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The immune microenvironment has profound impacts on the initiation and progression of
colorectal cancer (CRC). Therefore, the goal of this article is to identify two robust immune
subtypes in CRC, further provide novel insights for the underlying mechanisms and clinical
management. In this study, two CRC immune subtypes were identified using the
consensus clustering of immune-related gene expression profiles in the meta-GEO
dataset (n � 1,198), and their reproducibility was further verified in the TCGA-CRC
dataset (n � 638). Subsequently, we characterized the immune escape mechanisms,
gene alterations, and clinical features of two immune subtypes. Cluster 1 (C1) was defined
as the “immune cold subtype” with immune cell depletion and deficiency, while cluster 2
(C2) was designed as the “immune hot subtype”, with abundant immune cell infiltration and
matrix activation. We also underlined the potential immune escape mechanisms: lack of
MHC molecules and defective tumor antigen presentation capacity in C1, increased
immunosuppressive molecules in C2. The prognosis and sensitivity to 5-FU, Cisplatin and
immunotherapy differed between two subtypes. According to the two immune subtypes,
we developed a prognosis associated risk score (PARS) with the accurate performance for
predicting the prognosis. Additionally, two nomograms for overall survival (OS) and
disease-free survival (DFS) were further constructed to facilitate clinical management.

Edited by:
Zimu Deng,

Shanghai Institute of Biochemistry and
Cell Biology (CAS), China

Reviewed by:
Manuel Fuentes,

University of Salamanca, Spain
Faming Zhao,

Huazhong University of Science and
Technology, China

Xingyu Wang,
First Affiliated Hospital of Anhui

Medical University, China

*Correspondence:
Xinwei Han

fcchanxw@zzu.edu.cn
Zhenyu Ji

jizhenyu@zzu.edu.cn
Zhenqiang Sun

fccsunzq@zzu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular and Cellular Pathology,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 27 September 2021
Accepted: 20 December 2021
Published: 10 January 2022

Citation:
Liu Z, Guo Y, Yang X, Chen C, Fan D,

Wu X, Si C, Xu Y, shao B, Chen Z,
Dang Q, Cui W, Han X, Ji Z and Sun Z
(2022) Immune Landscape Refines the

Classification of Colorectal Cancer
With Heterogeneous Prognosis,

Tumor Microenvironment and Distinct
Sensitivity to Frontline Therapies.
Front. Cell Dev. Biol. 9:784199.
doi: 10.3389/fcell.2021.784199

Abbreviations: CRC: Colorectal cancer; GEO: Gene Expression Omnibus; TCGA: The Cancer Genome Atlas; ssGSEA: Single
sample gene set enrichment analysis; CDF: Cumulative distribution function; PAC: Proportion of ambiguous clustering; IGP:
In-group proportion; GSVA: Gene set variation analysis; TMB: Tumor mutation burden; AS: Aneuploidy scores; HRD:
Homologous recombination defects; MSI: Microsatellite instability; CTAs: Cancer/testis-antigens; APS: Antigen processing and
presenting machinery scores; CNV: Copy number variation; SMGs: Significant mutation genes; NMF: Non-negative matrix
factorization; DEGs: Differentially expressed genes; OS: Overall survival; DFS: disease free survival; ROCs: Receiver operating
characteristic curves; AUC: Area under the ROC curve.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7841991

ORIGINAL RESEARCH
published: 10 January 2022

doi: 10.3389/fcell.2021.784199

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.784199&domain=pdf&date_stamp=2022-01-10
https://www.frontiersin.org/articles/10.3389/fcell.2021.784199/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.784199/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.784199/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.784199/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.784199/full
http://creativecommons.org/licenses/by/4.0/
mailto:fcchanxw@zzu.edu.cn
mailto:jizhenyu@zzu.edu.cn
mailto:fccsunzq@zzu.edu.cn
https://doi.org/10.3389/fcell.2021.784199
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.784199


Overall, our research provides new references and insights for understanding and refining
the CRC.
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INTRODUCTION

Colorectal cancer (CRC) is a malignant tumor that originates
from resident somatic stem cells and colorectal epithelial tissue
(Perekatt et al., 2018). According to the anatomical location, CRC
can be divided into colon cancer and rectal cancer.
Adenocarcinoma is the most common pathological type of
CRC, and very few are squamous cell carcinoma. Currently,
the clinical staging system of CRC based on histopathology
and medical imaging has limited ability in the clinical
management of CRC (Benson et al., 2018; Weiser, 2018).
Recently, the molecular classification improved the staging
system and provides clues for mining CRC treatment targets
(Calon et al., 2015). However, these molecular classification
studies were primarily focused on tumor cell-intrinsic
characteristics and did not consider the key roles of tumor
immunity and tumor microenvironment in tumor progression.

Previous studies reported that the immune system and
immune-related genes played vital roles in tumor initiation,
progression, prognosis, recurrence, and chemotherapy and
immunotherapy benefits (Terzic et al., 2010; Ye et al., 2019;
Bruni et al., 2020; Liu et al., 2021c; Liu et al., 2021e). A
TCGA-pancancer study conducted extensive immunogenomic
analysis and identified six pancancer immune subtypes (PISs):
wound healing (PIS1), IFN-gamma dominant (PIS2),
inflammatory (PIS3), lymphocyte depleted (PIS4),
immunologically quiet (PIS5), and TGF-beta dominant (PIS6),
which spans across traditional cancer classifications based on
anatomical site of origin and suggests that certain therapeutic
approaches may be considered regardless of tumor location and
histology (Thorsson et al., 2018).

Recently, immune checkpoint inhibitors (ICIs) have shown
amazing therapeutic effects in a variety of tumors (Brahmer et al.,
2012; Topalian et al., 2012;Wolchok et al., 2017). However, not all
patients could benefit from immunotherapy, which might be due
to the involvement of tumor immune escapes. Tumor immune
escapes refer to the phenomenon that tumor cells evade
recognition and attack by the immune system through a
variety of mechanisms, thereby continuing to survive and
proliferate. In this study, we aimed to identify two robust
immune subtypes with differences in tumor immune escapes,
molecular alterations, and clinical outcomes, to further advance
the understanding and clinical management of CRC.

MATERIALS AND METHODS

Dataset Source and Preprocessing
Public gene-expression data and full clinical annotation were
searched in Gene-Expression Omnibus (GEO) and the Cancer
Genome Atlas (TCGA) databases. A total of 1836 patients from

eight eligible CRC cohorts including GSE17536 (n � 177),
GSE17537 (n � 55), GSE29621 (n � 65), GSE38832 (n � 122),
GSE39084 (n � 70), GSE39582 (n � 585), GSE72970 (n � 124),
and TCGA-CRC (n � 638) were pooled in this study for further
analysis. All GEO datasets were from the GPL570 platform. Basic
information of datasets included in this study were shown in
Supplementary Table S1. The Robust Multi-Array Average
algorithm (RMA) algorithm was utilized to normalize the
GEO microarrays. The Combat function implemented in
the SVA package was applied to remove the batch effects
among the GEO datasets (Supplementary Figure S1A,B).
The TCGA RNA-seq data was converted into log2 (TPM+1)
format. The clinical information, mutation, copy number
variant (CNV), and methylation data of TCGA-CRC were
downloaded from the TCGA official website. Additionally,
we also included three immunotherapy cohorts (Roh
cohort, GSE100797, and GSE78220) for subclass mapping
(SubMap) analysis (Roh et al., 2017). Complete response
(CR) and partial response (PR) were regarded as
immunotherapy responders while stable disease (SD) and
progressive disease (PD) were regarded as immunotherapy
non-responders, and patients who were not evaluable (NE)
were removed. All the expression data were further
transformed into Z-score.

Gene Source
A total of 1793 immune-related genes were enrolled from the
ImmPort database. A total of 728 immune cell consensus
biomarkers were extracted from a previous report
(Charoentong et al., 2017). To account for yet unknown
immune-related genes, we included genes that were
significantly correlated with at least one gene in the meta-
GEO cohort. The thresholds were set as the absolute value of
Spearman correlation >0.7 and false discovery rate (FDR) < 0.05.
Eventually, a total of 2,798 genes were recruited for further
analysis in this study (Supplementary Table S2).

Identification of Immune Subtypes and
Gene Modules
Based on 1,198 samples in the meta-GEO cohort, we used the
ConsensusClusterPlus package to perform consensus clustering.
This procedure was repeated 1,000 times to ensure the stability of
classification. The number of clusters K was set to 2–9, and the
sampling ratio of the sample was set to 0.8. Unsupervised
clustering methods (K-means) were used to identify immune
subtypes for further analysis (based on Euclidean distance). To
identify immune gene modules, we also applied the consensus
clustering using the same settings and parameters. Cumulative
distribution function (CDF) and proportion of ambiguous
clustering (PAC) were used to identify the optimal K.
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Validation of Immune Subtypes
To further evaluate the reproducibility of the clusters generated
from consensus clustering in the meta-GEO cohort, the in-group
proportion (IGP) statistical analysis was employed to
demonstrate the existence of these clusters in the TCGA-CRC
validation cohort. The IGP was defined as the proportion of
samples in a group whose nearest neighbors were also in the same
group (Kapp and Tibshirani, 2007). We firstly calculated a
centroid for each cluster found in the meta-GEO cohort, each
sample in the TCGA cohort was classified to a cluster whose
centroid had the highest Pearson correlation with a centroid.
Later, the clusterRepro package was utilized to perform IGP
statistical analysis, and the statistical significance of IGP was
assessed with 1,000 permutations (Kapp and Tibshirani, 2007).
The p-value and IGP statistics were used to estimate cluster
quality as in the previous study (Liu et al., 2021b; Liu et al., 2021f).

Functional Annotation and Immune Cells
Infiltration Assessment
The gene-set enrichment analysis (GSEA) was performed
between two subtypes, and gene terms with FDR <0.05 were
significant. We also applied the gene-set variation analysis
(GSVA) to find the specific Hallmark pathways of each
subtype. The single sample gene-set enrichment analysis
(ssGSEA) algorithm was used to evaluate the infiltration
abundance of 30 different types of tumor microenvironment
(TME) cells. Considering that fibroblasts and epithelial cells
are also important cellular components in TME, thus, in
addition to including consensus biomarkers of 28 immune
cells, we also included 40 marker genes of fibroblasts and
endothelial cells from a previous study (Supplementary Table
S3) (Becht et al., 2016).

Collection and Investigation of Immune
Escape Indicators
A series of tumor immune-related indicators (Supplementary
Table S4), including stromal and leukocyte fractions, nonsilent
mutation rate, neoantigen burden, cancer testis antigens (CTA)
score, aneuploidy score, intratumor heterogeneity, number of
segments, number or fraction of segments with loss of
heterozygosity (LOH), fraction altered, homologous
recombination deficiency (HRD), BCR/TCR diversity
(Shannon Entropy and Richness) score (Thorsson et al., 2018),
microsatellite instability (MSI) score (Bonneville et al., 2017),
cytolytic activity (Rooney et al., 2015), antigen processing and
presenting machinery score (APS) (Wang et al., 2019) and the
expression of immunomodulator molecules (Liu et al., 2021d; Liu
et al., 2021h), were enrolled or calculated for the investigation of
potential immune escape mechanisms in the four clusters.
Moreover, multi-omics regulation of 75 immunomodulator
molecules was further analyzed (Supplementary Table S5).

Genomic Alterations
We used the MutationPattern package to convert the mutation
data into a matrix of 96 mutation spectra. Then the NMF package

was performed to extract mutation signatures of the two immune
subtypes. The MutSigCV algorithm was executed to identify
significant mutation genes (SMGs). The screening criteria for
frequently mutated genes (FMG) are set to q < 0.05 and mutation
frequency >10%. GISTIC 2.0 was used to identify chromosome
arms or chromosome segments that are significantly amplified or
deleted. Segments with q < 0.05 and copy number variation
frequency >0.3 are considered as driver segments.

Treatment Prediction for Immune Subtypes
We use the pRRophetic package to predict the sensitivity of the
two subtypes to Cisplatin. The sensitivity was quantified by IC50.
The lower the value, the stronger the sensitivity. As in previous
studies, the TIDE and SubMap algorithms were utilized to predict
the response of the two subtypes to immunotherapy (Liu et al.,
2021a; Liu et al., 2021e; Liu et al., 2021g).

Generation of a Prognosis Signature
To identify a prognosis signature for facilitating the clinical
management of CRC, we constructed a pipeline. 1) The limma
package was utilized to screen differentially expressed genes
(DEGs) between C1 and C2 in both meta cohorts and TCGA
cohort respectively, and the filtration criteria were adjust-p <0.05
and |log2 fold change| >1. The overlapping DEGs in both cohorts
were defined as consensus DEGs (CDEGs). 2) For the CDEGs
expression matrix, we next transformed it into the gene pairs
matrix. The gene pair was concerned about the mathematical
relationship between the mRNA expression of two genes, and
ignored the batch effects of different platforms and facilitated the
clinical application. For example, for a gene pair (gene1 and
gene2), if the expression of gene1 was greater than gene2 in
sample x, the gene pair value in the sample was labeled as 1,
otherwise it was labeled as 0. 3) If a gene pair had more than 90%
of the same value in all samples, the gene pair was removed. 4)
Univariate Cox regression analysis extracted the gene pair with
predominant prognostic significance for further analysis (adjust-
p <0.05 and |HR-1| >0.5; HR: Hazard ratio). 5) The Lasso
regression was employed to fit a well-behaved model for
predicting overall survival (OS), and the minimal lambda value
determined the number of gene pairs and the optimal model. The
final model was as follows: risk score � ∑ Value (gene pair) * Coef
(gene pair), where Value (gene pair) denoted the value of a gene
pair (0/1) and Coef (gene pair) represented its regression
coefficient. The risk score was termed prognosis associated risk
score (PARS). 6) We calculated the PARS of each patient and
performed the Kaplan-Meier survival analysis for OS and DFS. The
univariate Cox regression was applied to reveal the prognosis value
in various cohorts. The receiver operator characteristic (ROC)
curves and Concordance index (C-index) were utilized to assess
the performance of PARS in predicting prognosis. 7) In order to
ensure the stability of the signature, the process of constructing the
model was performed in the meta-GEO cohorts, and the TCGA-
CRC cohort was used for validation.

Statistical Analysis
The Fisher’s exact test was used to evaluate the co-occurrence or
rejection of FMGs. The Spearman or Pearson correlation analysis
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was used to calculate the correlation coefficient of two variables.
The comparison between the two groups was carried out by
Wilcoxon rank sum test, when three or more groups were

compared by Kruskal-Wallis test. The Kaplan-Meier method
was used to generate survival curves for prognostic analysis,
and the log-rank test was used to determine the significance of

FIGURE 1 | The specific functions and survival status of each subtype in the meta-GEO cohort. (A) The expression profiles of gene modules between two
subtypes. (B) The ssGSEA algorithm was performed to quantify the relative abundance of four gene modules between two subtypes. (C,D) Kaplan-Meier survival
analysis of overall survival (C) and disease-free survival (D) according to the two subtypes. (E,F). GSEA was performed to identify specific KEGG pathways in C1 (E) and
C2 (F). (G). The hallmark analysis (GSVA) and immune cell infiltration estimation (ssGSEA) of two subtypes.
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differences. The univariate Cox regression analysis was used to
calculate the hazard ratio (HR) of the variables, and multiple Cox
regression was used to determine independent prognostic factors.
The ROC curves were analyzed by the timeROC package. The
enrichment analysis was performed by the clusterProfiler
package. The survminer package was applied to determine the
optimal cut-off value of PARS for the Kaplan-Meier survival
analysis. The maftools R package was utilized to analyze data and
visualize the mutation waterfall plots. All statistical values were
tested by two-sided test, and p < 0.05 was considered statistically
significant.

RESULTS

Immune Subtypes and Gene Modules
Based on the immune-related gene expression profiles, we
identified two robust immune subtypes (C1 and C2) in the
meta-GEO discovery cohort (Suppplementary Figure S1C).
The CDF curves and PAC analysis verified the results
(Supplementary Figures S1D,E). In the two-dimensional PCA
analysis, the spatial distribution contours of the two subtypes
basically did not overlap (Supplementary Figure S1F). To ensure
the reproducibility and robustness of the immune subtypes
derived from the GEO cohort, we further calculated the IGP
statistic to validate the immune subtypes in the TCGA-CRC
validation cohort. These two immune subtypes were highly
consistent between the discovery and validation cohorts, with
the corresponding IGP values at 91.3 and 93.7%, respectively (all,
p < 0.001). In addition, we also identified four gene modules
(GM1-4) (Supplementary Figures S2A–C). Enrichment analysis
showed that GM1-4 was mainly related to reactive stroma, cell
cycle, humoral response, and inflammation, respectively
(Supplementary Figure S2D). As shown in Figures 1A,B and
Supplementary Figures S3A,B, GM1/3/4 was higher in C2, while
GM2 was superior in C1. Overall, C2 was biased towards immune
activation and matrix activation, and C1 was biased towards cell
proliferation. Survival analysis revealed that C1 had better OS and
disease-free survival (DFS) than C2 (Figures 1C,D and
Supplementary Figures S3CD). GSEA analysis showed that
C2 was mainly enriched in matrix activation and immune
activation related pathways (Figure 1E and Supplementary
Figure S3E), while C1 was mainly enriched in cell
proliferation related pathways (Figure 1F and Supplementary
Figure S3F). We further identified the specific Hallmark pathway
of each immune subtype. The results were consistent with the
GSEA analysis: C2 was mainly related to matrix activation and
immune activation, and C1 mainly enriched cell proliferation
related pathways (Figure 1G and Supplementary Figure S3G).
The ssGSEA algorithm was further used to evaluate the
infiltration abundance of TME cells in the training and the
validation datasets. It was observed that C1 showed relatively
low infiltration of immune cells, while C2 showed high
infiltration abundance in most immune cells (Figure 1G and
Supplementary Figure S3G). A TCGA-pancancer study
proposed six immune clusters: wound healing (PIS1), IFN-
gamma dominant (PIS2), inflammatory (PIS3), lymphocyte

depleted (PIS4), immunologically quiet (PIS5), and TGF-beta
dominant (PIS6) (Thorsson et al., 2018). In TCGA-CRC cohort,
the PIS5 was absent, and only five PISs were identified in CRC,
predominantly PIS1 (77.1%) and C2 (17.4%) (Soldevilla et al.,
2019). In our subtypes, C1 and C2 both had the highest
proportion of PIS1, notably PIS1 was more identified in C1,
whereas PIS2 was particularly dominant in C2. Of note, there was
no PIS6 in C1 (Supplementary Figure S4).

Exogenous Immune Escape Mechanisms
To further explore the regulatory mechanisms of the immune
subtypes, we focused on the TCGA-CRC cohort, which possessed
comprehensive omics data. We firstly investigated the exogenous
immune escape mechanisms. Previous studies indicated that
exogenous immune escape may include three major aspects:
absence of leukocytes, presence of immunosuppressive cells,
and release of abundant immunosuppressive cytokines
(Schreiber et al., 2011; Beatty and Gladney, 2015). The relative
abundance distributions of two immune subtypes in TME cells
fraction, innate immune cells, adaptive immune cells and stromal
cells were summarized in Figure 2A. C2 was characterized by
higher levels of TME cell fraction, innate immune cells, adaptive
immune cells and stromal cells. We also used leukocyte fraction
and stromal fraction as indicators for further verification
(Thorsson et al., 2018). The results are consistent with above,
compared with C2, C1 showed lower levels in leukocyte fraction
and stromal fraction (Supplementary Figure S5A,B). Therefore,
it was speculated that the exogenous immune escape mechanism
of C1 was ascribe to the lack of immune cells, while the exogenous
immune escape mechanism of C2 was ascribe to the larger
proportion of immunosuppressive cells and stromal cells.

Intrinsic Immune Escape Mechanisms
We further explored the potential intrinsic immune escape
mechanisms in two major facets: tumor immunogenicity and
immune checkpoint molecules. The main elements of tumor
immunogenicity are genome instability and antigen
presentation ability. 17 elements associated with tumor
immunogenicity were estimated. The heatmap and box plots
illustrated the levels of these 17 indicators between C1 and C2
(Figure 2B and Supplementary Figures S5C–S). Overall, C2
displayed higher immunogenicity relative to C1, such as BCR,
TCR, cytolytic activity, and SNV and indel neoantigens
(Figure 2B and Supplementary Figures S5C–S). To
systematically measure the efficiency of antigen processing and
presentation, we used the expression of MHC molecules
(Figure 2C) and APS (Supplementary Figure S5T) as the
main basis for evaluation. The results showed that C2 had
higher APS and MHC-related molecules expression level
compared with C1. Thus, the endogenous immune escape
mechanism of C1 might be the low immunogenicity and
impaired antigen presentation ability.

Furthermore, we further explored the expressions and multi-
omics regulations of immunomodulators between two subtypes
(Figure 2C). The results showed that C2 had both higher
costimulatory and coinhibitory molecules than C1, which
suggested C2 may upregulate the immune checkpoint
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molecules (such as CD274 and PDCD1LG2) to avoid immune
surveillance. The mutation frequency of some indicators varies
significantly between two phenotypes. For instance, HLA-B and
EDNRB had a higher mutation frequency in C2 (Figure 2C). It
was noteworthy that the differential expression of
immunomodulators between the two subtypes could not be

explained by CNV (all p > 0.05) (Figure 2C). The negative
correlation between DNA methylation and gene expression
indicated epigenetic silencing, such as CD80 (Figure 2C). The
different characteristics of immunomodulators between immune
subtypes provided clues for the discovery of new immunity
therapy targets.

FIGURE 2 | Potential immune escape mechanisms of each phenotype. (A) The relative abundance distributions of two immune subtypes in TME cells fraction,
innate immune cells, adaptive immune cells, and stromal cells. (B) The expression levels of 17 tumor immunogenicity indicators of in C1 and C2. (C)Multi-omics analysis
of 75 immunomodulators in two subtypes.
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FIGURE 3 | The mutational landscape of two immune subtypes. (A) Three mutation signatures were extracted from two immune subtype and named according to
the COSMIC signature. The proportion of each mutation signature, which reflects the likely carcinogenic factors. (B) The relative contribution of three signature in C1 and
C2. (C,D) The mutational landscape (C) and frequency (D) of 27 significant mutation genes (SMGs) in two subtypes.
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Genomic Alterations of Immune Subtypes
The mutation spectrums were decoded to analyze its potential
biological carcinogenic factors. The NMF package was used to
identify three mutation signatures for two immune subtypes
(Figure 3A). The cosine similarity between the extracted
mutation signature and thirty COSMIC signatures were shown
in Supplementary Figure S6A-B (Alexandrov et al., 2015).
Figure 3B showed the proportion of each mutation signature,
which reflects the predominant carcinogenic factors. Signature 10
accounted for the highest proportion in C1, indicating that
carcinogenic factor was mainly related to altered activity of the
error-prone polymerase POLE. Signature six accounted for the
highest proportion in C2, indicating that carcinogenic factor was
mainly related to microsatellite instability (MSI). Additionally,
although not significant, the tumor mutation burden (TMB) of
C2 was greater than C1 (Supplementary Figure S6C). In total, 27
FMGs were identified (Figure 3C). The co-occurrence or elusive
of these 27 genes were shown in Supplementary Figure S6D.
Univariate cox regression further revealed the prognostic value of
these 27 FMGs (Supplementary Figure S7A,B). Among these
genes, USH2A and KRAS were poor prognostic factors. In
addition, we also investigated the mutation frequency of FMGs
in each cluster. It was found that mutations in APC, TP53, and

KRAS were enriched in C1 although C2 had the higher TMB
(Figure 3D). GISTIC 2.0 recognized the significantly amplified
and loss chromosomal segments in the TCGA-CRC cohort
(Supplementary Figures S8A,B). The results showed that
there was no significant difference in the CNV load of the
two immune subtypes (Supplementary Figure S8C). Of the 34
driver segments, 12 were amplified and 22 were loss
(Figure 4A). C1 was characterized by the more frequent
alterations encompassing 20p11.21, 20q11.21, 20q12, and
20q13.12 amplifications as well as 17p12, 18p11.31, 18q12.2,
18q21.2, and 18q22.1 loss (Figure 4B). Univariate Cox
regression further revealed the prognostic value of these 34
segments (Supplementary Figures S9A,B). Kaplan-Meier
survival analysis suggested that the deletions of 8p22 and
22q13.32 were significantly associated with poor OS and DFS
(Figures 4C–F).

Clinical Characteristics of Different Immune
Subtypes
We examined the distribution of clinical characteristics including
age, gender, TNM stage, AJCC-stage, MSI, and 5-FU response
rates. There was no significant difference in age and gender

FIGURE 4 | The copy number variations of two immune subtypes. (A,B) The waterfall plot (A) and alteration frequency (B) of significantly amplified and loss
chromosomal segments in C1 and C2. (C,D). Kaplan-Meier survival analysis of overall survival (C) and disease-free survival (D) according to the 8p22 deletion. (E,F)
Kaplan-Meier survival analysis of overall survival (E) and disease-free survival (F) according to the 22q13.32 deletion.
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distribution among the two subtypes. C1 had a higher response
rate of 5-FU. C2 had higher levels of T stage, N stage, distant
transfer, AJCC-stage, and MSI-status (Figures 5A–H). The
prediction of pRRophetic indicates that C2 was more sensitive
to Cisplatin (Figure 5I). The previous results indicate that C2
belonged to the immune hot subtype but was in an

immunosuppressive state; C1 belonged to the immune cold
subtype. Therefore, we further explored the sensitivity of
immune phenotypes to immunotherapy. The TIDE algorithm
showed that C2 had a higher proportion of responders to
immunotherapy (Figure 5J). SubMap also showed that C2 was
more prone to respond to immunotherapy (Figure 5K).

FIGURE 5 | The clinical significance of the two immune subtypes in themeta-GEO cohort. (A–H) Composition percentages of clinical characteristics such as age
(A), gender (B), T stage (C), N stage (D), M stage (E), AJCC stage (F), MSI (G), and 5-FU response (H) between C1 and C2. (I) The IC50 distribution of Cisplatin between
two subtypes. (J) Composition percentages of immunotherapy response estimated by TIDE algorithm between C1 and C2. (K) Submap analysis revealed that C2 was
sensitive to immunotherapy.
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FIGURE 6 | Development of prognosis associated risk score. (A) Kaplan-Meier survival analysis of overall survival and disease-free survival according to PARS in
themeta-GEO cohort. (B) Kaplan-Meier survival analysis of overall survival and disease-free survival according to PARS in the TCGA-CRC cohort. (C,D) ROC curves of
PARS in the meta-GEO (C) and TCGA-CRC (D) cohorts.
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Supplementary Figure S10 showed similar results in the TCGA-
CRC validation set.

Development of Prognosis Associated Risk
Score
We identified 388 and 572 DEGs in meta-GEO cohorts and
TCGA-CRC cohort, respectively (Supplementary Figure
S11A,B). The overlapping DEGs in both cohorts eventually
determined 312 CDEGs (Supplementary Figure S11C). The
biological process (BP) and KEGG pathway enrichment
analysis of these CDEGs revealed plenty of immune related
functions such as cytokine-cytokine receptor interaction,
response to stimulus and immune system process
(Supplementary Figures S11D,E). Based on the constructed
pipeline, we further transformed the CDEGs expression matrix

into the gene pairs matrix, and further screened 980 gene pairs
with significantly prognosis significance (adjust-p <0.05;
Supplementary Table S6). Subsequently, the Lasso regression
was performed to develop the optimal model, and it was
determined by the optimal lambda � 0.0324 (Supplementary
Figure S11F and Supplementary Table S7). We calculated the
PARS of each patient, and divided the patients into high risk and
low risk groups. The Kaplan-Meier analysis suggested the patients
with high PARS tended to possess a worse OS and DFS relative to
patients with low PARS in both meta-GEO cohorts and TCGA-
CRC cohort (Figures 6A,B). The area under the ROC curves
(AUCs) of predicting 1-year, 3 years, and 5 years OS were 0.872,
0.862 and 0.861 in the meta-GEO cohort, 0.787, 0.742 and 0.705
in the TCGA-CRC cohort (Figures 6C,D). The C-index was
0.815 [95%CI: 0.795–0.835] and 0.738 [95%CI: 0.675–0.801] in
the meta-GEO cohort and TCGA-CRC cohort, respectively. We

FIGURE 7 |Construction of a nomogram for evaluating prognosis. (A)Nomogram for predicting the 1-, 3-, and 5 years OS of CRC patients. (B)Calibration analysis
of our nomogram in evaluating the 1-, 3-, and 5years OS. (C). ROC curve for evaluating the performance of nomogram in predicting the 1-, 3-, and 5 years OS.
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also found C1 had lower PARS compared with C2 in both meta
cohorts and TCGA cohort (Supplementary Figures S11G,H),
which was in line with the prognostic characteristic of immune
subtypes. These results indicated PARS was a robust and
promising signature for prognosis.

Construction of a Nomogram for Evaluating
Prognosis
The immune subtypes, age, gender, TNM stage, AJCC stage, and
MSI status were subjected into the univariate Cox regression
analysis of OS and DFS. Multivariate cox regression analysis
found that PARS and Cluster are independent prognostic
factors of OS. For DFS, only PARS was an independent
prognostic factor (Supplementary Table S8). We selected
statistically significant variables to further construct
nomograms (Supplementary Table S8 and Figures 7A,B).
The nomogram was used to assess the 1-, 3-, and 5 years
survival rates of a single patient. We use ROC and
calibration plots to evaluate the nomogram. The calibration
curves showed a good assistant between the nomogram
prediction and the observed value (Figure 7B). The AUCs
for 1-, three- and 5-years were 0.876, 0.873, and 0.870,
respectively (Figure 7C). These results indicated that the
nomograms had excellent performance. The above indicated
the nomogram was reliable, which could facilitate the clinical
managements of CRC.

DISCUSSION

More and more patients with solid tumors benefit from
immunotherapy (Doi et al., 2018; Song et al., 2018; Ganesh
et al., 2019). However, the effective response and survival
benefits to immunotherapy are usually limited to a small
subset of patients. In this study, we identified two robust CRC
immune subtypes through consensus clustering and found that
each immune subtype had distinct immune escape mechanisms,
genome alterations, and clinical characteristics. This study
provides an innovative CRC classification concept, and
immunological classification may have clinical guiding
significance for personalized immunotherapy. Our work
reflects innovation in several important ways.

Firstly, the unsatisfactory response efficiency of
immunotherapy might be due to tumor immune escape.
Therefore, it was very necessary to explore the immune escape
mechanisms of different immune subtypes. We analyzed the
cellular and molecular characteristics of these two immune
subtypes. It was found that the exogenous immune escape
mechanism of C1 was the lack of immune cells, especially
immune killer cells, while the exogenous immune escape
mechanism of C2 was the increase of immunosuppressive cells
and stromal cells. In addition, the endogenous immune escape of
C1 was mainly due to low immunogenicity and impaired antigen
presentation ability. C2 was more immunogenic, but the increase
of immunosuppressive molecules may be the reason for its
endogenous immune escape. Different immune escape

mechanisms might be the key impediments to the
development of immunotherapy for two subtypes.

Secondly, different carcinogenic factors lead to different
mutation spectrums. Therefore, we tried to analyze its
potential biological carcinogenic factors through the tumor
mutation spectrum. We found that signature 10 has the
highest proportion in C1, indicating that carcinogens are
mainly related to changes in the activity of the error-prone
polymerase POLE. Signature six accounted for the highest
proportion in C2, indicating that its main carcinogenesis was
related to MSI. By identifying FMGs, we found APC, TP53, and
KRAS mutations were enriched in C1 although C2 had the higher
TMB. In addition, C1 was characterized by the more frequent
alterations encompassing 20p11.21, 20q11.21, 20q12, and
20q13.12 amplifications as well as 17p12, 18p11.31, 18q12.2,
18q21.2, and 18q22.1 loss. These results revealed the molecular
landscape of two subtypes.

Next, our research provided clues for choosing clinical
treatment options. Analysis of clinical characteristics of
different immune subtypes may help to accurately select
chemotherapy drugs. C1 has a higher response rate of 5-FU
while C2 was more sensitive to Cisplatin. In addition, our results
might facilitate the selection of suitable patients for
immunotherapy. Two algorithms including TIDE and SubMap
demonstrated that C2 was more likely to respond to
immunotherapy.

Finally, we proposed a gene pair pipeline to develop a
predictive model. The gene pair was concerned about the
mathematical relationship between the mRNA expression of
two genes and ignored the batch effects of different platforms
and facilitated the clinical application. Our PARS model had the
accurate performance for predicting OS. To further advance the
managements of CRC, we constructed a nomogram for
evaluating individual patient risk. Overall, our PARS and
nomogram displayed stable and robust performance in the
meta-GEO and TCGA-CRC cohorts and might be promising
tools in clinical settings.

Prior to this study, a few reports identified molecular subtypes
based on gene expression profiles or mutational signatures
(Guinney et al., 2015; Dunne et al., 2017; Liu et al., 2021h).
To the best of our knowledge, this is the first study to date
comprehensively delineating the immune and molecular
landscape of CRC according to the expression files of scale
sample and the broad-spectrum immune genes. Two identified
immune subtypes displayed substantial differences in
immunology, genomic alterations, and clinical features. This
raises the intriguing issue of how to optimally regulate the
host immune response so that patients are mobilized toward
more favorable states, providing a roadmap to more successful
immunotherapy. Combined with the difference in Cisplatin
sensitivity and molecular alterations between the two subtypes,
this may provide references for precise treatment of CRC. Thus,
this study has potential therapeutic implications for the rational
design of combination immunotherapy strategies. Although our
cluster is promising, some limitations should be acknowledged.
First, due to lack of data, we only considered the inter-individual
heterogeneity, but did not consider the intra-tumor
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heterogeneity. Second, the sensitivity to Cisplatin and
immunotherapy was evaluated via machine learning
algorithms, further clinical validation is necessary.

In conclusion, our research provides a new classification
strategy for CRC. The two subtypes were characterized by
distinct immune escape mechanisms, molecular alterations,
clinical characteristics, and prognosis. Additionally, our PARS
and nomogram were robust and promising indicators for
assessing the prognosis of CRC patients. Our study provided
deep insights and novel clinical management strategies for CRC.
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