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Expression Stochasticity Depends 
on the Quality of Environmental 
Fluctuations
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Kaleta  3

Organisms need to adapt to changing environments and they do so by using a broad spectrum of 
strategies. These strategies include finding the right balance between expressing genes before 
or when they are needed, and adjusting the degree of noise inherent in gene expression. We 
investigated the interplay between different nutritional environments and the inhabiting organisms’ 
metabolic and genetic adaptations by applying an evolutionary algorithm to an agent-based 
model of a concise bacterial metabolism. Our results show that constant environments and rapidly 
fluctuating environments produce similar adaptations in the organisms, making the predictability 
of the environment a major factor in determining optimal adaptation. We show that exploitation of 
expression noise occurs only in some types of fluctuating environment and is strongly dependent on the 
quality and availability of nutrients: stochasticity is generally detrimental in fluctuating environments 
and beneficial only at equal periods of nutrient availability and above a threshold environmental 
richness. Moreover, depending on the availability and nutritional value of nutrients, nutrient-dependent 
and stochastic expression are both strategies used to deal with environmental changes. Overall, we 
comprehensively characterize the interplay between the quality and periodicity of an environment 
and the resulting optimal deterministic and stochastic regulation strategies of nutrient-catabolizing 
pathways.

Most organisms face a multitude of potential environments differing in hospitality as well as timescale with 
respect to changes. This variance in environmental conditions leads to a fundamental problem: How to allocate 
resources effectively in any environment, so that growth rate and adaptation to changes in the environment are 
optimally balanced? Organisms need to take into account what is necessary in the present environment and what 
is potentially needed after a change in environmental conditions. Adaptation through evolution enables antici-
pation of environmental conditions1, but there is always some degree of uncertainty. Organisms have developed 
a myriad of gene regulatory strategies for dealing with uncertainties in their habitats. Genes can, for example, be 
expressed constitutively, enabling a fast response but also potentially wasting resources on unnecessary expres-
sion, or only after receiving an environmental stimulus, a more resource-efficient approach that entails a slower 
reaction.
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In addition to gene expression in response to an environmental cue, genes can also be expressed randomly2 
and thus only by a part of the population3. Stochasticity or expression noise is an inherent feature of gene expres-
sion4. A large part of expression noise in bacteria is directly generated by bursty transcription and translation5–9. 
By creating small differences in gene product abundance, expression noise allows genetically identical cells to 
differ from one another, causing differences in reproductive fitness between individuals that share genotype as 
well as environment10. Stochastic gene expression in itself is not genetic, but the regulatory system that influences 
its magnitude is11: Expression noise is an evolvable characteristic of each gene12,13. Selection influences expression 
stochasticity dependent on the demands of the environment13,14 and of gene function7,13–16. Expression stochastic-
ity contributes to various regulatory tasks13,17,18 such as establishing binary phenotypes that require a decision19. 
Each cell switches its phenotype by itself due to stochasticity in gene expression, and this decision can then be 
reinforced by gene regulatory mechanisms2. This process operates on a shorter timescale than mutation and 
allows at least a part of the population to survive sudden environmental changes by possessing the right adapta-
tion at the right time3,20. It is a bet-hedging strategy that can often be found in fluctuating environments21. Noise 
control is wasteful at the translational level22, creating a trade-off between flexibility caused by high noise levels 
and translational resource efficiency23. There are differences in noise levels between functional gene groups6,24 
and the molecular mechanisms of variability received due attention13,25–31, but only little is known about how the 
environmental conditions themselves impact the optimal level of expression stochasticity3,20,32,33.

The environment of microorganisms switches between different states (see Fig. 1 for a schematic overview). 
Adapting to one specific state of the environment can entail not being adapted to other possible states. For 
instance, assuming an environment with two alternative nutritional sources c1 and c2, two types of errors can 
occur: investing in the uptake of resource c2 while resource c1 is present (error e1) and vice versa (error e2). The 
optimal investment ratio between c1 and c2 of an individual cell is achieved by minimizing the sum of both errors 
over time. This minimization depends only on the environmental conditions and the individual’s internal state 
and its past actions. As resource uptake and fitness are tightly linked, each deviation of an individual’s investment 
ratio from an optimal ratio decreases the individual’s fitness and the frequency of its investment ratio in the 
population. Thus, uptake rates are subject to selection. Finding a balance between an adaptation that minimizes 
response times and at the same time maximizes growth rate by minimizing waste of resources is an evolutionary 
optimization problem. Escherichia coli, for example, expresses uptake pathways for alternative substrates even in 
the absence of the corresponding nutritional sources especially in conditions of nutrient scarcity34. It was shown 
that in dynamic environments, a strategy that minimizes variance in growth rates rather than maximization of 
growth rates is optimal35,36. Recently, the absolute investment into unused functions in E. coli has been quantified 
based on an extensive absolute protein abundance dataset. It was found that depending on environmental con-
ditions up to 50% of the proteome was invested into unused proteins and that nutrient- as well as stress-response 
functions made up a considerable part of this investment37. The optimal investment into nutrient-catabolizing 
pathways, depending on nutrient availability, is affected by many factors, for example by the frequency and ampli-
tude of the resources’ availabilities, different uptake costs and nutritional value of the resources. Individuals may 
never reach an optimal investment ratio as environmental fluctuations usually occur at a much faster time-scale 
than evolutionary adaptation.

In this work, we investigated the interplay of environmental resource availability with the adaptation of meta-
bolic regulation, including expression stochasticity. How does the magnitude and impact of stochasticity depend 
on the exact environmental conditions and what are important factors in deciding in which conditions the utili-
zation of stochasticity is of advantage? To answer these questions, we developed a model containing bacteria with 
a minimal metabolism that are subjected to evolution through variation and selection in different environmental 
regimes. This approach allows us to study the interaction between the environment and expression stochasticity, 
regardless of its origin, and we can show that even in a very concise model of bacterial metabolism complex adap-
tive states can arise due to environmental fluctuations. Overall, we find that environmental conditions strongly 
influence the optimal strategy for regulating nutrient-catabolizing pathways. Surprisingly, expression noise is 

Figure 1. Optimizing adaptation to multistate environments. The environmental state is defined by the 
availability of nutrients (i.e. c1 and c2). The nutrient uptake by a cell determines its fitness. Cells have to decide 
in which metabolic pathway they invest to increase the influx of c1 and c2. The mean state of the environment 
(blue line), given by the current nutrient availability, is represented by a perpendicular. Cells can adapt to 
different environmental states (green line). The optimal investment (red dot) is achieved by minimizing errors 
of type e1 (red area) and e2 (yellow area) representing investment into improper uptake paths. The hypothetical 
optimal linkage between environmental state and the investment ratio of c1 and c2 is initially unknown (e.g. here 
sigmoid) and subject to evolutionary optimization.
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generally detrimental and only of advantage at equal periods of nutrient availability and above a threshold envi-
ronmental richness.

Results
Agent-based model for bacterial metabolism. We simulated a concise bacterial metabolism compris-
ing constitutive expression, gene expression that is regulated transcriptionally dependent on nutrient availabil-
ity, and gene expression stochasticity using an agent-based model combined with an evolutionary algorithm. 
Bacteria took up nutrients from their environment using nutrient-specific transporters. This uptake was parti-
tioned between two pathways that invested in the respective transporters (see Fig. 2). Partitioning depended on 
the evolvable pathway-specific metabolic rates for nutrient-dependent and constitutive investment. The calcula-
tion of relative investment into the transporters of each pathway takes into account the pathway-specific nutri-
ent-dependent metabolic rate if the nutrient is present in the environment and the pathway-specific constitutive 
metabolic rate irrespective of the nutrient’s presence in the environment. To model noisy expression, an evolvable 
part k of the nutrient uptake was invested stochastically into only one of the pathways. This investment was 
dependent on a separate set of evolvable pathway-specific nutrient-dependent and constitutive metabolic rates. 
Upon reaching a threshold size, bacteria divided and the metabolic rates and k were mutated based on the rates 
of the ancestor. A metabolic setup that fit the environment better led to faster growth and more descendants than 
a less fitting setup. This setup was then more prevalent in the population and less likely to be deleted by regularly 
occuring dilution events that randomly removed 70 per cent of the population. The simulations stopped when all 
bacteria were dead or a preset mean number of generations had been reached.

The environment was specified by the concentrations of the two nutrients and the respective durations of their 
availability. We tested three environmental scenarios: (i) a constant environment, in which both nutrients were 
available in the same concentration at all times, (ii) a deterministically alternating environment, in which both 
nutrients occurred in turns, their concentration and duration of occurrence fixed, and (iii) a randomly alternating 
environment, in which both nutrients occurred in turns, their concentrations and durations of occurrence uni-
formly distributed (Fig. 3). When applicable, different combinations of nutrient concentrations and of durations 
of nutrient occurrence were tested to represent a broad variety of natural habitats of microorganisms. In all cases, 
100 repetitions were performed until a mean of 5000 generations had been reached.

We then calculated for each individual the fraction of investment into the pathway of the first nutrient (c1 
investment), the fraction of investment that occurred only in the presence of the respective nutrient in the envi-
ronment (adaptive investment) and the fraction of investment that was made stochastically (through parameter 
k). We then performed simulation runs in which we prohibited stochastic investment (k = 0, “stochasticity is 
disabled”) to compare to simulations in which stochastic investment could take place (“stochasticity is enabled”).

Constant Environments. In a constant environment, investment mainly occurred into the pathway of the nutri-
ent available in the higher concentration (Fig. 4a). Equal nutrient availability lead to equal investment. Adaptive 
investment approached values near 0.5 (Fig. 4b). Stochastic investment (k) peaked near 0 and 1 if nutrient con-
centrations were unequal (Fig. 4c). By using mainly deterministic investment (peak near 0), stochasticity was 
genetically switched off; by using mainly stochastic investment (peak near 1), the same was true: The probability 
of investment into either nutrient pathway was determined by the metabolic rates. As investment mainly went 

Figure 2. Bacterial agent. Bacteria use transporters ti to take up nutrients ci from the environment and invest 
them into new transporters. Uptake is partitioned between two nutrient-specific pathways. Partitioning is 
determined using metabolic rates for constitutive and nutrient-dependent investment. A part k of the uptake is 
invested stochastically (all-or-nothing, referred to as “xor”), depending on the metabolic rates, using a separate 
set of metabolic rates for constitutive and nutrient-dependent investment. Bacteria divide when a threshold size 
is reached. Daughter cells contain mutated metabolic rates and k. Simulations stop when a preset mean number 
of generations is reached.



www.nature.com/scientificreports/

4Scientific REPORTS |  (2018) 8:333  | DOI:10.1038/s41598-017-17441-8

into the pathway of the nutrient available in the higher concentration, the probability of investment into the other 
pathway was very low. When nutrient concentrations were equal, we found a broader distribution of both adap-
tive and stochastic investment, which indicates weaker selection pressure on finding an optimum ratio.

The mean amount of required update steps can be used as a proxy for the advantage of stochasticity. To this 
end, we calculated the ratio of mean update steps between simulations with stochasticity enabled and simulations 
with stochasticity disabled (time delay). Simulations in the constant environment always required significantly 
more update steps when the stochastic pathway was switched on (Fig. 4d, Supplementary Table), showing a det-
rimental effect of stochasticity, except at high and equal nutrient concentrations. This detrimental effect could 
either manifest as a general reduction in growth rates or a reduction in the rate of adaptation. In the former case, 
we would expect a constant ratio independent of generations reached whereas in the latter case we would expect 
that the ratio reduces with increasing generation count due to the population evolving to an optimum, but at 
different speeds. Figure 4e shows a decrease of the time delay across generations, indicating a reduced speed of 
adaptation due to the presence of stochasticity, and no general difference in growth rates once the population had 
evolved to its optimum in the corresponding environment.

Deterministically Alternating Environments. Investment was focused on the nutrient of longer availability 
(Fig. 5a, Supplementary Fig. S9a), but with a much broader distribution than in the constant environment. Equal 
periods of availability led to equal investment. Environmental nutrient concentration became less influential 
on investment strategies as the frequency of environmental switches decreased. Investment was determined by 
nutrient concentration mainly when the environment switched at each time step (Fig. 5a). Adaptive investment 

Figure 3. Environmental scenarios. (a) Constant environment, both nutrients available in the same 
concentration at all times. (b) Deterministically alternating environment, both nutrients occur alternately, 
concentration on occurrence and duration of occurrence fixed. (c) Randomly alternating environment, both 
nutrients occur alternately, concentrations and durations of occurrence uniformly distributed.

Figure 4. Constant environment: investment strategies and required simulation steps depending on variations 
in environmental nutrient concentrations. The legend at the top applies to (a–c). (a) Investment occurs into 
the nutrient available in the higher concentration, (b) adaptive and constitutive investment are balanced and 
(c) stochastic investment (k) in simulations with stochasticity enabled peaks near 0 and 1 if nutrients are not 
available in the same concentration. (d) The plot shows the ratio of mean update steps between simulations with 
stochasticity enabled and simulations with stochasticity disabled (time delay). Simulations with stochasticity 
enabled always required more update steps to reach 5000 generations. (e) This time delay decreases as 
generations increase.
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increased as the frequency of environmental fluctuations decreased (Fig. 5b, Supplementary Fig. S9c). At inter-
mediate switching frequencies, investment occurred roughly equally via the nutrient-dependent and constitutive 
pathway. Switching nutrients at every time step put importance on nutrient concentration again and investment 
occurred constitutively if nutrients were of equal concentration.

Deterministic investment partitions the uptake into both nutrient pathways depending on the agents’ meta-
bolic rates. Stochastic partitioning allocates all available uptake into one of the nutrient uptake pathways, choos-
ing the pathway randomly with a probability depending on the agent’s metabolic rates. Stochastic investment in 
the deterministically alternating environment generally peaked near 0 and 1 (Fig. 5c). Contrary to the constant 
environment, because now both pathways received significant portions of general investment (Fig. 5a), this indi-
cates two main kinds of stochastic investment strategies: i) Low stochastic investment caused most of the uptake 
to be invested deterministically. This way, both kinds of transporters were invested in and one of them got an 
additional boost, depending on the rate-dependent stochastic partitioning. ii) High stochastic investment caused 
most uptake to be invested stochastically. Now, only one of both uptake pathways received a large investment, and 
a small part was partitioned deterministically between both kinds of transporters. The difference between both 
strategies lies not in their total investment into one of the pathways as there are only small qualitative differences 
in the investment distributions of simulations with stochasticity enabled or disabled, but in the temporal parti-
tioning of resources (Fig. 6). With an increase in total nutrient concentration, stochastic investment increased as 
well (Supplementary Fig. S9d). This suggests that at low nutrient concentrations a deterministic strategy is more 
advantageous compared to a stochastic strategy, and that at high nutrient concentrations, a stochastic strategy 
is either more advantageous or nutrient availability is sufficiently high to make stochastic investment tolerable.

To determine the effect of stochasticity on adaptation, we calculated the ratio of mean update steps between 
simulations with stochasticity enabled and simulations with stochasticity disabled (time delay). We found that 
the merit of stochastic gene expression depended on the periods of availability as well as nutrient concentration 
(Fig. 5d). Simulations with stochasticity enabled required significantly more update steps when nutrients were 
available for disparate periods of time or when switches happened at every update step (Supplementary Table). 
When nutrients were available for equal periods of time, simulations with stochasticity enabled required signifi-
cantly less update steps compared to simulations with stochasticity disabled. In this case, the merit of expression 
stochasticity increased as nutrient concentrations increased. Thus, while non-stochastic expression was superior 
for disparate periods of nutrient availability or rapid switches between nutrients, stochastic expression was supe-
rior in environments with equal periods of availability. The dependence of the time delay on generation count 
reached (Fig. 5e) indicates that this is due to differences in the speed of adaptation in the presence of stochasticity. 

Figure 5. Deterministically alternating environment: investment strategies and required simulation steps as 
they depend on variations in environmental nutient concentrations und duration of availability. The legend at 
the top applies to (a–c). (a) The influence of nutrient concentration on investment into a pathway depends on 
the duration of nutrient availability. (b) Adaptive investment increases as the intervals between environmental 
switches increase. (c) Stochastic investment (k) in simulations with stochasticity enabled peaks near 0 and 1. (d) 
The plot shows the ratio of mean update steps between simulations with stochasticity enabled and simulations 
with stochasticity disabled (time delay). Simulations with disparate periods of nutrient availability need more 
update steps when stochasticity is enabled, while simulations with equal periods of availability require fewer 
update steps (exception: di = 1). (e) This disparity of mean update steps between simulations with stochasticity 
enabled and simulations with stochasticity disabled (time delay) decreases as generations increase.
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Together with our observation of only slight differences in investment strategies between simulations with sto-
chasticity enabled and disabled (Fig. 5a,b) and a broader distribution of stochastic investment compared to in the 
constant environment, this indicates that stochastic investment can be used to fine-tune investment strategies in 
this environment.

Randomly Alternating Environments. In the randomly alternating environments, investment strategies resem-
bled those we found in the constant environment (Fig. 7a,b). Investment occurred both nutrient-dependent and 
constitutively and was focused on one nutrient. Stochastic investment peaked near 0 and 1 (Fig. 7c). However, 
c1 and stochastic investment were more broadly distributed. This suggests at least some degree of exploitation of 
stochasticity. Simulations with stochasticity enabled tended to require slightly more uptake steps than simulations 

Figure 6. Nutrient-dependent and constitutive investment in relation to the presence of expression 
stochasticity. Nutrient-dependent investment occurs only in the presence of a nutrient, constitutive investment 
is independent of nutrient presence. The difference between deterministic and stochastic investment is in the 
temporal partitioning of resources. Deterministic investment leads to a continuous investment while stochastic 
investment produces occasional but more intense investments bursts. The frequency of burst depends on the 
relative metabolic rates.

Figure 7. Randomly alternating environment: Investment strategies and required update steps. The legend 
at the top applies to (a–d). (a) Investment occurs into only one of the nutrients, (b) adaptive and constitutive 
investment are balanced and (c) stochastic investment (k) in simulations with stochasticity enabled peaks near 
0 and 1. (d) Simulations with stochasticity enabled tend to require slightly more uptake steps than simulations 
with stochasticity disabled. (e) The ratio of mean update steps between simulations with stochasticity enabled 
and simulations with stochasticity disabled (time delay depends on the number of generations reached.
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with stochasticity disabled (Fig. 7d,e, Supplementary Table). This indicates that while stochasticity can sometimes 
be beneficial in the randomly alternating environment, it is detrimental in general.

Discussion
To study the effect of the nutritional environment on optimal metabolic adaptation, including the optimal level 
of stochasticity, we combined an agent-based model of a minimal bacterial metabolism with an evolutionary 
algorithm. The model provides a wide spectrum of possible adaptations and we analyzed which parts of the 
solution space were occupied depending on different environmental conditions. We compared three nutritional 
environments that provide different challenges to their inhabiting organisms: The organisms needed to adapt to 
unchanging nutrient concentrations in the constant environment, to alternating but equal concentrations of a set 
duration of availability in the deterministically alternating environment, and to a range of possible concentra-
tions and durations of which only extreme and mean values are known in the randomly alternating environment 
(Fig. 3). Real-life approximations of these abstract environments can be found for example in intracellular organ-
isms (constant environment) or in the gut (deterministically alternating environments) or aquatic environments 
(randomly alternating environments).

How well organisms adapt to their environments depends on its predictability. Two aspects need to be com-
bined: investment now and investment in the future. The constant environment allows fast and almost complete 
adaptation by specialization, barring the effects of mutation. In line with earlier findings33,38, stochasticity was 
detrimental and suppressed, but could, as in nature, not be totally eliminated. We found similar specialization 
in rapidly fluctuating environments. When environmental switches occurred within a generation (di = 1), it was 
advantageous to ignore short deviations20,39.

In a dynamic environment, it is of great importance whether investment occurs into a pathway whose corre-
sponding environmental nutrient will still be available in the next time step or not. The agents cannot predict their 
environment, but they can anticipate changes using their evolved investment rates. Nutrient-dependent invest-
ment, representing gene expression dependent on an environmental cue, protracts the time it takes to respond to 
the occurrence of a nutrient, but it reduces investment into absent (or inferior) nutrients. Constitutive investment 
enables a fast response to the reappearance of a nutrient but entails wasting resources in its absence. Generally, 
the degree of adaptive investment depends on the value of a nutrient. Using nutrient-dependent and constitutive 
investment in equal measure provides a means of being ready to immediately use a nutrient upon occurrence 
and stocking up on transporters while it is available. Stochastic investment includes the benefit of fortuitous 
investment into a nutrient that is suddenly available due to an environmental switch, but also the cost of losing 
a full investment in its absence. At high nutrient concentrations individuals can tolerate a potential investment 
loss better than they can at low nutrient concentrations. Our results show only little qualitative differences in the 
adaptive investment distributions whether stochasticity was enabled or disabled, indicating a modulating effect of 
stochasticity. Adaptive investment can regulate the effect of stochastic investment by influencing the probability of 
investing into a pathway depending on the presence of the respective nutrient. Adaptive investment and supple-
mental stochastic investment are both viable strategies for surviving in an alternating environment. In nature, we 
can find examples of both strategies: there is positive selection for noise in genes whose optimal expression level 
is uncertain15,16 and there are transcription factors responding to environmental cues18.

Stochastic investment in the deterministically alternating environment peaks near 0 and 1 as in the constant 
environment, but is more broadly distributed. As c1 investment distributions are broader than in the constant 
environment, the probability of investing into transporters for an absent or lower concentrated nutrient is higher. 
In the case of high stochastic investment, one pathway regularly receives a large portion of available investment 
while the alternative one receives a large investment only rarely. We can interpret this as stochastic switching3,20,21.

Organisms in alternating environments need to be versatile and preserve a high degree of plasticity, and some-
times this can be achieved by exploiting inherent stochasticity. There are only small differences between the 
investment strategy distributions of environments with stochasticity enabled and disabled, yet there is a clear 
impact of stochasticity on performance. The ratio of mean update steps required to reach a preset mean number 
of generations between simulations with stochasticity enabled and simulations with stochasticity disabled (time 
delay) can be taken as a measure of the merit of stochasticity. In the constant environment stochasticity is always 
detrimental, except at equal nutrient concentrations. In the deterministically alternating environments, there 
is a clear dependence on the quality of fluctations: Stochasticity is only beneficial at equal periods of nutrient 
availability. In the randomly alternating environments, stochasticity is generally detrimental. Expressing trans-
porters just in time (adaptive investment) risks not using a nutrient to its full potential but avoids squandering 
resources in anticipation of potential availability. Directing resources into a nutrient that is not available (sto-
chastic investment) enables a fast reaction to environmental switches. With an increase in nutrient concentration 
in the deterministically alternating environment, the advantage of reacting faster compensates for the waste of 
nutrients. Stochasticity is beneficial above a threshold environmental richness; below, the penalty of being caught 
in an unfit state is too high20, but above it offers an advantage over responsive switching as total adaptation to 
the environment is impossible17 or too slow3. The time delay between generations was not constant (Figs 4e, 5e 
and 7e), indicating that stochasticity generally does not influence growth rates but the speed of adaptation. We 
found that stochasticity slowed down adaptation, except in equal periods of availability in the deterministically 
alternating environment.

Our findings lead us to expect similarities in the adaptation of organisms that inhabit environments with very 
frequent or wholly unpredictable changes between several nutrients (such as in aquatic environments) and organ-
isms that live in environments that rarely change (such as endosymbionts), and a different set of adaptations in 
organisms that face environments that change regularly and predictably (such as in the human gut). Additionally, 
we expect organisms that evolved to live in constant environments to possess comparably lower noise levels in 
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relevant functional gene groups (for example nutrient transporters in endosymbionts) compared to organisms 
that live in fluctuating environments, in which we found stochasticity to sometimes be advantageous.

Previous works have postulated that noise generally renders organisms both less adapted and less adaptable40 
and is usually detrimental to fitness41. We do not find this to be true, rather, it depends on the circumstances. In 
essential and housekeeping genes noise is selected against7,14. In highly predictable environments, the genes that 
are left after genome reduction are all essential, which makes low noise in these genes a necessity. But in a fluc-
tuating environment, essentiality depends on the exact environmental conditions at a specific moment and on 
the probable environmental changes in the near future. Resources must be directed both towards what is needed 
now and to what is potentially needed later. We have observed a clear advantage of stochasticity in some environ-
mental conditions and a clear disadvantage in others. While stochasticity intrinsically introduces an element that 
hinders all individuals in a population from reaching an evolutionary optimal state and staying there, it enables a 
better adaptation of an isogenic population to fluctuating environments38.

We have investigated an agent-based model of a minimal bacterial metabolism to study the interactions 
between the nutritional environment and gene expression, both in the presence and absence of expression sto-
chasticity. Our model is in accordance with previous findings and reveals that different environmental regimes 
can produce similar adaptations. We explored the interplay of nutrient-dependent and stochastic gene expression 
and found that nutrient-dependent investment is effective and sufficient for organisms to survive and reproduce 
successfully in fluctuating environments and that expression stochasticity is only of advantage if nutrients are 
of equal value to the organism. However, we did not present the organisms in our study with challenges as they 
occur in nature, like competition for resources, interaction with other individuals or environmental catastro-
phes. We demonstrated that investigating environment-noise interaction using agent-based modeling of generic 
bacteria is sensible. This is the first time that the environment-noise relationship has been investigated using this 
approach. Our model permits qualitative conclusions concerning the magnitude of stochasticity concerning the 
constrains of the environment, independent of its molecular origin. It allows the generalisation of our findings on 
nutritious environments to any environmental parameter that poses a clear signal which is recognized by the cell 
and turned into a reaction, and that has a strong impact on reproductive fitness – like the presence of antibiotics.

A main direction of future work is to investigate more complex environments, for example with both (or 
more) nutrients co-occurring and changing concentrations, approximating actual nutritional environments, and 
to broaden the framework to include other environmental factors. On the other hand, the bacterial metabolism 
can be extended to include longer and more complex pathways. Additionally, a comparative investigation of bac-
terial genomes regarding differences in noise levels or predicted noise levels based on the known genetic details of 
noise could shed more light on the environment-noise relationship in organisms with different types of habitats.

Methods
Model. The model description follows the ODD (Overview, Design concepts, Details) protocol42. Non-
relevant paragraphs are omitted. We implemented the model in Netlogo 5.2.143.

Purpose. The model simulates a simple bacterial metabolism which includes constitutively and transcription-
ally regulated expression as well as gene expression stochasticity. We explore the trade-off between flexibility and 
efficiency of gene expression in the context of different environments by analyzing the evolutionary adjustment of 
gene expression to various environmental conditions, which are defined by the presence of nutrients over a period 
of time. We explore general regulatory patterns and focus on qualitative results.

Entities, state variables and scales. The environment contains the concentrations ci of n nutrients and the respec-
tive durations di of their availability. We assume a homogeneous environment without concentration gradients.

Bacteria exist inside the environment. Each bacterium takes up nutrients via specific transporters ti. The reg-
ulatory network of each bacterium consists of a set of metabolic rates used to calculate investment into new 
transporters. Further variables associated with each bacterium are its size s representing biomass, an age a and a 
generation g. Parameters common to all bacteria are a maximum mutation step size m and the share of biomass b 
used for cell maintenance. We assume Michaelis-Menten kinetics.

All parameters and variables are unitless as the model aims only to capture qualitative behavior. A com-
plete overview over state variables and parameters used is given by Table 1 and a bacterial agent is shown in 
Fig. 2. Nutrient uptake and investment are modeled as discrete events, and once the decision to divide is reached, 
cell-division happens instantaneously.

Process overview and scheduling. An update step includes, in that order, bacterial nutrient uptake, investment 
into new transporters, growth due to uptake, division and death, possible dilution of the bacterial population 
and an update of the environment (see submodels). Bacterial updates take place synchronously as they do not 
depend on the states of other bacteria. Simulations stop when all bacteria are dead or a preset mean number of 
generations has been reached.

Design concepts. Basic principles. The growth and life cycle of bacterial cells which can grow on two nutrients 
delivered by the environment is simulated and embedded into an evolutionary algorithm to allow adaptation to 
a specific environment. The evolutionary algorithm accomplishes the evolutionary adaption of uptake rates by 
minimizing the error (i.e. e1 and e2) of improper investment (see Fig. 1).

Bacteria take up nutrients depending on their concentrations and the presence of the respective bacterial 
transporters. The growth of a bacterium and investment into transporters for nutrient uptake is determined by 
metabolic rates. Nutrient uptake is altered in the next update step due to a changed number of transporters.
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The amount of combined nutrients invested in additional transporters is determined by a regulatory net-
work that consists of a set of constitutive and nutrient-dependent rates. Nutrient-dependent metabolic rates are 
nutrient-sensitive and correspond to transcriptionally regulated (substrate-dependent) expression, implying an 
underlying sensing machinery. Constitutive metabolic rates correspond to constitutive expression.

To model stochastic expression, a part k of the nutrients is stochastically invested. k thus represents the degree 
of deflection of expression control to encounter the uncertainties of a fluctuating environment (see Fig. 1). To 
separate stochastic and deterministic expression, each of these pathways has a separate set of nutrient-dependent 
and constitutive metabolic rates: For each pathway i there are four metabolic rates (see Table 1). This allows both 
deterministic and stochastic investment to be independently dependent on nutrient availability. The stochastic 
pathway is intended to combine the effects of transcriptional and translational bursting. To disable stochastic 
investment, k can be initialized as and kept at 0.

Cell division happens at a threshold size. The less time there is between cell division events in a bacterial line-
age, the more frequent its genetic metabolic setup appears in the population, with small variations.

Emergence. The model selects for the most suitable metabolic setups (metabolic investment rates cmrdet,i, 
amrdet,i, cmrstoch,i, amrstoch,i and k) in a given environmental regime by minimizing the investment in an improper 
uptake path (i.e. error e1 and e2). These metabolic solutions to a specific environment emerge over time as a con-
sequence of the constraints of selection exerted by the evolutionary algorithm.

Stochasticity. The metabolic rates of the bacteria are randomly initiated following a uniform distribution. 
Whether investment via the stochastic pathway occurs into the first or the second nutrient is decided stochasti-
cally (see submodel Investment). The probability of cell division is linearly dependent on the size of the bacterium. 
Metabolic rates of daughter cells are mutated. Mutations are drawn from a symmetric triangular distribution 
whose limits are determined by the maximum mutation step size. In the randomly alternating environment the 
duration of availability and the nutrient concentration are drawn from a uniform distribution.

Initialization. The model offers three environments characterized by the duration of availability of food sources 
and their concentration. Nutrient concentrations ci and their respective periods of availability di can be chosen 
manually. Metabolic rates (including k) for each bacterium are each drawn from a uniform distribution between 0 
and 1. It is possible to switch the stochastic pathway off by forcing k = 0 (“stochasticity is disabled”). KM,i and Kcat,i 
are each set to 1 and the maximum mutation step size m to 0.01. The amount of biomass used for maintenance is 
arbitrarily chosen as b = 5%. Thus, at each simulation step biomass and transporter numbers are reduced by 5%. 
Each bacterium starts with an initial size s = 1 and ti = 1 transporter for each nutrient pathway i. The simulation 
starts with 500 bacteria and when the population reaches a threshold size of 4000 individuals, 70% of the indi-
viduals are randomly removed. Different values revealed no qualitative differences in the final investment values 
(Supplementary Figs S1, S2 and S3).

Input data. The model does not use input data to represent time-varying processes.

Modeled processes (submodels). Nutrient uptake, investment, growth, division and death are, in that order, each 
executed by every bacterium. Dilution and the update of the environment are global processes.

Nutrient uptake. First, the nutrient uptake ui via the respective pathway i is calculated following 
Michaelis-Menten kinetics with parameters KM,i and Kcat,i:

Name Description Range Type

ci weight of concentration of nutrient i [0.2] environmental

di duration of ci [0.100] environmental

ti amount of transporters for ci uptake  ≥ 0 bacterial

k share of nutrients taken up invested stochastically [0.1] bacterial

cmrdet,i constitutive metabolic rate for deterministic investment in ti [0.1] bacterial

amrdet,i nutrient-dependent metabolic rate for deterministic investment in ti [0.1] bacterial

cmrstoch,i constitutive metabolic rate for stochastic investment in ti [0.1] bacterial

amrstoch,i nutrient-dependent metabolic rate for stochastic investment in ti [0.1] bacterial

s size  bacterial

a age, number of update steps since division  bacterial

g generation, number of divisions experienced  bacterial

m maximum mutation step size 0.01 global

KM,i Michaelis-Menten constant 1 global

Kcat,i efficiency of catalysators 1 global

b share of biomass used for maintenance 0.05 global

Table 1. State variables and parameters with their respective ranges of value. We implemented the model 
with i = 2. Environmental and global parameters are fixed at the beginning of each simulation run, bacterial 
parameters differ between individuals and change in the course of the simulation.
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ti is the amount of transporters and ci the concentration of the respective nutrient in the environment. If the cal-
culated uptake exceeds ci, ui is set to ci. The combined uptake of all nutrients amounts to

∑= .u u
(2)i

i

Investment. The share of nutrients invested via the stochastic pathway is k, thus the total amount of nutrients 
invested via the stochastic pathway amounts to

= ⋅u u k (3)stoch

and the total amount invested via the deterministic pathway amounts to

= ⋅ − = − .u u k u u(1 ) (4)det stoch

Investment via the deterministic pathway uses the rates cmrdet,i and amrdet,i, investment via the stochastic path-
way uses the rates cmrstoch,i and amrstoch,i. The relative amount of nutrients invested via the deterministic pathway 
into transporters for each nutrient i is calculated by
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Thus the increase of transporters for each pathway i via the deterministic pathway amounts to

Δ = ⋅ .t n u (6)det i det i det, ,

The share of nutrients invested via the stochastic pathway is allocated randomly with a rate-dependent proba-
bility (all-or-nothing). The probability of investment into pathway i is
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A random number 0 ≤ p ≤ 1 is drawn from a uniform distribution. nstoch is fully invested into pathway i if
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Thus

Δ = ⋅t n u (9)stoch i stoch i stoch, ,

for the chosen pathway i and Δtstoch,i = 0 for all others. The number of transporters for each pathway is subse-
quently updated:

= + Δ + Δ ⋅ − .t t t t b( ) (1 ) (10)i
new

i
old

stoch i det i, ,

Growth. Bacterial age increases by 1 and the size s is updated according to

= + ⋅ − .s s u b( ) (1 ) (11)new old

Division. The probability of cell division is

= −p smax {0, min {1, 2}} (12)

Parent and daughter each receive half of the transporters, their size is set to half the parent’s size and both 
ages are reset to 0. The metabolic rates and k of the daughter cell are each mutated according to a triangular 
distribution:

= + −value value v v( ) (13)daughter parent
1 2

with ∈v v,1 2  randomly drawn from a uniform distribution between 0 and the maximum mutation step size m. 
The generation count of both cells increases by 1.

Death. If the size of a bacterium drops below 0.5, it dies. 0.5 is half the original size and can only be reached 
when nutrient uptake has been insufficient to balance maintenance costs for more than 10 update steps. The bac-
terium’s resources are removed from the system.

Dilution and Update Environment. If the bacterial count exceeds 4000 individuals, the population is diluted 
by 70 per cent. Dilution takes individuals out of the simulation irrespective of their genotype, creating genetic 
drift and keeping the population size computationally manageable.
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If a constant food environment is chosen, no further action is necessary. If an alternating environment is 
chosen, the update proceeds as follows. At any time, only one nutrient is available (ci > 0) and the other’s con-
centration is set to 0. Each nutrient is available for di update steps. In the randomly alternating environment, di 
is drawn from a uniform distribution between 1 and 50. If di of the focal nutrient is reached, ci is set to 0. In the 
deterministically alternating environment, the other nutrient’s concentration is set to and kept at its preset value. 
In the randomly alternating environment, a value from a uniform distribution between 0.1 and 2 is drawn at each 
update step. Thus, only one nutrient at a time is available.

Analysis. After the simulation stops, we calculated c1 investment and adaptive investment for each individual 
by:
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All analyses were performed using the R software version 3.0.244. All plots show the calculated investment 
rates based on the pooled calculated investment of all individuals across all applicable conditions, combining 
individuals from separate simulation runs. Update steps required to reach a preset number of generations were 
compared with Mann–Whitney-U-tests. The false discovery rate (FDR) procedure of Benjamini et al.45 was 
applied to correct p-values after multiple testing.
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