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High productivity of biotechnological strains is important to industrial fermentation

processes and can be constrained by precursor availability and substrate uptake rate.

Adaptive laboratory evolution (ALE) of Escherichia coli MG1655 to glucose minimal M9

medium has been shown to increase strain fitness, mainly through a key mutation in the

transcriptional regulator rpoB, which increases flux through central carbon metabolism

and the glucose uptake rate. We wanted to test the hypothesis that a substrate uptake

enhancing rpoB mutation can translate to increased productivity in a strain possessing

a heterologous metabolite pathway. When engineered for heterologous mevalonate

production, we found that E. coli rpoB E672K strains displayed 114–167% higher

glucose uptake rates and 48–77% higher mevalonate productivities in glucose minimal

M9 medium. This improvement in heterologous mevalonate productivity of the rpoB

E672K strain is likely mediated by the elevated glucose uptake rate of such strains, which

favors overflow metabolism toward acetate production and availability of acetyl-CoA as

precursor. These results demonstrate the utility of adaptive laboratory evolution (ALE) to

generate a platform strain for an increased production rate for a heterologous product.

Keywords: productivity, glycolytic flux, platform strain, adaptive laboratory evolution, mevalonic acid

INTRODUCTION

Metabolic engineering of microbial production strains often benefits from evolutionary
optimization strategies when a desired phenotype is selectable (Nielsen and Keasling, 2016).
Adaptive laboratory evolution (ALE) has been shown to increase strain tolerance to toxic substrates
and products and enable improved production yields and titers (Dragosits andMattanovich, 2013).
However, since biosynthesis of only a few native products is growth-coupled with optimal energy
production (Feist et al., 2010), direct ALE to improve production phenotypes is currently limited,
and diverse mutation types instead readily disrupt heterologous product genes during long-term
cultivation (Rugbjerg et al., 2018a). Recently, synthetic product selection systems have expanded the
possibilities for guiding evolution toward a phenotype: by coupling product-responsive biosensors
to fluorescence or selection genes, large mutagenized enzyme, or metagenomic libraries can be
interrogated for desirable biocatalytic activities (van Sint Fiet et al., 2006; Raman et al., 2014; Mahr
et al., 2015; Genee et al., 2016).
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The production rate (i.e., productivity) is an important
fermentation process parameter together with yield and titer, and
in principle, productivity may be limited by the substrate uptake
rate. The specific productivity (mmol/L/gDW) further accounts
for biomass differences, which also influences productivity.

Many metabolic products, such as terpenoids, are derived of
the central carbon metabolism via acetyl-CoA (Martin et al.,
2003). In this work, we hypothesize that the central carbon
metabolism of a production host strain can be improved
by ALE to yield a substrate-adapted strain with a capacity
for heterologous metabolite production at higher rate. The
common industrial work-horse Escherichia coli strains K-12
and B are lab-manipulated natural isolates (Daegelen et al.,
2009), and thus not evolutionarily adapted to minimal M9
glucose medium, which is a cheap and industrially attractive
fermentation substrate. Evident of this disconnect, repeated
ALE experiments with E. coli K-12 have shown how single
key mutations significantly specialize the core metabolism and
considerably enhance growth rate in minimal medium (Barrick
et al., 2009; Conrad et al., 2010). Under a strict glucose M9
minimal medium selection pressure of constant exponential
growth, such adaptation can recur via point mutation in the
beta subunit of RNA polymerase (e.g., RpoB E672K; LaCroix
et al., 2015). Regulatory mutations can quickly change global
phenotypes (Philippe et al., 2007). rpoB E672K is interesting
being a key mutation in adaptation to glucose minimal M9
medium (LaCroix et al., 2015). The mutation enables ≈25%
higher growth rates and broadly shifts DNA-binding affinity to
globally modulate the host transcriptome (Utrilla et al., 2016).
This involves downregulation of unneeded cellular processes in
this growth environment (e.g., chemotaxis, flagella formation)
and up-regulation of growth-coupled processes favoring glucose
uptake and transcription rate (LaCroix et al., 2015; Utrilla et al.,
2016). Owing to its enhanced central metabolic flux state, the
rpoB E672K mutant strain takes up glucose at a higher rate
relative to its MG1655 parent and proportionally increases the
rates of the central carbonmetabolism to also secrete acetate at an
increased rate (Long et al., 2017). This altered flux state includes
higher flux through the acetyl-CoA node in the route to acetate
production.

In this brief report, we test whether the elevated glucose
uptake rate of the substrate-adapted rpoB E672K mutant strain
can be translated into an enhanced production rate of the
heterologously-produced metabolite mevalonate.

MATERIALS AND METHODS

Strains
The three analyzed production host strains were the ancestral
E. coli MG1655 wildtype and two isolated mutants from
ALE experiments in M9 glucose minimal medium in the
study of LaCroix et al. (2015) in which they were genetically
validated.

E. coliMG1655 (ancestral wildtype used to initiate the original
ALE experiment)

E. coliMG1655+ rpoB E672K
E. coliMG1655+ rpoB E672K, 182bp pyrE-rph

Mevalonate-producing versions of the strains were generated
by standard electroporation to introduce pMVA1. pMVA1
expresses a mevalonate biosynthetic operon (E. coli atoB,
Lactobacillus casei mvaS, and mvaE) constitutively by the J23100
promoter and is propagated by a p15A origin of replication and
selected for by chloramphenicol (Rugbjerg et al., 2018a).

Medium
M9 minimal medium was supplemented with 0.8% glucose and
0.4% casamino acids: 12.8 g/L Na2HPO4 x7H2O, 3 g/L KH2PO4,
0.5 g/L NaCl, 1 g/L NH4Cl, 2mM MgSO4, 0.1mM CaCl2, 0.4%
(w/v) casamino acids (Teknova), 0.5mM thiamine hydrochloride
(Sigma-Aldrich), 8 g/L D-glucose. Thirty milligrams per liter of
chloramphenicol for plasmid maintenance.

Fermentation and Sampling
Overnight pre-cultures of the respective strains were grown
to stationary phase from single colonies in 3mL M9 medium
supplemented with 0.8% glucose and 0.4% casamino acids at
37◦C, 250 rpm shaking.

Medium for 25mL main cultures were inoculated by 200x
back-dilution in 50mL aerated tubes, cultured at 37◦C and
shaken horizontally at 250 rpm. Two hundred microliter
samples for measurement of OD600 were analyzed on a BioTek
Synergy H1 and subsequently converted to gDW by a standard
curve. Samples for subsequent chemical analysis were stored
at−20◦C.

Chemical Analysis
Fermentation samples were analyzed as previously described
(Rugbjerg et al., 2018b). In brief, 300 µL samples were thawed
and treated with 23 µL 20% sulfuric acid. Samples were
vigorously shaken and then spun down at 13,000 g for 2min.
Supernatant (medium) samples were injected into an Ultimate
3000 HPLC running a 5mM sulfuric acid mobile phase (0.6
mL/min) on an Aminex HPX-87H ion exclusion column (300
× 7.8mm, Bio-Rad Laboratories) at 50◦C. A refractive index
detector was used for detection. A standard curve for mevalonate
was generated with mevalonolactone (Sigma-Aldrich) dissolved
in M9 medium and treated with same relative volume of 20%
sulfuric acid.

Calculation of Production and Uptake
Rates
Specific metabolite uptake and production rates were calculated
in the indicated regions as the slope of the best linear fit
between metabolite (mM) and biomass (gDW/L) concentration,
multiplied by the growth rate (1/h) calculated by the best
exponential fit between biomass concentration and time in the
same region.

RESULTS

We utilized the improved glucose uptake rates and higher
glycolytic flux of medium-adapted rpoB E672K mutant strains
to test if the higher flux translated to the biosynthesis
of heterologous mevalonate, a glycolysis-derived metabolite.
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Mevalonate is a central biochemical building block for attractive
terpenoid products such as fragrances, flavors, and bioplastics
(Martin et al., 2003; Xiong et al., 2014). We focus on the
rpoB E672K mutation, which enables higher growth rates
in M9 glucose minimal medium, globally affects the strain
proteome and dispenses unneeded functionality (Utrilla et al.,
2016). We also included a second adaptive mutation, in
pyrE-rph, which improves a known pyrimidine biosynthetic
defect and additionally increases fitness (Jensen, 1993; LaCroix
et al., 2015) to test if its additional gain in fitness (LaCroix
et al., 2015) can translate into improved metabolite production.
In these two strains and the ancestral MG1655 strain, we
therefore introduced a constitutive heterologous metabolic
pathway from acetyl-CoA to mevalonate (Figure 1A) based
on previously identified enzymes of Lactobacillus casei, 3-
hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) synthase
(mvaS), and HMG-CoA reductase (mvaE) (Xiong et al.,
2014).

Batch growth screens of the medium-adapted strains yielded
an improved productivity over the wild type MG1655 starting
strain. In M9 minimal medium with 0.8% glucose and 0.4%
casamino acid, these two mutant strains exhibited ∼10% higher
growth rates when engineered with the mevalonate production
pathway compared to the ancestor MG1655 carrying the
same pathway plasmid (Table 1). Comparing these pathway-
engineered mutant and ancestor strains (Table 1) to their
pathway-free counterparts, overall lower growth rates of ∼35–
41% were observed with the pathway plasmid (LaCroix et al.,
2015). Production-related decreases in the growth rates are
not unexpected given the pathway intermediate toxicities of
mevalonate biosynthesis (Kizer et al., 2008) along with the
burden of the plasmid in the strains and the subtle differences
in batch culturing setups used between the different studies
(LaCroix et al., 2015).

When exploring the use of the ALE derived strains as
production chassis equipped with the mevalonate production
pathway, we found that the mutant strains channeled the
increased glycolytic flux into an increased rate of mevalonate
production, resulting in a 77% increase in specific rate of
glucose to mevalonate conversion in rpoB E672K relative to
MG1655, and a 48% increase in rpoB E672K+pyrE-rph (Table 1
and Figure 1B). The rpoB mutants displayed a 114–167%
higher specific glucose uptake rate than MG1655 (Table 1 and
Figure 1C). In addition to increased mevalonate production
rates with the rpoB mutations, the faster initial growth (when
production is not detected) may also contribute to faster
formation of product in a bioprocess, though the main gain in
production speed appears to arise from the improved specific
productivity.

Unlike the pathway-free rpoB mutants (LaCroix et al.,
2015), the mevalonate-producing rpoB mutants did not secrete
significant amounts of acetate (Table 1). This indicates that
these strains diverted the increased flux to acetyl-CoA to
mevalonate. However, the increase in mevalonate production
rate did not proportionally follow the increase in glucose
uptake rate (Figure 1D). Instead, during the mevalonate
production phase when glucose was present, the mutants

intermittently secreted lactate and succinate as byproducts
(Table 1), followed by reuptake upon glucose depletion
(Supplementary Figures S1–S3). This intermittent lactate
and succinate accumulation is an indication that there is
likely a flux limitation or redox imbalance in the engineered
pathway to fully utilize the increased glycolytic flux. Future
optimization should target this to take full advantage of
the gain in productivity without a trade-off in carbon yield.
There are many examples of elimination of both lactate and
succinate as byproducts which can be examined (King et al.,
2017).

Increased productivity appeared to be the main outcome of
the implemented rpoB E672K mutation while end-point titers
following 48 h of cultivation did not significantly differ between
the different strains. This also demonstrated no overall difference
in carbon yield: all strains accumulated titers of 24–26mM
mevalonate, equivalent of an overall yield of 54–59 mol/mol,
which is similar to previous batch fermentation in M9 minimal
medium using an inducible pathway with the same enzyme
homologs (Xiong et al., 2014). Furthermore, we chose 37◦C for
this demonstration to match the ALE condition at which the
mutant strains were generated, however for optimal mevalonate
production, cultivation temperatures around 30◦C are usually
deployed (Martin et al., 2003; Tabata andHashimoto, 2004; Xiong
et al., 2014). Since the rpoB E672K mutant strain maintains a
growth advantage over MG1655 at 30◦C (data not shown), it
is possible that productivity improvements are also seen at this
temperature.

DISCUSSION

Process productivity is an important parameter in the design of
economic bioprocesses, as it largely determines the bioreactor
volume required (Ikeda, 2003). Thus, an improved productivity
can significantly decrease the capital investment necessary for
a given process. As shown in this study, improvements in
productivity can result from ALE selecting for improved growth
rates. The improved specific productivities in the adapted
rpoB mutant strains examined here may be explained by the
global adaptation of the metabolism to minimal M9 medium
in excess glucose. The rpoB E672K mutation reduces the
expression levels of functions involved in environment and
stress tolerance, while it increases exponential-phase rates of
glucose uptake and acetate production (Utrilla et al., 2016).
Overall, this adaptation likely favors an increased availability
of acetyl-CoA for the first specific step of the mevalonate
product pathway. Addition of the pyrE-rph mutation to rpoB
E672K did not appear to significantly improve productivity
further (Figure 1D). This non-increase is likely due to the
finding that the pyrE-rph-associated fitness gain resulted from
restoration of a local biosynthetic defect of MG1655 (Jensen,
1993). Thus, the effect of this mutation appears to be specific
to this biosynthetic pathway and does increase growth rate,
but not the glucose uptake rate (LaCroix et al., 2015).
Improvement of glycolytic flux is generally attractive as a means
to increase productivity of a number of metabolic production
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FIGURE 1 | Utilizing a key medium-adapting E. coli mutation for heterologous production of mevalonate at higher rate. (A) Available substrate flux from acetyl-CoA to

mevalonate may be improved in rpoB-strains, due to previously observed host adaptation upregulating glucose uptake and fermentative metabolism, while

downregulating several cellular functions including the tricarboxylic acid (TCA) cycle (LaCroix et al., 2015). Simplified sketch of central carbon metabolism shown.

(B) Production of heterologous mevalonate, and (C) Glucose consumption in wildtype (MG1655) and glucose M9 minimal medium-adapted (rpoB) strains during

fermentation. Lines depict average of best linear fits in glucose consumption phase (n = 3), points represent replicate measurements. (D) Specific uptake and

production rate of glucose and mevalonate, respectively, in the glucose to mevalonate conversion phase. Error bars depict standard error of the mean (n = 3).

TABLE 1 | Mean growth rates and specific uptake and production rates of central metabolites and mevalonate, calculated in the glucose to mevalonate conversion

phase, ± standard error of the mean (n = 3).

Strain (production

phase)

Initial growth

rate, prior to

production (h−1)

Glucose uptake

rate (mmol

gDW−1 h−1)

Mevalonate

production rate

(mmol gDW−1 h−1)

Acetate production

rate (mmol gDW−1

h−1)

Lactate production

rate (mmol gDW−1

h−1)

Succinate

production rate

(mmol gDW−1 h−1)

MG1655 (10.8–28.4 h) 0.518 ± 0.014 0.7 ± 0.1 0.7 ± 0.0 <0.1 <0.1 <0.1

rpoB E672K (7.7–19.8 h) 0.584 ± 0.016 1.9 ± 0.3 1.2 ± 0.1 <0.1 1.0 ± 0.1 0.8 ± 0.0

rpoB E672K + pyrE-rph

(7.7–19.8 h)

0.579 ± 0.015 1.5 ± 0.2 1.0 ± 0.1 <0.1 1.2 ± 0.1 1.1 ± 0.0

processes, e.g., ethanol, lactic acid, and several amino acids
(Koebmann et al., 2002). In this work, we demonstrate how a
single adaptive point-mutation in the global transcriptional
regulator RpoB can elevate the specific glucose uptake rate to
increase heterologous mevalonate productivity. The results of the
strategy are supported by rationally optimized productivities of
pyruvic acid and mevalonate, respectively, by increased glucose
uptake via specific deletions of the genes atpFH (ATP synthase
F and H subunits) and sucA (2-oxoglutarate dehydrogenase)
(Causey et al., 2004; Wang et al., 2016). Recent mevalonate

production studies have reached titers of up to 594mM (88 g/L),
yet do not report specific productivities (Xiong et al., 2014).
However, high volumetric productivities of, respectively, 6.8
and 13.5 mmol/L/hr were reached in shake flask and 1.3 L
fedbatch bioreactors at 30◦C, respectively (Xiong et al., 2014;
Wang et al., 2016). These volumetric productivities were
operating at higher cellular densities which complicates direct
comparison.

ALE experimentation for strain design has the potential
to sample a larger mutation space than rational engineering
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as it does not require a priori knowledge of what to
engineer in a given strain. However, ALE requires a selectable
feature. As shown in this brief report, ALE-based substrate
and media adaptation is a simple strategy to generate a
platform strain with improved productivity of a heterologous
metabolite, as resources can be diverted from cellular processes
not needed for growth in such a controlled environment to
production. Furthermore, recent alternative strategies employing
biosensors to screen for improved glycolytic flux (Lehning
et al., 2017) and to guide ALE by direct selection for improved
production (Mahr et al., 2015) have the potential to make
ALE an even more useful engineering tool. However, such
approaches are currently limited by the availability of specific
biosensors.

The results from this study demonstrate the advantage
of using key growth-enhancing mutations found in ALE to
optimize host strains toward industrial cultivation medium,
which results in an improved production rate of a heterologous
metabolite.
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