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Why breed disease‑resilient livestock, 
and how?
Pieter W. Knap1*   and Andrea Doeschl‑Wilson2

Abstract 

Background:  Fighting and controlling epidemic and endemic diseases represents a considerable cost to livestock 
production. Much research is dedicated to breeding disease resilient livestock, but this is not yet a common objective 
in practical breeding programs. In this paper, we investigate how future breeding programs may benefit from recent 
research on disease resilience.

Main body:  We define disease resilience in terms of its component traits resistance (R: the ability of a host animal to 
limit within-host pathogen load (PL)) and tolerance (T: the ability of an infected host to limit the damage caused by 
a given PL), and model the host’s production performance as a reaction norm on PL, depending on R and T. Based 
on this, we derive equations for the economic values of resilience and its component traits. A case study on porcine 
respiratory and reproductive syndrome (PRRS) in pigs illustrates that the economic value of increasing production in 
infectious conditions through selection for R and T can be more than three times higher than by selection for produc‑
tion in disease-free conditions. Although this reaction norm model of resilience is helpful for quantifying its relation‑
ship to its component traits, its parameters are difficult and expensive to quantify. We consider the consequences of 
ignoring R and T in breeding programs that measure resilience as production in infectious conditions with unknown 
PL—particularly, the risk that the genetic correlation between R and T is unfavourable (antagonistic) and that a trade-
off between them neutralizes the resilience improvement. We describe four approaches to avoid such antagonisms: 
(1) by producing sufficient PL records to estimate this correlation and check for antagonisms—if found, continue 
routine PL recording, and if not found, shift to cheaper proxies for PL; (2) by selection on quantitative trait loci (QTL) 
known to influence both R and T in favourable ways; (3) by rapidly modifying towards near-complete resistance or 
tolerance, (4) by re-defining resilience as the animal’s capacity to resist (or recover from) the perturbation caused by 
an infection, measured as temporal deviations of production traits in within-host longitudinal data series.

Conclusions:  All four alternatives offer promising options for genetic improvement of disease resilience, and most 
rely on technological and methodological developments and innovation in automated data generation.
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Background
Worldwide, infectious diseases reduce production per-
formance, fertility, and survival of livestock, and there-
fore form a limiting factor to the sustainability and 
profitability of livestock production and to carbon neu-
tral farming, which has become a major goal in many 
countries. Focusing on the profitability element, Table 1 

summarizes the estimated costs of fighting disease on 
the national level, compared to the value of the estimated 
genetic trend in production and/or reproduction traits 
around the reporting year.

The first five entries in Table 1 represent cases where a 
major epidemic was dealt with by population-wide cull-
ing, which leads to costs of the order of € 100 to € 200 per 
animal, dwarfing any achievable earnings from genetic 
improvement (note that the cost of fighting African swine 
fever in China includes only the material loss and not the 
resulting 2.5-fold increase in the retail price of pig meat). 
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The next six entries represent the ongoing annual costs 
of endemic disease control (and of one minor epidemic) 
and show that those costs range from 2.7 to 7.6 times the 
annual value of genetic improvement ( �G ) for produc-
tion and/or reproduction traits. Similar information can 
be found in Chapters 16–20 in [1].

In line with the above, and considering antimicrobial 
resistance and changes in farming practices that heighten 
disease emergence, disease resilience has become one 
of the most desirable attributes of livestock. Neverthe-
less, to date, the livestock breeding sector practices little 
explicit selection for traits related to disease resilience. 
Several pig and poultry breeding companies select for 
reduced mortality rates (which also have high economic 
values, e.g. [2] for pigs; [3] for turkeys) based on data 
recorded on close relatives of nucleus selection candi-
dates, grown in commercial conditions. Although this 
can lead to solid �G trends in survival and production 
(e.g. Fig. 3 in [4]), overall mortality has many more causes 
than infectious disease—so the relationship to disease 
resilience is unclear and variable, and it is difficult to 
extrapolate to newly emerging diseases. Other companies 
aim at breeding for increased host resistance to specific 
diseases (e.g. [5] in pigs) which usually requires routine 
challenge tests (e.g. [6, 7] in salmon; and [8] in poultry) 
or extensive recording of resistance traits in natural chal-
lenge conditions (e.g. [9] in sheep; [10] in cattle; and [11] 
in rabbits).

Recently disease tolerance has been proposed as an 
alternative breeding goal trait [12–14], but to our knowl-
edge, to date no breeding company carries out explicit 
selection for increased tolerance of animals to any type 
of infection.

The terminology around robustness, disease resilience, 
resistance, and tolerance is confusing: the latter three 
terms are often used interchangeably and quantified 
by the same phenotype (e.g. mortality), making explicit 
focus on, e.g., resistance and tolerance impossible. Some 
recent studies have defined resistance and tolerance as 
component traits of disease resilience [14–16]. These 
studies indicate that explicit selection for resistance and 
tolerance would require extensive routine data record-
ing, which often can only be obtained in disease chal-
lenge tests. This would lead to considerable investment 
for breeding companies, and the associated cost–benefit 
analysis requires sound estimates of the economic values 
of these traits. However, the required theoretical frame-
work to determine (i) the relative contributions of resist-
ance and tolerance to genetic improvement of disease 
resilience and (ii) the associated economic values is cur-
rently lacking.

This paper has three objectives. First, to develop a uni-
fied framework to define resilience in terms of its compo-
nent traits resistance and tolerance. Second, to derive the 
economic values of these three traits, with an example for 
PRRS in pigs. Third, to discuss applications and the way 
forward in breeding disease resilient livestock.

Main text
Theoretical framework: disease resilience and its 
component traits resistance and tolerance
Disease resilience in the context of livestock production 
was first defined as the ability of a host animal to main-
tain a reasonable level of productivity when challenged 
by infection [17]. Disease resilience is assessed by com-
paring the production performance of an individual or 

Table 1  Cost of fighting disease versus the annual value of genetic improvement ( �G ) in (re)production traits

Areas: NLD Netherlands; TWN Taiwan; GBR Great Britain; KOR South Korea; CHN China; AUS Australia; ENG England; CAN Canada; EUR Austria, Belgium, Denmark, 
France, Germany, Italy, Netherlands, Poland, Russia, Spain and United Kingdom

Diseases: CSF classical swine fever; FMD foot and mouth disease (ungulates); ASF African swine fever; PAR ectoparasites (sheep); BLT bluetongue (ungulates); BTB 
bovine tuberculosis; PRRS porcine respiratory and reproductive syndrome

More details, including references and footnotes, are in Additional file 1: Table S1

Area Year Disease Total cost (M€/year) Cost per head �G per head Cost/�G

NLD 1997 CSF 2340 153

TWN 1997 FMD 1415 119

GBR 2001 FMD 12,864 306

KOR 2010 FMD 1401   87

CHN 2019 ASF 22,768   96

AUS 2006 PAR 389 3.7 0.49 7.7

NLD 2007 BLT 170 37.3 14 2.7

ENG 2010 BTB 127 23.2 4.4 5.2

CAN 2010 PRRS 95 4.5 0.88 5.1

USA 2013 PRRS 860 7.7 1.7 4.6

EUR 2013 PRRS 1660 6.6 1.6 4.1
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a family (e.g. a sire’s daughter group) between environ-
ments with different levels of pathogen load ( PL ) [18]. In 
more quantitative terms, disease resilience can be defined 
as the reaction norm of performance on environmen-
tal PL , i.e. as a continuous trait [19]. Disease resilience 
captures two complementary host defence mechanisms 
against pathogens: resistance and tolerance [20].

Disease resistance is the ability of a host animal to limit 
its within-host pathogen load, either by preventing infec-
tion in the first place or by inhibiting within-host patho-
gen replication [21, 22]. In simple terms: how does the 
host and its immune system respond to the environmen-
tal PL ? As such, it determines to what extent the envi-
ronmental PL leads to within-host PL; thus, it is most 
accurately quantified by continuous measures of within-
host PL (e.g. viremia or bacterial / parasite counts). Low 
within-host PL corresponds to high resistance.

Disease tolerance is the ability of an infected host to 
limit the damage caused by a given within-host PL [21, 
22] without necessarily reducing this PL as such [23]. In 
simple terms: how does the body cope with preventing or 
repairing the damage inflicted either by the pathogen or 
by the activated immune system? In quantitative livestock 
terms: the change in host performance as within-host PL 
changes, i.e. the slope of the reaction norm of production 
performance on within-host PL [24]: a continuous trait 
again. Confusingly, the term "tolerance" has often been 
used to refer to the resilience mechanism that is based on 
environmental PL as described above [25–27].

Robustness, in the context of intensive livestock pro-
duction, refers to the combination of a high production 
potential with high resilience to external stressors (such 
as environmental PL), allowing for unproblematic expres-
sion of that production potential in a wide variety of 
environmental conditions [2, 28, 29]. Thus, robustness is 
very similar to general resilience to a variety of stressors, 
focusing in particular on high-performance genotypes.

Figure  1a–c illustrates the quantitative relationship 
between the various resilience traits for two host animals 
(red 1 and blue 2) with different performance poten-
tial ( P0 , expressed at zero PL ), different resistance levels 
against the pathogen ( R ), and different tolerance levels 
to infection ( T ) with environmental PL or challenge dose 
PLE . For ease of quantification, PLE is specified here in 
within-host PL units corresponding to a hypothetical ref-
erence host with zero resistance to the pathogen. Similar 
to P0 and to the actual environmental PL in field condi-
tions, this reference value is usually not known but is use-
ful for quantifying the relative role of the environmental 
PL for resilience, and the economic value of resilience 
traits (see the "Economic values: theory" section below). 
Figure  1 shows resilience and tolerance, following [19], 
as the classical reaction norm of change in performance 

( P ) in relation to PL : P = P0 + β× PL (where slope β ≤ 0 
and PL refers to environmental and within-host pathogen 
load for resilience and tolerance, respectively).

In order to keep this model easily traceable, here we 
quantify tolerance as T = −1/β , so that T ≥ 0 , and a 
value of 0 represents complete absence of tolerance. 
Likewise for resistance, R ≥ 0 and a value of 0 represents 
complete absence of resistance. For both tolerance and 
resistance, a numeric increase represents improvement 
for the host, and a negative correlation between them is 
unfavourable. Resistance is measured in terms of within-
host PL units: different host resistance levels cause a 
reduction of PLE down to different levels of the realized 
within-host pathogen load PLW.

Figure  1a–c demonstrates how different levels of per-
formance can be achieved, depending on the environ-
mental challenge, and on an individual’s performance 
potential, resistance, and tolerance, and the correla-
tions between these. These concepts are formulated in a 
mathematical model in Eq. (1a), where each host’s actual 
performance at a given PLE level (and at this host’s asso-
ciated PLW level) is given as:

Note that this can be rearranged as:

i.e. a reaction norm on the environmental PL , in line 
with the classical definition of resilience given above. 
According to Eqs.  1a and 1b, infectious challenge 
( PLE ≥ 0 ) reduces performance, and resilience to the 
pathogen constrains this reduction: a smaller reduction 
for more tolerant hosts (with larger T in Eq. (1a)) and for 
more resistant hosts (with larger R in Eq. (1a)).

Economic value of disease resilience traits
Theory
Economic values of resistance, tolerance and resil-
ience can be derived from the relationships in Fig. 1 and 
Eq. (1a), as follows.

The partial derivative of Eq. (1a) with respect to resist-
ance is:

From that, the marginal economic value (MEV) of 
resistance is:

(1a)
PPLE = P0 − 1/T× PLW = P0 − 1/T× (PLE − R).

(1b)PPLE = [P0 + R/T]− 1/T× PLE,

(2a)
∂PPLE

∂R
= 1/T.

(2b)

MEV(R) =
∂PPLE

∂R
×MEV(P) = 1/T×MEV(P),
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Fig. 1  Reaction norm models for disease resilience. a–c A model of realized performance in infectious conditions ( PPLE ) as it depends on 
environmental pathogen load ( PLE ), host performance potential ( P0 ), host resistance ( R ) and host tolerance ( T = −1/β ; with the slope of the 
regression of performance versus PL , β ≤ 0 ) for two host animals with different levels of P0 , R and T, exposed to different PLE levels. T and R are 
favourably correlated in (a) and unfavourably in (b) and (c); PLE is lower in (c) than in (a) and (b). Resistance reduces PLE to within-host pathogen 
load ( PLW ) with performance recapture along the reaction norm to the PPLE level. In (a) P0,2 > P0,1 , but PPLE,2 < PPLE,1 because individual 2 is less 
resistant to infection (lower reduction from PLE to PLW : R2 < R1 ) and also less tolerant to it (steeper slope: β2 is more strongly negative than β1 ). In 
(b), the T levels are the same as in (a), but R2 > R1 ; this causes a stronger reduction from PLE to PLW in individual 2, climbing a longer stretch of the 
reaction norm, and this reduces the PPLE difference. In (c), T and R are the same as in (b), but PLE is lower; hence individual 2′s stronger R can now 
reduce PLE to a more favourable PLW level, neutralizing its lower T ; with that its PPLE becomes higher. (d) A model of improving resilience through 
increases in R and T while keeping P0 unchanged, see the "Economic values: theory" section below. The starting position (black dot) is based on 
initial resistance and tolerance levels R and T , with pathogen load PLW1 and performance PPLW1 . From there, resistance is increased by �R and 
tolerance from T by �T to T′ (a move to a shallower reaction norm), leading to a new position following the green arrow, with performance PPLW2 
(white dot)
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where MEV(P) is the MEV of the production trait 
under consideration. Hence improvement of resistance is 
worth more at lower tolerance levels (low T ) and when 
production performance is worth more.

Likewise, the partial derivative of Eq. (1a) with respect 
to tolerance is:

i.e. a function of the environmental PL and of the popu-
lation means for resistance and tolerance. This results in 
the following MEV for tolerance:

Hence an improvement of tolerance is worth more (i) 
if the infectious challenge is high (high PLE ), (ii) at lower 
resistance levels (low R ), (iii) at lower tolerance levels 
(low T ), and (iv) when production performance is worth 
more. When resistance is strong enough to eliminate the 
pathogen completely (i.e. when R ≥ PLE ), improvement 
of tolerance has a zero value. Likewise, because of the 
squared term T2 in its denominator, the economic value 
of tolerance increases at a diminishing rate of return with 
increasing levels of tolerance.

The economic value of resilience is the value of the 
amount of performance that is recaptured by a unit 
improvement in resilience, along a reaction norm from 
PPLE upwards towards P0 . This can result from improve-
ments in resistance and/or tolerance, in any feasible com-
bination. Figure  1d illustrates the principle. The starting 
position is based on initial resistance level R and initial tol-
erance level T , with pathogen load PLW1 and performance 
PPLW1 . From there, tolerance is increased by �T (from T 
to T′ ) and resistance by �R , leading to a new position on a 
new reaction norm, with performance PPLW2.

The increase in performance is �P:

Recalling Eqs. (2b) and (3b), deriving from them that 
PLE−R

T =
MEV(T)
MEV(R) , and changing to differentials (from �P 

to dP ), this can be rewritten as:

(3a)
∂PPLE

∂T
=

PLE − R

T2
,

(3b)
MEV(T) =

∂PPLE

∂T
×MEV(P) =

PLE − R

T2
×MEV(P).

(4a)

�P = PPLW2 − PPLW1 =

[

P0 −
PLE − (R +�R)

T+�T

]

−

[

P0 −
PLE − R

T

]

=
PLE − R

T
−

PLE − (R +�R)

T+�T

(4b)

dP =
MEV(T)

MEV(R)
−

T

T+ dT
×

MEV(T)

MEV(R)
+

dR

T+ dT

=
dT

T+ dT
×

MEV(T)

MEV(R)
+

dR

T+ dT

With dT small enough for T+ dT ≈ T , this simplifies 
to:

Note that for dT = 0 , dP
dR = 1/T , as in Eq.  (2a); for 

dR = 0 , dPdT =
PLE−R
T2  , as in Eq. (3a).

The amount of recaptured performance 
of Eq.  (4c) represents an economic value of 
dP×MEV(P) ≈ dT×MEV(T)+ dR ×MEV(R) . Hence, 
the MEV of disease resilience follows from the MEV of its 
component traits resistance and tolerance, weighted by 
their specific contributions to the change in resilience. As 
such, the MEV of resilience cannot be quantified without 
knowledge of those contributions.

Case study: the economic value of resilience of growing 
pigs to PRRS virus infections
PRRS is widely considered as one of the most economi-
cally important viral diseases in pigs worldwide [30], yet 
the economic value of resilience to this disease is cur-
rently not known. Estimates can be derived by apply-
ing the above model to data from a large scale PRRS 
virus challenge experiment where piglets were infected 
with the same dose of a virulent PRRS virus strain at 
about 30 days of age [31]. Lough et al. [32] derived toler-
ance estimates from individual body weight and viremia 
records on 1011 of these young pigs by linear regres-
sion of performance on within-host PL. Here, perfor-
mance was the average growth rate from 14 to 42  days 
post-infection; pathogen load was AUC(logVL), i.e. the 
area under the curve of log-transformed viremia meas-
urements, in that same period ( [32], see their Addi-
tional file  2). The average change in growth rate in this 
population per unit increase of viremia and the stand-
ard deviation of the 1011 individual regression coeffi-
cients were β = −0.002660 and σP(β) = 0.00418 kg/d per 
AUC(logVL), respectively. From that, T equals 375.9.

The genetic standard deviations ( σG ) of growth rate, 
of AUC(logVL), and of the reaction norm slope in this 
data were 0.0549  kg/d, 9.22 AUC(logVL) units, and 
0.0000924 kg/d per AUC(logVL) unit, respectively. From 
the σG of growth rate (i.e. of PPLE ), the σG of P0 can be 
derived (see Additional file 2) to be 0.011 kg/d. For com-
parison, [33] and [34] published genetic standard devia-
tion estimates for growth rate in pigs up to 30  kg body 
weight in high-health environments of 0.026  kg/d in 
Japanese Duroc and ranging from 0.014 to 0.016  kg/d 

(4c)

dP ≈
dT

T
×

MEV(T)

MEV(R)
+

dR

T

= dT×
MEV(R)

MEV(P)
×

MEV(T)

MEV(R)
+ dR×

MEV(R)

MEV(P)

=
dT×MEV(T)+ dR×MEV(R)

MEV(P)

.
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in Danish Landrace, Yorkshire and Duroc pigs. These 
values are closer to our 0.011 estimate of σG for P0 than 
to the 0.0549 estimate of σG for realized performance in 
deliberately low health conditions, as expected. Likewise, 
[35] estimated σG = 0.038  kg/d in Danish commercial 
crossbreds.

In Denmark, the MEV of growth rate in pigs of this age 
range was estimated as DKK 110 = € 15 per kg/d [36]. In 
the absence of trade-offs with resistance and tolerance, 
an improvement of the genetic potential for nursery-
stage growth rate P0 by one σG unit then has a value of 
0.011 × 15 = € 0.165 per pig.

When challenged with PRRS virus infection, and in the 
absence of trade-offs with performance potential and tol-
erance, an improvement of PRRS resistance that would 
lead to a reduction of AUC(logVL) by one σG (9.22 units) 
would increase nursery-stage growth rate (in this popula-
tion with its average tolerance level, and in this environ-
ment with its PLE ) by 9.22 × 0.00266 = 0.0245 kg/d. Such 
an increase in resistance has a value of 0.0245 × 15 = € 
0.37 per pig.

For the MEV of PRRS tolerance, consider a tolerance 
reaction norm that is one σG (i.e. 0.0000924  kg/d per 
AUC(logVL) unit) shallower (such that β = –0.002568 
and therefore T = 389.5) than the current population 
average ( T = 375.9). At zero PL, the two tolerance lev-
els lead to the same growth rate, and tolerance has a 
zero MEV; with increasing PLW viremia levels (due to 
decreasing resistance levels in the host), the contrast in 
growth rate increases and, therefore, the MEV of toler-
ance increases. In other words, the MEV of tolerance 
depends on the resistance level in the target population, 
as per Eq.  (3b). At the highest viremia level in this data 
(i.e. 181.4 AUC(logVL) units), in this population with its 
average resistance level, and in this environment with its 
PLE , an improvement of PRRS tolerance by one σG would 
increase nursery-stage growth rate by 0.0000924 × 181
.4 = 0.01676 kg/d, with an economic value of € 0.25 per 
pig (again in the absence of trade-offs with performance 
potential and resistance).

An improvement of resilience due to simultane-
ous improvement of resistance and tolerance (each 
by one σG , i.e. �R = 9.22 and �T = 13.6) would lead 
to a maximum (i.e. calculated at the highest viremia 
level in this data) performance recapture of �P = 
0.0245 + 0.0168 = 0.041 kg/d, with an economic value of 
€ 0.37 + 0.25 = € 0.62 per pig. As an indirect selection 
strategy for performance at the highest viremia level in 
this data, it would deliver 0.62/0.165 = 3.7 times the eco-
nomic value achieved by selection on P0.

In this example, production performance refers to 
nursery-stage growth rate of pigs in a disease challenge 
test. The same calculations could be applied to other 

relevant production traits of the grower-finisher pig, such 
as post-nursery growth rate, feed intake, or mortality, 
as well as to reproductive performance of sows, prefer-
ably recorded in field conditions. Given the devastating 
effects of PRRS on reproduction traits [37], the associ-
ated economic value for resilience as measured in terms 
of reproductive performance may well be higher than 
that presented in the example above.

In summary, our calculations support the evidence 
from Table 1 that the economic value of resilience is high.

Obstacles for genetic improvement of disease resilience 
in practice
The above reaction norm model has proven useful for 
modelling the interaction between resilience component 
traits and for deriving economic values that can serve as 
the basis for cost–benefit analyses. In this section, we 
address several hurdles that may hinder the application 
of such models for actual data analysis and for genetic 
improvement of disease resilience in practice, followed 
by a section that proposes solutions.

Resilience component traits are difficult to measure 
or estimate
Reaction norm models with ambient temperature as the 
physically recorded independent variable have been used 
frequently to study heat resilience in ruminants and pigs 
[38–43]. Temperature recordings are easily obtained 
from meteorology services or from in-house record-
ing. By contrast, the various parameters that feature in 
our Fig.  1 (i.e. the within-host pathogen load PLW , the 
environmental pathogen load PLE , and the performance 
potential P0 ) come with considerable recording chal-
lenges. In addition, the reaction norm approach itself 
presents statistical challenges, in particular for estimating 
tolerance.
PLW requires quantification of the amount of pathogen 

carried by a host animal, which involves methods ranging 
from counting ectoparasites (e.g. [44] for millimeter-long 
copepods on a sedated fish), to microscope counting of 
endoparasite eggs in fecal samples (e.g. [45]), and to run-
ning PCR DNA or RNA assays to establish bacterial or 
viral load in blood or tissue samples (e.g. [46, 47]). All 
these methods are well established but require skilled 
operators and often specialized equipment, and there-
fore carry significant cost. For example, Thorvaldsen 
et  al. [48] mention 15 to 80  min work for three people 
to count the copepods on 20 salmon (which would cost 
the farm at least € 1 to € 5 per animal; [see tinyurl.com/
rs4tltk]); outsourced fecal egg counting is charged at € 5 
to € 15 per sample in the UK, the Netherlands, and Aus-
tralia [see tinyurl.com/wqs99tp, tinyurl.com/rzkronj, 
tinyurl.com/w7n2tu3]; a PCR assay of PRRS viremia 
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costs € 27 to € 42 per sample in the UK, Belgium, and 
USA [see tinyurl.com/wqs99tp, tinyurl.com/w4ct6ud, 
tinyurl.com/t5vsu9q, tinyurl.com/r99p5lu]. In compari-
son, outsourced performance testing of pigs for growth 
rate and ultrasound body composition in USA costs € 3.5 
per animal [see tinyurl.com/v82tyqt]. Hence, although 
PLW recording is not prohibitively difficult, it is currently 
costly. Recent developments in bioimaging, low-cost 
high-throughput metagenomic profiling, and next-gen-
eration DNA sequencing suggest that cost-effective 
approaches to measuring PL are on the horizon [49–53].

Direct measures of PLE , in the required PLW units, 
rarely exist. In practice, PLE may be approximated by 
some percentile of the highest observed PLW values in 
the population experiencing the same infectious chal-
lenge, effectively shifting the reference from a host with 
zero resistance to the least resistant hosts in the dataset. 
Similar to the common approach of using the population 
mean performance as a proxy of environmental PL [54], 
this approach relies on the assumption that the sampling 
distribution is a valid representation of the full distribu-
tion of PLW in each environment.

In controlled challenge trials with a single specific 
pathogen, P0 may be quantified as the observed perfor-
mance prior to infection or, on a genetic level, from the 
performance of genetically related unchallenged control 
animals (e.g. [55]). Without such trials, genetic estimates 
of P0 may be derived from performance measures of 
genetically related individuals in "clean" farming environ-
ments, such as a nucleus farm in pig or poultry breeding. 
As these are unlikely to be entirely free of pathogens, P0 
will typically be underestimated to an unknown extent. 
Alternatively, a wide enough spread of PLW in the data 
(see the next paragraph) may allow for the intercept esti-
mate as a robust proxy for P0 for each individual in the 
data.

Tolerance is a difficult trait to estimate as the slope of a 
reaction norm of performance on PLW because this 
requires multiple measures of the independent ( PLW ) 
and dependent variable ( P ), either within the individual 
(which would require longitudinal data over time, see the 
"Targeting complete resistance" section below) or, in the 
context of animal breeding, across genetically related 
individuals, such as within daughter groups of artificial 
insemination sires. With regard to quantification, recall 
that the approximate standard error ( se ) of an estimated 
linear regression coefficient ̂byx of y on x is 

se
(

̂byx

)

≈

√

σ̂2y

nσ̂2x
−

̂b2yx
n  . It follows that reliable estimates 

of tolerance reaction norm slopes (particularly shallow 
ones with small b2 ) would require many observations 
(large n ) with a sufficiently large variation in the inde-
pendent variable (here PLW ). Lough et  al. [56] assessed 

the impact of small variation in PLW on tolerance esti-
mates from the data used in the above case study, also 
demonstrating the usefulness of recording performance 
at zero PLW , or using information from repeated PLW 
measurements to overcome the effects of small variance 
in the independent variable, x, as shown in their subse-
quent studies [32].

Given these financial, logistical and statistical hurdles, 
the question arises whether it is justified to collect PLW 
measures at all. Few breeding programs to date include 
routine measures of PLW . A common approach in pig, 
poultry, and fish breeding programs is to select for 
reduced disease or mortality rates, or for high production 
performance based on data recorded on close relatives 
of nucleus selection candidates that are grown in com-
mercial conditions with natural PL (e.g. [57–59]). The 
latter approach is equivalent to black-box selection for 
improved resilience with unknown PLE and PLW . Mulder 
and Rashidi [14] performed simulations to compare such 
an approach to explicit selection for the component traits 
with PLW records, essentially by considering selection on 
an estimated breeding value (EBV) for resilience as index 
selection for resistance and tolerance. They concluded 
that such black-box selection for resilience is "an effective 
way to increase tolerance and resistance […] provided 
that both are not strongly unfavorably correlated". Based 
on their Fig.  3a, "strongly unfavorably correlated" starts 
at a genetic correlation of − 0.4; around that value, the 
product of the simulated �G values of their resistance 
and tolerance traits (i.e. the �G of resilience) approaches 
zero or even changes sign to become unfavorable. Note 
that their resistance and tolerance traits are equivalent 
to PLW and β of our Fig. 1, and they calculate resilience 
as β× PLW , so that the signs are opposite to what we 
show here. In other words, as always when selecting on 
a composite trait, responses of the component traits are 
uncertain and depend on the genetic architecture around 
them: "the genetic correlation […] has a high impact 
on the selection responses in resistance and tolerance, 
and selection on resilience may lead to an unfavorable 
response in resistance or tolerance" [14]. Some practical 
consequences of ignoring the two component traits of 
disease resilience are considered in the next section.

Trade‑offs between component traits
Antagonistic genetic correlations among traits under 
selection can represent trade-offs between various bio-
logical functions and can form important constraints in 
animal and plant evolution, and in livestock and crop 
breeding [4, 60 and chapter  30 in [61]]. The caveat of 
such trade-offs for disease resilience was pointed out by 
Råberg et al. [62]: "in the agricultural sector, attempts to 
select for increased yield in the face of parasite challenge 



Page 8 of 18Knap and Doeschl‑Wilson ﻿Genet Sel Evol           (2020) 52:60 

may come to nothing (or even make things worse) if there 
is a trade-off between resistance and tolerance". Theo-
retical models predict that trade-offs between tolerance 
and resistance exist if these are controlled by alternative 
immune pathways that require energy resources [63–
65]. If energy sources are limited (e.g. due to infection-
induced anorexia or poor energy intake or maintenance), 
preferential resource allocation towards one set of mech-
anisms confers fitness costs to the other, with resulting 
trade-offs.

In livestock breeding, one-sided selection for increased 
production performance has been shown to lead to com-
promised animal robustness due to trade-offs between 
performance and fitness functions [66–68]. The reaction 
norm model studies for heat resilience mentioned in the 
previous section report nine estimates of the genetic cor-
relation between performance and heat resilience; one of 
these is favorable ( rG = + 0.3), the other eight are unfa-
vorable and range from –0.4 to –0.8.

Ignoring potential trade-offs between production 
and fitness traits in animal breeding programs can have 
strongly damaging consequences in terms of societal 
acceptability and commercial credibility (see [69] and 
[70], for a real-life example on litter size versus pre-wean-
ing mortality in pigs). Sustainable breeding seeks to avoid 
this by including all the relevant component traits of a 
composite in the selection criterion. As outlined above, 
to date, this has not been achieved in the case of disease 
resilience.

The economic value of PRRS resilience traits in the 
above case study derives from a comparison of (i) 
responses to selecting for performance in an infection-
free environment ( P0 ) with (ii) responses to selecting on R 
and T in an infectious environment, assuming that these 
three traits are genetically independent, thus ignoring 
potential trade-offs. A more appropriate selection crite-
rion would be an index of EBV for P0 , R , and T to repre-
sent the breeding goal trait PPLE , weighted by their MEV, 
as derived using Eqs. (2b) and (3b). Genetic improvement 
in the traits is commonly predicted (to support cost–ben-
efit analyses) by selection index theory, which requires 
estimates of the genetic and phenotypic (co)variances of 
the traits. Lough et al. [32] provide several of these for the 
case of PRRS, but was not able to estimate the covariance 
between R and T . Some of the other parameters can be 
derived as described in Additional file 2, with as the most 
striking result an approximate estimate of the genetic 
correlation between P0 and the tolerance slope β of –0.99. 
Although these estimates need to be verified with better 
data, it is clear that it would be very difficult to generate 
�G for growth potential and disease tolerance simultane-
ously in such a strongly antagonistic system.

To date, much of the R&D on disease resilience in live-
stock breeding has been on resistance. Considering tol-
erance as an explicit selection trait is a relatively novel 
idea (see e.g. [12] for reviews and recent exploratory 
examples, as well as [71] or [72]). If the genetic correla-
tion between resistance and tolerance is antagonistic, a 
breeding program that selects for improved host resist-
ance faces the risk of gradually decreasing host tolerance 
(and thus potentially also decreasing host resilience). 
These consequences are further exacerbated if the patho-
gen co-evolves successfully to neutralize host resistance 
[65]. In this case, a scenario with selection for increased 
resistance under antagonistic genetic correlations will 
paradoxically lead to reduced tolerance, to a higher infec-
tion load, and to neutralized resistance, and therefore 
to reduced resilience. And, as far as those unfavorable 
genetic correlations are actually unknown, selection for 
increased resistance could easily lead any animal breed-
ing program into the societal acceptability and com-
mercial credibility issues mentioned above, which is to 
be avoided whenever possible. But this would require 
reliable estimates of genetic correlations between dis-
ease resistance and tolerance to be obtained, which is a 
notoriously demanding task in general (e.g. [73]), and the 
hard-to-measure character of tolerance (see the above 
"Resilience component traits" section) only adds to this.

This is illustrated in Fig.  2a, which depicts published 
estimates of the correlation between resistance and toler-
ance, along with their confidence intervals, from various 
studies in animals and plants. The correlation estimates 
span a wide range from − 0.6 to + 0.5, so in practice one 
could expect any value for the host and pathogen popu-
lation under study. Without actual data analysis, it is 
impossible to predict whether trade-offs between resist-
ance and tolerance exist. Furthermore, most of the confi-
dence intervals include a zero correlation, demonstrating 
the high uncertainty in quantifying this relationship, even 
when data are available.

Differences in the approaches to quantify resist-
ance and tolerance, with PLW only included in some 
approaches, may account for some of the uncertainty in 
the correlation estimates and their observed variation 
between the studies in Fig.  2a. Results from more uni-
fied experimental approaches are shown in Fig. 2b, which 
illustrates the relationship between resistance and toler-
ance in various inbred mouse strains against (i) malaria, 
(ii) a nematode, or (iii) a bacterium, where resistance 
was estimated as the inverse of PLW and tolerance as the 
regression of a performance trait on PLW , as outlined in 
the above "Theoretical framework" section. Similar to 
the correlation estimates for outbred livestock (Fig.  2a), 
the relationship between resistance and tolerance varies 
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considerably between types of host and between patho-
gen strains. 

In summary, evidence suggests that the genetic cor-
relation between resistance and tolerance can be very 
favorable or very unfavorable or anything in between, 
and is expensive to quantify; not only because genetic 
correlation estimates require large datasets in general, 
but also because it requires recording of PL , which is 
expensive in its own right. Thus, although conceptually 
attractive and analytically elegant, the reaction norm 
approach constitutes an expensive model for routine 
estimation of  resilience breeding value. The next sec-
tion discusses potential routes forward.

The future: four alternative approaches
The purist approach
The "purist" approach for the setup of a disease resilience 
breeding program would be to start with PL (and pro-
duction) recording until the data volume is sufficient for 
estimating the genetic correlation between resistance and 
tolerance, estimate the genetic parameters, and evalu-
ate the possibly antagonistic system. If trade-offs exist, 
continued routine recording of PL would be required 
for decomposing resilience into its component traits to 
be implemented into a selection index that effectively 
balances the trade-offs. However, when there is no evi-
dence for such trade-offs, decomposing resilience is not 
necessary and reaction norms can be calculated based 
on cheaper proxies for the environmental PL, such as 
the mean production performance of each individual’s 
contemporary group (as in Mulder and Rashidi’s [14] 

Fig. 2  Published estimates of the relationship between resistance and tolerance in plants and animals. a Genetic correlation estimates between 
resistance and tolerance in various plant and animal species (quantified in ways that do not necessarily correspond to our "Theoretical framework" 
section of above). The error bars represent the 95% confidence interval (± 1.96 standard errors around the estimate, some of these were derived 
from the published P values). Black symbols: infectious diseases, white symbols: other stressors. Data from [128] (Arabidopsis versus insects), [129] 
(Ipomoea versus insects), [130] (Brassica versus frost), [131] (Mimulus versus mosaic virus), [55] (tiger shrimp versus Taura virus), [132] (chicken versus 
ascites), [133] (Solanum versus insects), [134] (Arabidopsis versus frost and heat), [135] (sheep versus nematode), [84] (turbot versus skin parasite). 
b Estimated means with 68% confidence ellipsoids (± 1 standard error around the bivariate mean) for tolerance and resistance of inbred mouse 
strains to three different types of pathogens. Black data points: tolerance of five inbred mouse strains to the malaria parasite Plasmodium chabaudi 
(regression of body weight [solid ellipsoids] or erythrocyte density [dashed] on pathogen load) in relation to the reverse of pathogen load (data 
from Fig. 3 in [22]; ~ 30 animals per subclass). White data points: tolerance of three inbred mouse strains to the nematode Heligmosomoides bakeri 
(correlation of carcass weight with two counts of pathogen load: solid and dashed ellipsoids) in relation to the reverse of pathogen load (data from 
Table 3 and Fig. 1 in [136]; 10 animals per subclass). Blue data points: tolerance of four inbred mouse strains to the bacterium Listeria monocytogenes 
(regression of scaled body weight on pathogen load) in relation to the reverse of pathogen load (data from Fig. 2 in [114]; 10 animals per strain, with 
two strains further subdivided into survivors and non-survivors)
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simulated scenario without PL recording, mentioned in 
the above "Resilience component traits" section). This 
approach is commonly used to model general resilience 
to a nondescript mixture of infectious and non-infectious 
stressors (e.g. [54]). Real-life studies using such a model 
were summarized in Table  3 of Knap and Su [74], who 
also showed that the statistical method of Su et  al. [75] 
to estimate all parameters of the reaction norm system 
(i.e. P0 , β , and the value of the independent variable) in 
a single-step analysis produces more robust statistics 
than the conventional contemporary group approach. 
This method requires production records only, but poses 
strong demands on their volume and genetic structure; 
making use of a genomic relationship matrix in the mixed 
model equations for this method is expected to increase 
the accuracy of all the estimates, including those of the 
independent variable (i.e. the proxy for PLE).

One of the major obstacles of this purist approach to 
a resilience breeding program that appropriately han-
dles trade-offs is the necessity to measure PL , at least 
initially. For systems for which this is unfeasible, various 
approaches have been proposed to use proxy traits to 
quantify host resistance or the infection challenge preva-
lent in a specific environment, e.g. immune parameters 
or routinely collected health records (e.g. [76–80]). These 
proxy traits would need to be carefully evaluated before 
implementing them into a breeding program, which 
requires significant investment in time and money.

With the advent of high-throughput genomics and 
high-resolution automated phenotyping technologies, 
alternative solutions to breeding disease resilient live-
stock that do not use classical reaction norms are now 
emerging. These alternatives are considered in the next 
sections.

Targeting beneficial QTL for both resistance and tolerance
Evidence from a plethora of genome-wide association 
studies (GWAS) in livestock suggests that disease resist-
ance, tolerance, and resilience are mostly under polygenic 
control, with a handful of genes of relatively large effect 
(e.g. [7, 21, 81–83]). This implies that genetic improve-
ment of resilience traits will be necessarily gradual and 
may require many generations of selection to achieve 
complete resistance or tolerance, if at all possible. One 
possible approach to minimize the risk of undesirable 
outcomes of selection due to hidden trade-offs may be 
to focus on genomic loci with identified large positive 
effects on both resistance and tolerance (e.g. [84]). Alter-
natively, recalling the challenges of estimating genetic 
parameters for tolerance reaction norms, one could 
focus on candidate loci with known large effects on dis-
ease resistance and then determine their effects on toler-
ance. This has been exemplified for PRRS, where GWAS 

identified a region on pig chromosome 4 with a major 
QTL that explained 10 to 20% of the genetic variance for 
resistance and resilience to PRRS [85]. Subsequent stud-
ies found that this QTL is also significantly associated 
with tolerance to PRRS, with the genetically more resist-
ant pigs being also more tolerant [32]. Selection on such 
QTL with known beneficial pleiotropic effects on both 
traits may be a promising short-term strategy to gradu-
ally improve resistance and tolerance simultaneously in 
the absence of reliable genetic correlation estimates.

Targeting complete resistance or complete tolerance
One way to avoid undesirable scenarios of unknown 
genetic correlations (see the above "Trade-offs between 
component traits" section) would be to increase resist-
ance or tolerance (both continuous traits, as per above) 
not gradually but completely, preferably in a few rapid 
modification steps. Eqs. (1a) and (1b) and Fig. 1 illustrate 
that completely resistant animals do not need any toler-
ance to achieve high performance levels under infectious 
challenge; and likewise, for completely tolerant animals 
the pathogen load level is irrelevant.

Such rapid modification steps would require a host–
pathogen mechanism with a high host heritability and a 
high prediction accuracy for the trait under considera-
tion, such that selection would achieve results quickly. 
In practice, this is most easily achieved if the trait has a 
simple genetic architecture, i.e. if it is to a large extent 
controlled by a single gene. Here, we give three examples 
where such rapid improvements were achieved through 
selection on a single DNA marker, in two cases with-
out significant knowledge of the underlying biological 
mechanisms.

First, marker-assisted selection for resistance to trans-
missible spongiform encephalopathy (scrapie) in sheep, 
which is based on selection for particular genotypes of 
the PNRP gene that modulates much of the variation 
in susceptibility to developing scrapie. In the UK, an 
increase in the frequency of the favorable allele in young 
rams from 50 to 69% (see Table  2 in [86]) reduced the 
observed national scrapie prevalence to close to zero in 
9 years i.e. in three to four generations (see Table 14 in 
[87]). In the Netherlands, an increase of the frequency of 
the favorable allele in the ewe population from 38 to 65% 
caused a similar prevalence reduction in 7 years, i.e. in 
three generations (see Fig. 5 in [88]).

Second, marker-assisted selection in pigs for resist-
ance against Escherichia coli caused by a lack of the cell 
receptors for the attachment of the bacterial adhesins 
[89]. E. coli F4 resistance in the sow populations of two 
Danish breeds increased from 0 to 80%, and from 5 to 
100%, in 6 years, i.e. in four generations (see Fig.  11  in 
[5]). E. coli F18 resistance in the artificial insemination 



Page 11 of 18Knap and Doeschl‑Wilson ﻿Genet Sel Evol           (2020) 52:60 	

boar populations of two Swiss breeds increased from 39 
to 100% in 4 years, and from 30 to 100% in 7 years, i.e. in 
three to five generations [90].

Third, marker-assisted selection for reduced mortal-
ity due to infectious pancreatic necrosis (IPN) in Atlan-
tic salmon, based on a DNA marker developed by Moen 
et  al. [91] and Houston et  al. [92], which explains ~ 98% 
of the genetic variation in mortality. Selection for this 
gene reduced the annual number of IPN outbreaks in 
Norwegian farms from 223 to 23 in 9 years, i.e. in three 
salmon generations [93], tinyurl.com/y9gq3wyc). In light 
of the trade-off concerns raised in the above "Obstacles 
for genetic improvement" section, the outcome of this 
black-box selection for resilience is remarkable because 
the impact of the underlying gene on resistance and tol-
erance was unknown. Only later studies revealed that 
the favorable allele for reduced IPN mortality conferred 
increased resistance to infection as well as to infection 
transmission (thus effectively reducing PLE in the popu-
lation), without significantly impacting the mortality rate 
of infected individuals, i.e. their tolerance to infection 
[16]. In other words, the observed increase in resilience 
was due to a fortunate combination of favorable or neu-
tral gene effects on the various resilience components 
simultaneously. There are currently too few real-world 
examples of marker-assisted selection for improved dis-
ease resistance or resilience to determine whether this 
combination is the norm or the exception. However, the 
examples shown in Fig. 2 would suggest that such good 
fortune should not be taken for granted.

An alternative route to achieve complete resistance 
(or tolerance) would be to move away from the classi-
cal gradual selection approaches and exploit (i) detailed 
biological knowledge of the relevant resilience mecha-
nism, and (ii) novel genomic technology to manipulate 
it. Genome editing is a promising powerful methodol-
ogy, and we can expect much development in this field 
for animal breeding, just as in plant breeding (e.g. [94] for 
resistance against mildew in wheat). Ruan et al. [95] and 
Proudfoot and Burkard [96] describe the current state 
of the art of genome editing in animal breeding. PRRS 
resistance in pigs constitutes one of the most promising 
examples, where a disruption of the CD163 gene (either 
through knock-out of the complete gene or a simple dele-
tion of its exon 7) makes pigs completely resistant to 
infection with the PRRS virus, in the latter case without 
loss of the original physiological functionality of the pro-
tein [97–100].

An important point here is that this approach could not 
have been developed based on scanning procedures such 
as GWAS that rely on natural polymorphisms to detect 
useful information. In earlier in-vitro studies, the CD163 
gene was shown to code for the host protein domain 

that is hijacked by the virus to enable the release of its 
genome into the host macrophage [101]. However, exten-
sive GWAS and CD163-focused sequencing studies have 
detected no natural polymorphism at the relevant locus 
[102, 103], or produced signals in very different parts of 
the gene [104, 105].

In summary, achieving complete genetic resistance or 
tolerance to infection requires identification of genes 
with a very large effect on these traits. The few existing 
examples in livestock suggest that such genes are rare or 
difficult to identify without detailed biological knowledge 
of the relevant resilience mechanisms. Novel genomic 
tools may accelerate the discovery of such genes. The 
main logistical challenge will be to rapidly disseminate 
the beneficial alleles into the production pyramid, before 
the pathogen evolves to neutralize the desired gene 
function.

Moving towards dynamic resilience indicators
A fourth alternative for genetic improvement of disease 
resilience is to temporarily step away from the reaction 
norm approach to quantify resilience, and consider fun-
damentally different approaches that are emerging from 
resilience studies in other fields of research. Such alterna-
tive approaches, with origins in mathematical dynamical 
systems theory, have recently been put forward for live-
stock breeding, where resilience is defined as "the capac-
ity of the animal to be minimally affected by disturbances 
or to rapidly return to the state pertained before expo-
sure to a disturbance" [28, 29, 106]. Thus, resilience in 
this context characterizes how an animal responds, over 
time, to disturbances such as infection.

To estimate the capacity of an animal to resist or to 
rapidly recover from the perturbation caused by this 
disturbance, longitudinal measures of performance and 
possibly health before, during, and ideally after the per-
turbation period are required. Such time-series data of 
relevant response variables are increasingly becoming 
routinely available in livestock systems through the rapid 
rise in technologies for automated data recording of 
traits such as milk yield, body weight, and feed intake, as 
well as indicators of infection severity, immune respon-
siveness, or health, such as somatic cell counts or infra-
red measures of body temperature. We refer to [107, 108] 
for a comprehensive review of recent advances in biosen-
sors and wearable technologies and associated data ana-
lytics that allow real-time monitoring of the physical and 
health state of animals. The data generated by such preci-
sion livestock farming technologies offer new opportuni-
ties to explore new analytical tools to generate dynamic 
resilience indicators [109]. Below we discuss some recent 
advances relevant to livestock breeding.
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Two‑dimensional resilience trajectories
We come back to the PRRS data introduced at the end 
of the above "Case study" section, to illustrate how indi-
vidual time-series data of PLW and performance can give 
rise to informative two-dimensional (2D) resilience tra-
jectories. A pig’s static resilience to PRRS was described 
there by its average growth rate over a fixed infection 
period, where static resistance was quantified by the area 
under the viremia curve over that period, and (static) tol-
erance was estimated as the slope of the reaction norm of 
growth rate against AUC(logVL); both traits showed sig-
nificant genetic variation in that study [56].

Figure  3 shows data on two animals from that same 
challenge experiment: the courses of PLW and growth 
rate over time (Fig.  3a) and, more informatively, the 
associated reaction norms and the dynamic trajectories 
of weekly growth rate of each individual plotted against 
its weekly PLW , i.e. AUC(logVL) (Fig. 3b). Both reaction 
norms have slope estimates with high standard errors, 
such that neither differs significantly from zero or from 
the other one (P > 0.67). The dynamic resilience trajec-
tories in Fig.  3b are constructed using the same traits 
(growth rate and PLW ) as the static resilience measures, 
but harness the coupled time trends in these traits. In 
this manner, the trajectories not only illustrate how an 

animal’s weekly change in growth rate is associated with 
change in infection severity at that time, but also the 
route to recovery to its pre-infection performance state 
corresponding to zero PLW . In this example, both ani-
mals show similar viremia trends (i.e. similar resistance), 
but the black pig does not grow over the whole 7-week 
infection period, whereas the white pig experiences a 
temporary reduction in growth associated with the ini-
tial decline in viremia, followed by a steady increase in 
growth as PLW reduces to zero. Overall, the 2D dynamic 
trajectories in Fig.  3b reveal that the black pig is less 
resilient to the infection than the white pig, although the 
slope estimates, which do not take the time course of the 
measurements into account, would suggest the opposite. 
Thus, this example highlights the potential importance of 
capturing the dynamic aspects of disease resilience.

More generally, such 2D resilience trajectories, which 
can also be constructed using different resistance or per-
formance indicators (e.g. immune response measures 
[110]), provide relevant temporal information on ani-
mal’s responses that cannot be captured by static reac-
tion norms. For example, they reveal which stages of 
infection are associated with the strongest loss of perfor-
mance, which may provide useful insight into underlying 
resilience mechanisms and target genes, or for devising 

Fig. 3  Reaction norms and dynamic resilience trajectories constructed from longitudinal measures of pathogen load and performance. a Temporal 
profiles for growth rate ( PPLW ) and viremia ( PLW ) of two pigs infected with the PRRS virus. b The associated reaction norms and dynamic resilience 
trajectories. Data from [32]. Datapoints represent observations (the earliest ones as open symbols, the final ones as arrowheads), the solid trendlines 
in (b) show time trends. The dashed lines in (b) represent the linear regression through the data (i.e. the reaction norm) with slope estimate β and its 
standard error
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effective timely and targeted treatment [111]. Dynamic 
trajectories also have the advantage over reaction norms 
that they capture how resistance and tolerance mecha-
nisms interact over time, without the need to disentangle 
and explicitly estimate these traits [56, 112].

In spite of these apparent advantages, implementa-
tion of such dynamic trajectories into practical breed-
ing programs will require novel analytical approaches 
to derive and validate meaningful and reliable indica-
tors that capture the trajectory characteristics and that 
lend themselves to routine genetic evaluation. Methods 
for analysing such complex trajectories, the patterns of 
which cannot be described by mathematical functions, 
have just started to emerge [110, 113–116], and as such 
the value to animal breeding is yet to be determined.

Black‑box one‑dimensional dynamic resilience indicators
When longitudinal measures of PLW or other immune 
parameters are not available for constructing 2D resil-
ience trajectories, dynamic resilience indicators of indi-
vidual animals can be constructed from temporal profiles 
of production or immune measures alone, such as the 
growth rate profile in Fig. 3a. This has been exemplified 
in recent studies that derived such indicators from tem-
porary reductions or day-to-day variations in milk yield 
or body weight [117, 118], or from daily feed intake data 
[28, 106, 119] or natural antibody titres [120]. Although 
these studies differ in their exact approaches to derive 
dynamic resilience indicators, the common underly-
ing assumption is that a single or several (known or 
unknown) stressors cause temporal deviations in the per-
formance traits, and that resilience can be quantified by 
the scale, pattern, or duration of these deviations: more 
resilient animals experience less pronounced deviations 
from their target performance trajectory [106, 109].

In contrast to the above 2D resilience trajectories 
that describe how infection severity and performance 
interact over time, the one-dimensional (1D) dynamic 
resilience indicators that are solely based on devia-
tions in performance or any other characteristic that 
can be easily monitored over time, must be assessed 
with regards to their informative value for resilience 
[106]. For example, anorexia (a temporary reduction 
of food intake) forms an important coping mecha-
nism of infected animals [121]. Thus, a large deviation 
in feed intake may correspond to high rather than low 
resilience. Putz et  al. [119] found moderate to strong 
genetic correlations of (i) disease resilience indicators 
based on daily variability in feed intake or feed intake 
duration with (ii) mortality and treatment rate in a nat-
ural disease challenge environment comprising a cock-
tail of pathogens. Later studies conducted in the same 
polymicrobial challenge facilities identified natural 

antibody titres circulating in healthy pigs as potential 
indicators for disease resilience that were also geneti-
cally correlated with fluctuations in feed intake [120]. 
Similarly, Elgersma et al. [118] found that on a genetic 
level, cows with low variance in milk yield deviations 
over time tended to have fewer production-related dis-
eases and longer longevity. By contrast, Berghof et  al. 
[117] found close-to-zero genetic correlations between 
body weight deviations and natural antibodies, ques-
tioning the validity of the former as disease resilience 
indicators in their dataset.

Pros and cons of dynamic resilience indicators
Similar to reaction norms calculated with or without PL 
measures, 2D resilience trajectories based on measures 
of PL and performance are more informative for a spe-
cific disease than 1D trajectories based on performance 
records alone. Capturing more information gener-
ally leads to increased understanding of the biological 
system and potential trade-offs (e.g. the relationship 
between resistance and tolerance) and hence also to 
greater chances of bringing it under control [122]. 
However, these advantages need to be weighed against 
the additional recording requirements in a cost–benefit 
analysis.

Black-box  1D dynamic resilience indicators may offer 
attractive resilience measures in  situations where the 
stressor or PLW are unknown, or where multiple patho-
gens and other stressors are likely to be present simul-
taneously, such as in a typical production farm [29, 106, 
119]. Hence, they have been coined as "general resil-
ience" in contrast to resilience to a specific disease [119]. 
However, this terminology may be somewhat mislead-
ing as it still applies to one particular environment only. 
It is not known whether an animal with high resilience 
in one environment would also have high resilience in an 
environment where different combinations of pathogens 
are circulating but it is unlikely that similar resilience 
responses will occur across environments with differ-
ent pathogen load. This implies that across farms (or 
over time) the variable PLE levels (or relevant proxies as 
described above) will still have to be quantified. Longitu-
dinal performance records on individuals or (more real-
istically) groups of relatives in a range of environments 
could then produce resilience estimates both within and 
across environments, using the dynamic resilience indi-
cators within each environment as the response variable 
of the across-environmental reaction norm model. In 
other words, dynamic resilience indicators complement 
but do not replace the reaction norm model; the latter 
remains the only method to accurately estimate resilience 
across environments.
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Final remarks
All of the above has focused on resilience of individual 
animals. At a higher integration level, herd resilience 
depends on "the adaptive capacity of the animals in the 
herd, together with the management decisions that affect 
the performance trajectories and local environment of 
the animals" [123]. In terms of disease resilience, a crucial 
component of this "local environment of the animals" is 
the environmental pathogen load, which is often largely 
influenced by pathogen transmission among animals in 
the herd. This introduces the animal-intrinsic trait host 
infectivity, i.e. the propensity of an animal, once infected, 
to transmit infection to others [124]. Host infectivity, 
resistance, and tolerance are likely interdependent, as the 
capacity of an animal to infect its groupmates logically 
depends on its own resistance and tolerance to the path-
ogen. In particular, tolerant animals that do not eradi-
cate the pathogen from their system via resistance, may 
continue shedding it into their micro-environment [15, 
125, 126]. Thus, individual resilience, when dominated 
by tolerance, may be counterproductive to herd resil-
ience. It follows that a complete quantitative treatment 
of the topic of disease resilience should include the trait 
host infectivity, in addition to resistance and tolerance; 
see e.g.[15, 16], and [127] for approaches to calculate the 
economic value of selective breeding for reduced disease 
transmission. Similarly, future studies should also con-
sider the impact of breeding for disease resilience and its 
component traits on pathogen evolution. As pointed out 
in the above "Trade-offs between component traits" sec-
tion, pathogen evolution could easily neutralize genetic 
gains in disease resilience. However, these aspects are 
beyond the scope of this paper.

Conclusions
Reaction norm models have proven useful for quantifying 
the relative effects on disease resilience of environmental 
pathogen load and of the animal’s production potential, 
resistance and tolerance, and for quantifying the so far 
unknown economic values. Their effective implemen-
tation in livestock breeding programmes is currently 
hampered by the lack of adequate tools to measure, or 
accurately estimate, these resilience component traits, 
in particular pathogen load. Likely trade-offs between 
resilience component traits, if not properly accounted 
for, can jeopardize genetic improvement of disease resil-
ience. Recent advances in affordable and accurate high-
throughput genomic and high-resolution automated 
phenotyping technologies, as well as in genome editing, 
accompanied by promising developments in statisti-
cal methods adapted to these data, offer exciting new 
opportunities to overcome these shortcomings and breed 

livestock with greater genetic resilience to current and 
future infectious diseases. Such data and methods will 
enable construction of informative dynamic resilience 
indicators to optimize animals’ responses to specific 
pathogen challenges, and reaction-norm models to iden-
tify animals with high genetic resilience to a wide range 
of diseases, should such generic resilience exist.
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