadio et al., 2017). P2X7 receptor expression
was reduced in peripheral blood mononuclear cells (PBMCs)
during acute disease phase, possibly due to autocrine and
paracrine mechanisms resulting from inflammatory processes.
The obtained results indicate that P2X7 receptor expression
downregulation in monocytes and upregulation of expression
in astrocytes participate at the inflammatory process of MS
(Amadio et al., 2017). In contrast, PBMCs from MS patients
had no difference in P2X7 receptor expression when compared
to healthy individuals (Caragnano et al., 2012). However,
when treated with glatiramer acetate, a compound used for
MS treatment, P2X7 receptor and CD39 expression rates
were reduced in PBMCs. These data were corroborated by
in vitro studies of PBMCs, which when treated with glatiramer
acetate showed a decrease in P2X7 receptor expression and
a tendency to reduced IL-1β and increased CD39 expression
(Caragnano et al., 2012).

Besides rare mutations in the P2X7 receptor gene found
in familial MS (Sadovnick et al., 2017; Zrzavy et al., 2019),
patients with mutations of Arg307Gln (rs28360457), which cause
a substantial loss in membrane pore formation, are up to twice
less frequent in MS patients, indicating a protective effect of

this mutation (Gu et al., 2015). The opposite occurs when
the mutation involves a P2X7 receptor gain-of-function that
increases receptor channel permeability for Ca2+ such as the
Ala76Val polymorphism, which is more common in MS patients
(Oyanguren-Desez et al., 2011) (Figure 2).

Altogether, in vivo and in vitro evidence in animal models
and patient samples indicates that the P2X7 receptor is closely
related to MS pathology. Its expression is increased in microglia
and reactive astrocytes resulting from inflammatory processes,
and interventions that downregulate expression or activity of this
receptor have neuroprotective effects. Moreover, although several
studies used BBG as antagonist for P2X7 receptors, and this
compound also inhibits P2X4 receptors, activation of the latter is
known to induce microglial changes towards the M2 phenotype
exerting remyelination effects in EAE mice (Di Virgilio and Sarti,
2018). Additionally, outcomes of P2X7 receptor ablation before
EAE development are not clear, since different P2X7 receptor KO
mice present different outcomes.

P2X7 RECEPTOR ROLES IN
PSYCHIATRIC DISORDERS

As reviewed by Cheffer et al. (2018), a range of purinergic
receptors are involved in psychiatric disorders. As discussed
below, the P2X7 receptor also seems to influence development,
vulnerability and severity of these disorders.

Depressive Disorders
Major depressive disorder (MDD) is estimated to affect about 322
million people worldwide, which represents 4.4% of the global
population (World Health Organization, 2017). Prevalence rates
vary by sex (5.1% of females and 3.6% of males) and by age
(peaking in the older adulthood, between 55 and 74 years old)
(World Health Organization, 2017). As described by several
studies, MDD has a high social and economic impact (Wang
et al., 2003; Greenberg et al., 2015), which could be attenuated by
more appropriated treatments (Chisholm et al., 2016). However,
about 65% of patients with MDD fail to achieve remission and
about 33% do not respond to the treatment initially prescribed
(Schatzberg, 1999; Trivedi et al., 2008). A possible explanation
for the ineffectiveness of antidepressants in some patients is
that most of them acts through facilitation of monoaminergic
neurotransmission and studies from the last decade show that
depression etiology involves more than this system (Kendler
et al., 2006; Dean and Keshavan, 2017).

Depressive disorders result from a combination of
environmental influence, personality traits, genetic and
epigenetic factors leading to neuroendocrine dysfunction
(hypothalamic–pituitary–adrenal axis imbalance),
neurochemical alterations (impaired monoaminergic
neurotransmission, increased glutamate levels and enhanced
neuroimmune response) and decreased neuroplasticity (Kendler
et al., 2006; Dean and Keshavan, 2017). As recently reviewed by
Ribeiro and co-workers the P2X7 receptor is a core regulator
of such neurochemical and neuroplastic mechanisms (Ribeiro
et al., 2019a). Based on that, it is not surprising that several
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studies indicate P2X7 receptor involvement in mood disorders
as discussed in the following.

A pioneering work showed an association between the
presence of the SNP rs2230912 in the gene coding for
P2X7 receptor with MDD development (Lucae et al., 2006).
Accordingly, the SNP rs2230912 was also associated with mood
disorders, longer depressive episodes (Soronen et al., 2011) and
increased severity of the depressive symptoms (Hejjas et al.,
2009). However, the case-control study performed by Hejjas
et al. (2009) found no differences in the presence of these
polymorphisms between patients suffering from MDD and
controls. Moreover, opposite results were found by two meta-
analysis studies: Feng et al. (2014) reported that there was
no association between rs2230912 polymorphism and MDD
development; however, Czamara et al. (2018) showed a positive
correlation (Feng et al., 2014; Czamara et al., 2018) (Figure 2).
It is noteworthy that the latter work included more validated
studies, which could explain the different results.

In addition, mice expressing either normal human P2X7
receptors (hP2X7 receptor – wild type) or receptors expressed
by an altered gene (hP2X7 receptor – rs2230912), did not
present any behavioral changes (Metzger et al., 2017b).
However, hP2X7 receptor – rs2230912 mice showed increased
vulnerability to chronic social defeat stress. These results indicate
that heterozygotic individuals may be more susceptible to
development of MDD through interactions between genetic
predisposition and stress exposure (Metzger et al., 2017b). In
accordance with this idea, the gene polymorphism rs7958311
in P2X7 receptor was correlated with MDD development in
individuals with previous history of stress exposure (Gonda et al.,
2018) (Figure 2).

Beyond the evidence provided by human studies, in vitro and
in vivo experiments may also help to understand the role of the
P2X7 receptor in depression and in the mechanisms underlying
therapeutic and/or side effects induced by antidepressants. For
this purpose, the effects of antidepressant treatment on the
expression/function of the P2X7 receptor has been investigated.
In a whole-cell patch-clamp study, paroxetine, but not fluoxetine
nor desipramine administration, reduced the inward currents
evoked by Bz-ATP on cloned rat P2X7 receptors expressed in
HEK293 cells (Wang et al., 2016). In another study, paroxetine
inhibited, while fluoxetine and clomipramine potentiated ATP-
induced dye uptake in HEK-293 cells expressing recombinant
human P2X7 receptors (Dao-Ung et al., 2015). In vivo,
antidepressant-like effect induced by clemasine (Su et al.,
2018), ketamine (Tan et al., 2017) and imipramine (Ribeiro
et al., 2019b) were associated with diminished P2X7 receptor
levels in the hippocampus of stressed animals. These results
suggest that P2X7 receptor activity/expression can be modulated
by different antidepressants, revealing a potential mechanism
by which these drugs may induce their therapeutic effects.
Accordingly, mice exposed to chronic unpredictable mild stress
(CUMS) (Su et al., 2018) or chronic restraint stress (Tan et al.,
2017) presented enhanced P2X7 receptor expression in the
hippocampus. However, there are also animal studies showing
no alterations (Yue et al., 2017) or even a reduction (Kongsui
et al., 2014) in hippocampal P2X7 receptor levels induced

by stress exposure. The discrepant data may be explained by
different techniques used to determine P2X7 receptor levels
(Western blotting versus immunohistochemistry), different stress
protocols, or it may indicate a more complex role of P2X7
receptor in stress induced consequences (Figure 3).

Aiming to better understand P2X7 receptor involvement in
stress response, the effects of P2X7 receptor inhibition has
been studied. P2X7 receptor KO mice presented antidepressant-
related behavior in both forced swim test (FST) and tail
suspension test (TST), two experimental approaches to predict
antidepressant effects of drugs (Basso et al., 2009; Csölle et al.,
2013a,b). In addition, P2X7 receptor KO mice demonstrated
improved responses to a sub-effective dose of imipramine in
the FST (Basso et al., 2009). Despite these results, Boucher
and co-workers observed a decrease in the immobility time of
P2X7 receptor KO mice only after repeated exposure to the FST
(Boucher et al., 2011). Altogether, data from P2X7 receptor KO
mice indicate that P2X7 receptor absence results in increased
resilience to stress, and a phenotype showing antidepressant-
related behaviors.

Pharmacological studies in rodents using antagonists with
different affinities for P2X7 receptor further support this
hypothesis. Pereira and co-workers observed that acute treatment
with PPADS (12.5 mg/kg), a pan antagonist for P2 receptors, or
iso-PPADS (12.5 or 25 mg/kg), an antagonist of P2X receptors,
decreased the immobility time in the FST (Pereira et al., 2013).
Csölle et al. (2013b) observed that systemic administration of
BBG at dose of 50 mg/kg/day during 4 days, increased sucrose
consumption and decreased the immobility time in the TST
of mice pretreated with LPS. In another study from the same
research group subchronic (7 days) but not acute treatment
with BBG (50 mg/kg/day) decreased the immobility time of
mice exposed to TST (Csölle et al., 2013a). Mice systemically
treated with BBG (50 mg/kg/day) during 8 weeks (Farooq et al.,
2018) or rats treated with A-804598, at a dose of 5 mg/kg
twice daily for 4 weeks (Iwata et al., 2016), reversed behavioral
alterations induced by CUMS exposure. In accordance with
these data, 7 days of treatment with BBG (50 mg/kg/day)
decreased the number of escape failures induced by inescapable
foot shocks application (Ribeiro et al., 2019b). Additionally,
7 days of treatment with A-804598 (30 mg/kg/day) induced
antidepressant-like effects in the flinders sensitive line rats,
an animal model of depression based on selective breeding
(Ribeiro et al., 2019c). Intracerebral administration of P2X7
receptor antagonists have been also carried out in order to
investigate the role of these receptors in specific brain regions.
Interestingly, microinjection of P2X7 receptor antagonists (BBG
or A-438079) into the rat hippocampus during 3 weeks prevented
the development of depression-related behaviors induced by
CUMS exposure, while the administration of P2 receptors
agonists (ATP or Bz-ATP) for the same period caused depressive-
like behaviors similar to those observed after stress exposure
(Yue et al., 2017).

Altogether, pharmacological and genetic findings indicate that
P2X7 receptor inhibition induces antidepressant-related effects
in animals. This response may be mainly associated with the
blockade of P2X7 receptors expressed in the hippocampus,
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although the involvement of other brain structures needs to be
further investigated. Regardless the region responsible for the
effects induced by systemic administration of P2X7 receptor
antagonists, the behavioral response points this receptor as a
possible target for depression therapy.

Bipolar Disorder
Bipolar disorder is an incapacitating, chronic and severe mental
disorder that occurs in a cyclic course. Patients with bipolar I
disorder (BDI) present an exacerbated mood elevation, mania
episodes and usually experience major depression. Bipolar II
patients (BDII) exhibit an elevation of mood, named hypomania,
and a history of major depression without mania episodes. The
whole spectrum of BD is prevalent in approximately 2.4% of
population, whereas the prevalence of BDI and BDII are 0.6
and 0.4%, respectively (Merikangas et al., 2011). There is several
evidence that BD may progress and present neurodegenerative
components, once patients exhibit symptoms worsening, gradual
cognitive impairment and brain atrophy (Rao et al., 2010).

The neurobiological processes of BD remain poorly
understood. The pathways most associated hitherto include
monoaminergic neurotransmission, such as dopaminergic,
serotonergic, and noradrenergic systems (Grande et al.,
2016), redox imbalance (Versace et al., 2014) and
neuroinflammation. Some contradictory results exist regarding
the neuroinflammation state in BD. BD is a highly heterogeneous
disorder and the classification, cycling phase, number of
episodes, and medication can vary widely among patients, which
can implicate different inflammatory cytokine patterns present
in BD patients. Using a meta-analytic approach, serum or plasma
samples evidenced highly concentrated soluble IL-2 receptor,
TNF-a, soluble TNF receptor type 1, soluble IL-6, and IL-4 in
bipolar patients. Overall, there were not any differences between
other analyzed anti-inflammatory and pro-inflammatory
cytokines (Munkholm et al., 2013).

Bipolar disorder is extremely difficult to model in rodents
since the mechanism behind the maniac and depressive cycle
is not well established. Thus, animal models are employed that
mimic the state of mania. A mouse strain that naturally presents a
mania-like phenotype showed downregulation of P2X7 receptor
expression (Saul et al., 2012). In contrast, genetic deletion of
P2X7 receptor protected the abnormal locomotor activity by
acute amphetamine administration (Csölle et al., 2013b; Gubert
et al., 2016). In the mania animal model induced by chronic
administration of amphetamine, pharmacological antagonism
with A-438079 and genetic deletion of P2X7 receptor completely
reverted increased locomotor activity induced by amphetamine
(Gubert et al., 2016). Additionally, A-438079 abolished the
release of pro-inflammatory cytokines IL-1β and TNF-α and lipid
peroxidation in hippocampus (Gubert et al., 2016). Using the
same animal model, BBG treatment prevented hyperlocomotion,
DOPAC augmentation in the hippocampus, increased NTPDase3
expression and astrogliosis induced by amphetamine (Gubert
et al., 2019b) (Figure 3). Although in the last work only the non-
specific antagonist BBG was used, Gubert et al. (2016) found
similar results when BBG or the specific antagonist A-438079
were administrated. These studies evidence a reproducibility

in P2X7 receptor antagonism in the mania model induced by
amphetamine, strengthening the possible role of P2X7 receptor
in mania-like state in BD.

There are several studies of genetic associations between
P2X7 receptor polymorphisms and BD development. However,
inconsistent findings made the identification of any association
impossible. The rs2230912 is a SNP in the P2X7 receptor gene
that promotes gain of function and was previously associated
with increased risk of BD development in patients from the
United Kingdom and Ireland (McQuillin et al., 2009) and
Canada (Barden et al., 2006). Further, BD patients that presented
rs2230912 and rs208294 polymorphisms spent more time in the
symptomatic stage than patients without these alleles (Soronen
et al., 2011). Nevertheless, this finding was not appropriately
replicated in other populations studies. A multi-centric analysis
conducted in individuals from Germany, Poland, Romania, and
Russia evidenced no allelic or genotypic association between
rs2230912 and BDI (Grigoroiu-Serbanescu et al., 2009). Studies in
Swedish BD patients revealed an association between rs1718119
and rs1621388 polymorphisms and cognitive features of mania –
distractibility, thought disorder, and talkativeness. Still, the
rs2230912 polymorphism presented no association with BD
(Backlund et al., 2011). A study that analyzed nine variants
of P2X7 receptor polymorphisms, such as rs591874, rs208293,
rs1186055, rs208298, rs503720, rs1718133, rs1718119, rs2230912,
and rs1621388, in United Kingdom individuals found that these
polymorphisms did not have any effects on BDI susceptibility
(Green et al., 2009). A recent study conducted in Brazilian
patients evidenced a decrease in 1513C allele frequency and
a potential increase in 1513A A/AC genotype frequency of
rs3751143 polymorphism in BD patients (Gubert et al., 2019a)
(Figure 2). All these polymorphisms in the P2X7 receptor gene
represent a gain of function, which could indicate potential
influence of the P2X7 receptor behind the genetic predisposal
of BD development.

Schizophrenia
Schizophrenia (SCZ) is a complex, multifactorial, heterogeneous,
and severe psychiatric disorder. SCZ symptomatology is classified
by three major categories: (1) positive symptoms, in which
the patient may present disturbance of thinking, delusions
and hallucinations, named psychotic symptoms; (2) negative
symptoms that are characterized by impaired motivation,
decrease in spontaneous speech, and social withdrawal; and
(3) cognitive symptoms, which the core features may present
impairments in working memory, attention, problem-solving,
and executive functioning (van Os and Kapur, 2009). Many
efforts have been placed to understand the molecular mechanisms
that cause SCZ, however, the full complexity of this disorder
remains unknown. SCZ is a highly polygenic (Owen et al.,
2016) and many environmental factors have been already
associated (Byrne et al., 2004; Allardyce and Boydell, 2006;
Varese et al., 2012; Cantor-Graae and Pedersen, 2013; Moustafa
et al., 2017). Besides, it is already known that SCZ is
a neurodevelopmental disorder and maternal complications
may be risk factors (Khashan et al., 2008; Brown, 2011,
2012; Khandaker et al., 2013). There are multiple lines
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of evidence supporting the impaired function in dopamine,
glutamate and GABA neurotransmission (Schwartz et al., 2012).
Similarly, several neurochemical dysfunctions are stated in the
kynurenine pathway (Kindler et al., 2019), redox dysregulation
(Do et al., 2015), and neuroinflammation (Na et al., 2014;
Marques et al., 2019).

Few clinical data are available regarding P2X7 receptor
participation in SCZ pathophysiology. Two antipsychotics
drugs, prochlorperazine and trifluoperazine, may inhibit
human P2X7 receptor function (Hempel et al., 2013). Further,
prochlorperazine, a drug with strong antipsychotic action,
could act as a negative allosteric modulator of P2X7 receptor
activity (Hempel et al., 2013). A populational study conducted
with SCZ patients from Denmark analyzed nine SNPs of the
P2X7 receptor – rs28360447, rs208294, rs28360457, rs1718119,
rs2230911, rs2230912, rs3751143, rs1653624, and rs35933842 –
and did not observe any associations between SCZ and these
polymorphisms of P2X7 receptor (Hansen et al., 2008) (Figure 2).

It is a tremendous challenge to mimic SCZ using animal
models due to its high complexity, multifactorial component,
and difficulty to distinguish and analyze positive symptoms of
these disorders. Phencyclidine (PCP) is a compound largely used
as an inductor for animal models of SCZ once the rodents
present some similar features in their behavior. In the acute PCP
mouse model, the pharmacological blockade with JNJ-47965567
and genetic deletion of the P2X7 receptor alleviated some
behavioral parameters and also alteration of gene expression
of GABA receptor subunits and neuregulin 1 in the prefrontal
cortex (Koványi et al., 2016). Overall, there is lack of evidence
supporting the role of the P2X7 receptor in the neurobiology of
SCZ. It is a poorly explored field and more studies are needed to
indicate whether or not there is association.

Anxiety
Anxiety disorders belong to the most prevalent and disabling
psychiatric disorders, substantially impacting life quality. It
is estimated that 25% of the population will suffer at
least one episode of this disease in adulthood. Types of
anxiety disorders include separation anxiety disorder, specific
phobia, social anxiety disorder, panic disorder, agoraphobia,
generalized anxiety disorder, and drug-induced anxiety disorder.
Symptoms include anxiety, excessive fear and other mood
disturbances (Kessler et al., 2005). Anxiety disorders are often
accompanied by other psychiatric disorders, such as MDD and
BD (Schaffer et al., 2012).

Current treatments include serotonin and norepinephrine
reuptake inhibitors, benzodiazepines and antidepressant drugs.
However, these are partially efficient according to patient
histories and the type of anxiety disorder (Murrough et al., 2015).
Thus, the identification of specific targets for novel therapeutic
approaches is urgent.

In PBMCs from patients with anxiety and depression, an
increase in P2X7 receptor expression was found after ATP
stimulation. In the same cells, patients with comorbidity of
anxiety and Sjogren’s syndrome have higher P2X7 receptor
expression when compared to control healthy individuals
(Xie et al., 2014).

Several studies show the relationship between the
chromosome 12q2431, in which the P2X7 receptor gene is
inserted, and the development of mood disorders. Thus,
polymorphisms of this receptor are widely studied in mood
disorders. The SNP rs1718119 with the Thr348Ala mutation
was not related to anxiety onset in patients (Erhardt et al.,
2007). Although the P2X7 receptor rs2230912 Gln460Arg
polymorphism did not present any relation to mood disorders in
case-control analysis, this receptor induces higher symptomatic
severity scale scores of patients with G-allele (Nagy et al., 2008;
Hejjas et al., 2009). In a cohort study, this same SNP was
associated with a higher risk of developing mood disorders
and alcoholism, including anxiety (Soronen et al., 2011). This
study also identified the rs208294 His155Tyr polymorphism
as a possible risk factor for disease development (Soronen
et al., 2011). In addition, the P2X7 receptor variant rs208294
has been associated with neuroticism-mediated outcomes of
mood disorder, a personality trait that indicates vulnerability
to the onset of anxiety in stressful situations (Mantere et al.,
2012) (Figure 2).

P2X7 receptor KO mice show controversial results regarding
anxiety-like behavior. Despite showing decreased depressive
behavior, Pfizer P2X7 receptor KO animals showed no anxiolytic
effect in the elevated plus maze test (Basso et al., 2009). In
contrast, Boucher et al. (2011) found anxiety-like behavior in
this same test, but not in the light dark emergence test (Boucher
et al., 2011). P2X7 receptor KO mice also exhibited anxiety-
like behavior in the elevated plus maze test when subjected to
contextual fear condition (Domingos et al., 2018).

The P2X7 receptor also presented discrepant results regarding
its involvement in inducing anxiety-like behavior in different
animal models. Inhibition of the P2X7 receptor with A-438079
(10 mg/kg) augmented anxiety-like behavior of mice subjected
to the contextual fear condition model (Domingos et al.,
2018). Antagonism using intraperitoneal injections of A804598
for 25 days decreased this behavior in mice subjected to
high fat diet (Dutheil et al., 2016), possibly by blocking the
formation of inflammasomes. However, this same compound
had also an anxiolytic effect in an unpredictable chronic stress
model, blocking the release of IL-1β, TNF-α and inflammasome
formation (Iwata et al., 2016).

Overall, effects of P2X7 receptor activity modulation on
animal anxiety parameters has yet to be elucidated. Ablation of
P2X7 receptor expression did not prevent the onset of symptoms,
and receptor antagonism induce pro- and anti-anxiety effects in
different animal models.

BRAIN TUMORS

Brain tumors are intracranial neoplasms that account for 2%
of all cancers (Gould, 2018), while being the second most
common cancer among 0 to 14-year-old children. Surpassing
even leukemia, brain cancers are the leading cause of oncologic
death in this age group (American Brain Tumor Association,
2019). Importantly, the brain is a very fertile soil for metastatic
seeding, so that brain metastases incidence is estimated to be at
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least 10 times higher than that of primary brain tumors (Vargo,
2017). In fact, 30% of all people with cancers in other body parts
will present brain metastases (Gould, 2018). Among primary
malignant brain tumors, 80% of all cases are gliomas, malignant
tumors raising from glial cells (Gould, 2018).

Although prognosis greatly varies, the incidence of near- and
long-term disabilities is notably high (Mukand et al., 2001). Both
the tumor itself and the frequently associated perilesional edema,
which can reach a several-fold greater volume than the tumor
itself, account for the functional neurological consequences (Tran
et al., 2019). Indeed, brain tumors cause severe economic impacts
not only due to direct treatment and rehabilitation costs, but also
due to productivity loss (Su and Abdullah, 2016).

Among candidate molecular targets for anti-cancer drug
development, the P2X7 receptor has received great attention.
In fact, high ATP levels are a common feature in the tumor
microenvironment, reaching concentrations of up to hundreds
of micromolar (Pellegatti et al., 2008), a range of concentration
capable of activating P2X7 receptors (North and Barnard, 1997).
Thus, it is not surprising that P2X7 receptors emerge as central
players of purinergic signaling in the tumor microenvironment.
In agreement, P2X7 receptor expression is upregulated in several
tumor types (Adinolfi et al., 2002; Slater et al., 2004; Solini et al.,
2008; Ryu et al., 2011; Arnaud-Sampaio et al., 2019). Glioma
cell lines of human (U-138MG, U-251MG, M059J) (Gehring
et al., 2012), rat (C6) (Wei et al., 2008), and mouse (GL261)
(Tamajusuku et al., 2010) origin express P2X7 receptors as
well. Importantly, glioma cells have decreased sensitivity to the
cytotoxic effects of extracellular ATP in comparison to healthy
tissue cells (Morrone et al., 2005), and glioma cells show less ATP
hydrolysis (Wink et al., 2003), favoring the maintenance of high
extracellular ATP concentrations. Furthermore, stimulation by
extracellular ATP drives the release of glutamate by GL261 glioma
cells, an effect partially reversed by P2X7 receptor antagonism
(Strong et al., 2018). Elevated levels of both ATP and glutamate
mediate cytotoxic effects on the boundaries of the tumor, favoring
its expansion and growth (de Groot and Sontheimer, 2011;
Strong et al., 2018).

Brain tumor microenvironment is composed by tumor and
stromal cells, as reactive astrocytes, fibroblasts and myeloid-
derived cells, including microglia (Volak et al., 2018). Therefore,
P2X7 receptor expression in the tumor mass may occur
in different cell types, leading to particular downstream
responses, which may be pro- or anti-tumoral depending on
the context. The analysis of human glioma samples revealed
that microglial cells confined within the tumor had increased
P2X7 receptor expression, and pharmacological inhibition of
the receptor significantly decreased the number of glioma cells
(Monif et al., 2014).

In a brain tumor model established by intrastriatal injection
of C6 glioma cells in rats, pharmacological inhibition of P2X7
receptor by BBG decreased tumor growth. In vitro, BBG
treatment decreased the receptor expression and prevented
chemotaxis induced by Bz-ATP (Ryu et al., 2011), pointing to
a pro-tumoral intrinsic activity of P2X7 receptor in this model.
In agreement, stimulation of human glioma cells with Bz-ATP
increased cell proliferation and migration, an effect counteracted

by an inhibitor of the MEK/ERK pathway, implicating this
pathway in P2X7 receptor-mediated proliferative effects (Ji
et al., 2018) (Figure 3). Consistently, overexpression of the
P2X7 receptor in a naturally low-expressing human glioma
cell line conferred modest in vitro growth advantages, but
largely accelerated tumor growth in vivo (Bergamin et al., 2019),
reinforcing a trophic role for this receptor. Also, in a mouse
model of neuroblastoma, a rare intracranial tumor that affects
immature or developing cells of the nervous system, chronic
blockade of the P2X7 receptor in tumor-bearing mice diminished
progression and metastasis (Ulrich et al., 2018).

In contrast, another study found that P2X7 receptor blockade
by BBG increased C6 glioma cell proliferation, an effect
corroborated by enhanced tumor growth observed in rats that
received intracranial transplantation of C6 glioma cells either
due to p2rx7 gene knockdown or pharmacological P2X7 receptor
blockade (Fang et al., 2013). Conflicting findings were attributed
by the authors to different periods and doses of BBG treatment,
which would lead to distinct microglial responses.

When expressed both in glioma cells and in glioma-infiltrating
microglia, the P2X7 receptor mediates the release of pro-
inflammatory factors, as monocyte inflammatory protein 1α

(MIP-1α) (Fang et al., 2011), monocyte chemoattractant protein
1 (MCP-1) (Wei et al., 2008; Fang et al., 2011; Braganhol et al.,
2015), IL-8 (Wei et al., 2008; Braganhol et al., 2015) and VEGF
(Wei et al., 2008). In fact, P2X7 receptor expression in tumor
bearing-hosts is essential for mounting an effective anti-tumoral
immune response, so that genetic deletion or pharmacological
blockade of the receptor increased the incidence of tumors
in a murine colitis-associated cancer model (Hofman et al.,
2015). Furthermore, P2X7 receptor-deficient tumor-bearing mice
undergo a shift toward an immunosuppressive response (De
Marchi et al., 2019) and show accelerated tumor progression
(Adinolfi et al., 2015).

A comparison between human glioma cell lines showed that
those with upregulated P2X7 receptor expression exhibited
higher sensitivity to irradiation (Gehring et al., 2012). Further
studies corroborated that the P2X7 receptor acts synergistically
with radiotherapy promoting cytotoxicity, and the level of
P2X7 receptor expression is a good prognosis predictor for
radiotherapy response in gliomas (Gehring et al., 2015).
Treatments with high ATP and Bz-ATP concentrations also
potentialized in vitro cytotoxic effects of temozolomide,
a drug of choice for glioblastoma treatment, in human
glioblastoma cells (D’Alimonte et al., 2015). In agreement,
the P2X7 receptor is implicated in the ATP-induced necrotic
death of glioblastoma murine cells, supporting its role in
killing tumoral cells (Tamajusuku et al., 2010), despite the
evidence of glioma resistance to ATP-induced cytotoxicity
(Morrone et al., 2005).

In summary, responses triggered by P2X7 receptor highly
depend on the expression levels of the receptor, on the
stimulation tonus and on the cell type, and the context of
tumor microenvironment seems crucial for determining
whether P2X7 receptor activation will end up being pro- or
anti-tumorigenic. Ultimately, translating existing evidence
into therapeutically useful approaches demands a fine
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resolution between the distinct phenomena mediated by
P2X7 receptors. Adopting optimized experimental designs is
crucial to move forward, highlighting how and when P2X7
receptor actions are relevant for tumoral pathophysiology.
Experimental design should take into account the complexity
of the tumor microenvironment, the different stages of tumor
development and the numerous existing splicing variants
of the P2X7 receptor gene. Furthermore, findings should
combine multiple strategies and rely on both gene expression
modulation tools and specific agonists and antagonists, so that
conclusions are reproducible and robust. In fact, a considerable
part of the available evidence relies on pharmacological
modulators that could target other purinergic receptors,
as previously mentioned. IC50 values for inhibition of
other purinergic receptors by BBG fall in the micromolar
range, and experimental concentrations for P2X7 receptor
inhibition are traditionally limited to hundreds of nanomolar.
However, especially in human cells, in which IC50 values
for P2X7 receptor and P2X4 receptor inhibition differ by
only approximately an order of magnitude, much closer than
those observed, i.e., in rats (Jiang et al., 2000), overlapping
inhibition of both receptors may occur. In spite of that,
evidence implicating P2X4 receptor functions in tumor
biology is scarce, and mostly related to its inflammatory
roles (Guo et al., 2004). In fact, gliomas poorly express
P2X4 receptors, and its presence has no prognostic value
(The Human Protein Atlas, 2020).

BRAIN-PENETRANT P2X7 RECEPTOR
ANTAGONISTS

As discussed so far, P2X7 receptor blockade may be a viable
approach for treating brain diseases. Although a range of P2X7
receptor antagonists were developed, some of them are not
capable of passing the blood-brain barrier (Table 1).

Compounds produced by GlaxoSmithKline (GSK-1482160)
and Janssen (JNJ-54175446 and JNJ-55308942) were the first
to present both effects in rodents and CNS permeability
(Letavic et al., 2017; Territo et al., 2017; Chrovian et al.,
2018). The observed in vivo activity stimulated the use of
target engagement assays to drive development of new drugs,
as well as allowed pharmacological tests in rodent models of
diseases (Bhattacharya, 2018). In this way, GSK and Janssen
advanced in developing other P2X7 receptor antagonists capable
of penetrating the blood-brain barrier: GSK compound 16
(Beswick et al., 2010), JNJ-42253432 (Letavic et al., 2013;
Lord et al., 2014), JNJ-47965567 (Bhattacharya et al., 2013;
Letavic et al., 2013), and JNJ-54166060 (Swanson et al., 2016).
In addition, Abbott Laboratories synthetized brain-penetrant
P2X7 receptor antagonists, namely: A-438079 (Nelson et al.,
2006), A-740003 (Honore et al., 2006), A-804598 (Donnelly-
Roberts et al., 2009; Able et al., 2011), and A-839977
(Honore et al., 2009).

Despite the development of several compounds [for detailed
reviews see Rech et al. (2016), Pevarello et al. (2017)], the
only CNS-permeable P2X7 receptor antagonist that advanced to

clinical trials was GSK-1482160. Besides promising initial data,
the GSK-1482160 did not present the safety margins to achieve
such sustained inhibition, and consequently its development was
terminated (Ali et al., 2013).

Currently, Affectis Pharmaceuticals disclosed the use of the
brain-penetrant P2X7 antagonist AFC-5128 for neuropathic
pain and MS treatment, as stated at the company’s website1.
Moreover, Alzheimer’s Drug Discovery Foundation has been
supporting Axxam to identify selective P2X7 receptor antagonists
for AD treatment.

CONCLUDING REMARKS

The P2X7 receptor has become a very popular target in
the purinergic signaling research. This review collected
evidence for P2X7 receptor role in CNS diseases, although
further studies are needed for a better understanding
of this involvement. The neuroinflammation process is
largely prominent in CNS diseases, mainly those covered
in this review. It is robustly established that P2X7 receptor
activation promotes proinflammatory cytokines release,
whereas P2X7 receptor blockade efficiently inhibit the
neuroinflammatory process. Additionally, blockade of
P2X7 receptor signaling may reduce hippocampal amyloid
plaques in AD; regenerate dopaminergic neurons of
nigrostriatal pathway in PD; delay the ALS onset, progression,
and motor performance; decrease MS-related symptoms
and microglial activation in this condition; exhibit anti-
depressant properties; reduce features related to mania; and
decrease tumor growth. Degeneration of neural cells as
presented in these conditions may increase the extracellular
ATP levels, leading to overactivation of P2X7 receptors.
Furthermore, AD, PD, MS, MDD, and brain tumors
present increased P2X7 receptor expression. In view of
that, we propose a signal amplification of P2X7 receptors
in these diseases.

Pharmacological and genetic studies also contributed to
elucidate the neurobiology of these conditions. However, here we
provide evidence of the lack specificity of some antagonists and
antibodies related to the P2X7 receptor. BBG, for example, is still
widely used in the literature due to the low cost and blood-brain
barrier permeability despite its non-specificity. Therefore, critical
analysis regarding P2X7 receptor studies is extremely necessary.

The most studied SNPs of the P2X7 receptor result in loss
or gain-of-function, and several studies associate these SNPs
with disease development, symptomatology or disease worsening
concerning AD, BD, MS, MDD, PD, and anxiety. Regarding SCZ
and anxiety, the role of P2X7 receptor should be further explored
to clarify its involvement in the pathogenesis of these disorders.
Altogether, the studies presented here show the involvement of
the P2X7 receptor in pathologies and the therapeutic potential
of inhibiting this receptor in the treatment of brain diseases.
Herewith, we suggest that these effects are due to the resolution of
neuroinflammation components of the aforementioned diseases.

1http://www.affectis.com/afc5128.html
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