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Wireless capsule endoscopy is a noninvasive wireless imaging technology that becomes increasingly popular in recent years.
One of the major drawbacks of this technology is that it generates a large number of photos that must be analyzed by
medical personnel, which takes time. Various research groups have proposed different image processing and machine
learning techniques to classify gastrointestinal tract diseases in recent years. Traditional image processing algorithms and a
data augmentation technique are combined with an adjusted pretrained deep convolutional neural network to classify
diseases in the gastrointestinal tract from wireless endoscopy images in this research. We take advantage of pretrained
models VGG16, ResNet-18, and GoogLeNet, a convolutional neural network (CNN) model with adjusted fully connected
and output layers. The proposed models are validated with a dataset consisting of 6702 images of 8 classes. The VGG16
model achieved the highest results with 96.33% accuracy, 96.37% recall, 96.5% precision, and 96.5% F1-measure. Compared
to other state-of-the-art models, the VGG16 model has the highest Matthews Correlation Coefficient value of 0.95 and
Cohen’s kappa score of 0.96.

1. Introduction

Esophageal, stomach, and colorectal cancers account for 2.8
million new cases and 1.8 million deaths worldwide per year.
Out of these ulcers, bleeding and polyps are all examples of
gastrointestinal infections [1]. Since the beginning of 2019,
an estimated 27,510 cases have been diagnosed in the United
States, with 62.63% males and 37.37% females, and esti-
mated deaths of 40.49%, with 61% males and 39% females
[2]. Due to its complex nature, gastroscopy instruments are
not suitable for identifying and examining gastrointestinal
infections such as bleeding, polyps, and ulcers. In the year

2000, wireless capsule endoscopy (WCE) was developed to
solve the problem with gastroscopy instruments [3]. Confer-
ring to the yearly report in 2018, roughly 1 million patients
were successfully treated with the assistance of WCE [4].
To detect disease, the doctor employs the WCE procedure
to inspect the interior of the gastrointestinal tract (GIT).
The doctor uses the WCE method to inspect the interior of
the gastrointestinal tract in order to discover disease (GIT)
[5, 6]. The capsule autonomously glides across the GI tract,
giving real-time video to the clinician. After the process of
transmitting the videos, the capsule is discharged through
the anus. The video frames received are examined by the
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physician to decide about the diseases [7]. The major
diseases diagnosed using the WCE are ulcers, bleeding,
malignancy, and polyps in the digestive system. The ana-
tomical landmarks, pathological findings, and poly removal
play a vital role in diagnosing the diseases in the digestive
system using WCE captured images. It is a more convenient
method to diagnose by providing a wide range of visuals [8].
It reduces the patient’s discomfort and complications during
the treatment in conventional endoscopy methods like com-
puter tomography enteroclysis and enteroscopy. The accu-
racy of diagnosing tumours and gastrointestinal bleeding,
especially in the small intestine, has improved. The overall
process is very time-consuming to analyze all the frames
extracted from each patient [9]. Furthermore, even the most
experienced physicians confront difficulties that necessitate a
large amount of time to analyze all of the data because the
contaminated zone in one frame will not emerge in the next.
Even though the majority of the frames contain useless
material, the physician must go through the entire video in
order. Owing to inexperience or negligence, it may often
result in a misdiagnosis [10].

Segmentation, classification, detection, and localization
are techniques used to solve this problem by researchers.
Feature extraction and visualization are an important step
that determines the overall accuracy of the computer-aided
diagnosis method. The different features are extracted based
upon the texture analysis, color-based, points, and edges in
the images [11]. The features extracted are insufficient to
determine the model’s overall accuracy. As a result, feature
selection is a time-consuming process that is crucial in deter-
mining the model’s output. The advancements in the field of
deep learning, especially CNN, can solve the problem [12].
The advancement of CNN has been promising in the last
decades, with automated detection of diseases in various
organs of the human body, such as the brain [13], cervical
cancer [14], eye diseases [15], and skin cancer [16]. Unlike
conventional learning algorithms such as machine learning,
the CNNmodel has the advantage of extracting features hier-
archically from low to a high level. The remainder of the
manuscript is organized as follows: Section 2 explains the
related work in the field of GIT diagnosis; Section 3 discusses
the dataset consider for this study; Section 4 describes the
pretrained architecture to diagnose eight different diseases
from WCE images; Section 5 contains the derived findings
from the proposed method; Section 6 concludes the work.

2. Related Work

The automated prediction of anatomical landmarks, patho-
logical observations, and polyp groups from images obtained
using wireless capsule endoscopy is the subject of this
research. The experimental groups from the pictures make
it simple for medical experts to make an accurate diagnosis
and prescribe a treatment plan. Significant research in this
area has led to the automatic detection of infection from a
large number of images, saving time and effort for medical
experts while simultaneously boosting diagnosis accuracy.
Automatically detecting infected image from WCE images
has lately been a popular research topic, with a slew of

papers published in the field. Traditional machine learning
algorithms and deep learning algorithms are used in these
studies. Improving the classification of disease areas with a
high degree of precision in automatic detection is a great
challenge. Advanced deep learning techniques are important
in WCE to boost its analytical vintage. The AlexNet model is
proposed to classify the upper gastrointestinal organs from
the images captured under different conditions. The model
achieves an accuracy of 96.5% in upper gastrointestinal
anatomical classification [17]. The author proposed the
technique to reduce the review time of endoscopy screening
based on the analysis of factorization. The sliding window
mechanism with single value decomposition is used. The
technique achieves an overall precision of 92% [18]. The
author proposed a system for automatically detecting irreg-
ular WCE images by extracting fractal features using the
differential box-counting method. The output is tested on
two datasets, both of which contain WCE frames, and
achieves binary classification accuracy of 85% and 99% for
dataset I and dataset II, respectively [19]. The author uses
the pretrained models Inception-v4, Inception ResNet-v2,
and NASNet to classify the anatomical landmarks from the
WCE images, which obtained 98.45%, 98.48%, and 97.35%.
Out of this, the Inception-v4 models achieves a precision
of 93.8% [20]. To extract the features from the data, the
authors used AlexNet and GoogLeNet. This approach is
aimed at addressing the issues of low contrast and abnormal
lesions in endoscopy [21]. The author proposed a computer-
aided diagnostics tool for classifying ulcerative colitis and
achieves the area under the curve of 0.86 for mayo 0 and
0.98 for mayo 0-1 [22]. The author proposed the convolu-
tional neural network with four layers to classify a different
class of ulcers from the WCE video frames. The test results
are improved by tweaking the model’s hyperparameters
and achieving an accuracy of 96.8% [23]. The authors have
introduced the new virtual reality capsule to simulate and
identify the normal and abnormal regions. This environ-
ment is generated new 3D images for gastrointestinal dis-
eases [24]. Local spatial features are retrieved from pixels
of interest in a WCE image using a linear separation
approach in this paper. The proposed probability density
function model fitting-based approach not only reduces
computing complexity, but it also results in a more consis-
tent representation of a class. The proposed scheme
performs admirably in terms of precision, with a score of
96.77% [25]. In [26], the author proposed a Gabor capsule
network for classifying complex images like the Kvasir data-
set. The model achieves an overall accuracy of 91.50%. The
wavelet transform with a CNN is proposed to classify gastro-
intestinal tract diseases and achieves an overall average
performance of 93.65% in classifying the eight classes [27].

From the literature, the CNN model can provide better
results if the number of the dataset is high. But there are
several obstacles in each step that will reduce the model’s
performance. The low contrast video frames in the dataset
make segmenting the regions difficult. The extraction and
selection of important traits are another difficult step in
identifying disorders including ulcers, bleeding, and polyps.
The workflow of the proposed method for disease
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classification using wireless endoscopy is shown in Figure 1.
The significant contributions of this study are as follows.

(1) A computer-assisted diagnostic system is being pro-
posed to classify GIT diseases into many categories,
including anatomical landmarks, pathological obser-
vations, and polyp removal

(2) The pretrained model is used to overcome small
datasets and overfitting problem, which reduces the
model accuracy [28]

(3) The VGG16, ResNet-18, and GoogLeNet pretrained
CNN architecture classify gastrointestinal tract
diseases from the endoscopic images by slightly
modifying the architecture

(4) The visual features of GIT disease ways of obtaining
classification decisions are visualized using the
occlusion sensitivity map

(5) We also compared the modified pretrained architec-
ture with other models, which used handcrafted
features and in-depth features to detect the GIT dis-
eases in accuracy, recall, precision, F1-measure,
region of characteristics (ROC) curve, and Cohen’s
kappa score

3. Dataset Description

The dataset used in these studies is a GIT images taken with
endoscopic equipment at Norway’s VV health trust. The
training data is obtained from a large gastroenterology
department at one of the hospitals in this trust. The further
medical experts meticulously annotated the dataset and
named it Kvasir-V2. This dataset was made available in the
fall of 2017 as part of the Mediaeval Medical Multimedia
Challenge, a benchmarking project that assigns tasks to the
research group [29]. Anatomical landmarks, pathological
observations, and polyp removal are among the eight groups
that make up the dataset with 1000 images each. The images
in the dataset range in resolution from 720 × 576 to 1920

× 1072 pixels. The different diseases with corresponding
class label encoding are provided in Table 1.

An anatomical landmark is a characteristic of the GIT
that can be seen through an endoscope. It is necessary for
navigation and as a reference point for describing the loca-
tion of a given discovery. It is also possible that the land-
marks are specific areas for pathology, such as ulcers or
inflammation. Class 0 and class 1 are the two classes of poly
removal. Class 3, class 4, and class 5 are the most important
anatomical landmarks. The essential pathological findings
are class 2, class 6, and class 7. The sample image from the
dataset is shown in Figure 2, and the distribution of the data-
set is represented in Figure 3.

4. Proposed Deep Learning Framework

To solve the issue of small data sizes, transfer learning was
used to fine-tune three major pretrained deep neural
networks called VGG16, ResNet-18, and GoogLeNet on the
training images of the augmented Kvasir version 2 dataset.

4.1. Transfer Learning. In the world of medical imaging,
classifying multiple diseases using the same deep learning
architecture is a difficult task. Transfer learning is a tech-
nique for repurposing a model trained on one task to a com-
parable task that requires some adaptation. When there are
not enough training samples to train a model from start,
transfer learning is particularly beneficial for applications
like medical picture classification for rare or developing dis-
eases. This is particularly true for deep neural network
models, which must be trained with a huge number of
parameters. Transfer learning enables model parameters to
start with good initial values that only need minimal tweaks
to be better curated for the new problem. Transfer learning
can be done in two ways; one approach is training the model
from the top layers, and another approach is freezing the top
layers of the model and fine-tunes it on the new dataset. The
eight different types of diseases are considered in the pro-
posed model, so the first approach is used where the model
is trained from the top layers. VGG16, GoogLeNet, and
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Figure 1: Workflow for GIT disease classification from wireless endoscopy.
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Figure 2: Sample images of Kvasir v2 dataset with eight different classes.

Table 1: Kvasir v2 dataset details.

Disease name Class Description

Dyed lifted polyps Class 0
The raising of the polyps decreases the risk of damage to the GI wall’s deeper layers due to electrocautery. It is

essential to pinpoint the areas where polyps can be removed from the underlying tissue.

Dyed resection
margins

Class 1 The resection margins are crucial for determining whether or not the polyp has been entirely removed.

Esophagitis Class 2
Esophagitis is a condition in which the esophagus becomes inflamed or irritated. They appear as a break in the

mucosa of the esophagus.

Normal-cecum Class 3
In the lower abdominal cavity, the cecum is a long tube-like structure. It usually gets foods that have not been
digested. The significance of identifying the cecum is that it serves as evidence of a thorough colonoscopy.

Normal-pylorus Class 4
The pylorus binds the stomach to the duodenum, the first section of the small bowel. The pylorus must be

located before the duodenum can be instrumented endoscopically, which is a complicated procedure.

Normal-Z-line Class 5
The Z-line depicts the esophagogastric junction, which connects the esophagus’s squamous mucosa to the
stomach’s columnar mucosa. It is vital to identify Z-line to determine whether or not a disease is available.

Polyps Class 6
Polyps are clumps of lesions that grow within the intestine. Although the majority of polyps are harmless, a

few of them can lead to colon cancer. As a result, detecting polyps is essential.

Ulcerative colitis Class 7
The entire bowel will affect by ulcerative colitis (UC) affects which can lead to long-term inflammation or

bowel wounds.
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Figure 3: Dataset distribution among the different classes.
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ResNet-18 are the pretrained model used for classifying the
different gastrointestinal tract diseases using endoscopic
images. The above pretrained models are used as baseline
models, and the model performance is increased by using
various performance improvement techniques.

4.2. Gastrointestinal Tract Disease Classification Using
VGG16. The VGG16 model comprises 16 layers which
consist of 13 convolution layers and three dense layers. This
model is initially introduced in 2014 for the ImageNet com-
petition. The VGG16 is one of the best models for image
classification. Figure 4 depicts the architecture of the
VGG16 model.

Instead of having many parameters, the model focuses
on having a 3 × 3 convolution layer with stride one and pad-
ding that is always the same. The max-pooling layer uses a
2 × 2 filter with a stride of two. The model is completed by
two dense layers, followed by the softmax layer. There are
approximately 138 million parameters in the model [30].
The dense layers 1 and 2 consist of 4096 nodes. The dense
layer 1 consists of a maximum number of parameters of
100 million approximately. The number of the parameter
in that particular layer is reduced without degrading the
performance of the model.

4.3. Gastrointestinal Tract Disease Classification Using ResNet-
18. Another pretrained model for classifying gastrointestinal
tract disease from endoscopic images is the ResNet-18 model.
Figure 5 depicts the architecture of the ResNet-18 platform.
This model is based on a convolutional neural network, one
of the most common architectures for efficient training. It
allows for a smooth gradient flow. The identity shortcut link
in the ResNet-18 model skips one or more layers. This will
allow the network to have a narrow connection to the
network’s first layers, rendering gradient upgrades much
easier for those layers [31]. The ResNet model comprises 17
convolution layers and one fully connected layer.

4.4. Gastrointestinal Tract Disease Classification Using
GoogLeNet. In many transfer learning tasks, the GoogLeNet
model is a deep CNN model that obtained good classifica-
tion accuracy while improving compute efficiency. With a
top-5 error rate of 6.67%, the GoogLeNet, commonly known
as the Inception model, won the ImageNet competition in
2015. The inception module is shown in Figure 6, and the
GoogLeNet architecture is shown in Figure 7. It has 22
layers, including 2 convolution layers, 4 max-pooling layers,
and 9 linearly stacked inception modules. The average pool-
ing is introduced at the end of the previous inception
module. To execute the dimension reduction, the 1 × 1 filter
is employed before the more expensive 3 × 3 and 5 × 5 oper-

ations. When compared to the AlexNet model, the GoogLe-
Net model has twice the amount of parameters.

4.5. Data Augmentation. The CNN models are proven to be
suitable for many computer vision tasks; however, they
required a considerable amount of training data to avoid
overfitting. Overfitting occurs when a deep learning model
learns a high-variance function that precisely models the
training data but has a narrow range of generalizability.
But in many cases, especially for medical image datasets
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Figure 4: VGG16 architecture for gastrointestinal tract disease classification.
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obtained, a large amount of data is a tedious task. Different
data augmentation techniques are used to increase the size
and consistency of the data to solve the issue of overfitting.
These techniques produce dummy data that has been sub-
jected to different rotations, width changes, height shifts,
zooming, and horizontal flip but is not the same as the orig-
inal data. The rotation range is fixed as 45°, shifting width
and height range is 0.2, zooming range of 0.2, and horizontal
flip. The augmented dataset from the original Kvasir version
2 dataset is shown in Figure 8.

5. Results and Discussion

In this work, the Kvasir version 2 dataset is used for the clas-
sification of GIT diseases. The entire dataset is divided into
an 80% training and 20% validation set. NVIDIA Digits uses
the Caffe deep learning system to build the pretrained CNN
models. The CNN pretrained model is trained and tested
with a system configuration Intel i9 processor with 32GB
NVIDIA Quadro RTX6000 GPU. The pretrained models
are written with the Caffe deep learning framework in the
NVIDIA Digits platform. Images with resolutions ranging
from 720 × 576 to 1920 × 1072 pixels were transformed to

256 × 256 pixels in the collected dataset. The augmented
dataset is consisting of 33536 images which contained 4192
images in individual classes. Then, the augmented datasets
are divided into 80% training and 20% validation set. There
are 26832 images in the training and 6407 images in the vali-
dation. The pretrained models are trained from scratch with
the hyperparameters of 30 epoch, batch size of 8, Adam opti-
mizers, and learning rate of 1-e05 with step size 33% via trial
and error method by considering the computing facility. The
Adam optimizers are used due to their reduced complexity
during the model training [32]. The softmax classification
layer and categorical cross-entropy are used in the output of
the pretrained model, and it is given in equations (1) and (2).

σ �Z
� �

i
=

ezi

∑K
j=1e

z j
, ð1Þ

where σ denotes the softmax, �Z denotes the input vector,
ezi denotes the standard exponential of the input vector, K
denotes the number of classes, and ez j denotes the standard
exponential of the output vector.

Filter concatenate

1×1 convolution

1×1 convolution 1×1 convolution

previous layer

3×3 max pooling

3×3 convolution 5×5 convolution1×1 convolution

Figure 6: Inception module.
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Figure 7: GoogLeNet architecture for gastrointestinal tract disease classification.
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Categorical Cross Entropy = − 〠

Output
Size

i=1
yi:log ŷi,

ð2Þ

where yi denotes target value and ŷ is the ith model output
scalar value. The confusion matrix obtained after validating
the model with a validation collection of 6407 images is used
tomeasure the confusionmatrix. The confusionmatrix is used
to evaluate the classification models’ results. The training

curve of the three pretrained models is shown in
Figures 9–11. The graph is plotted for each epoch versus the
training loss and accuracy. The graph is interpreting the train-
ing loss and training accuracy calculated versus the epoch.
VGG16 model is trained for 30 epoch among the training
dataset, and the model is proved to be converged after 15
epoch with accuracy ranges between 96%. After the 30 epochs,
the model is provided with top_1 accuracy of 96.62%, top_5
accuracy of 100%, and validation loss of 0.18. The ResNet-18
model is proved to provide less training accuracy of 78.83%
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and high training loss of 0.58 after the epoch of 30. The Goo-
gLeNet model has obtained a top_1 accuracy of 91.21%, top_5
accuracy of 100%, and training loss of 0.21.

After the model training is completed, the models are
validated with the validation dataset, and the confusion
matrix is drawn out of it. Figures 12–14 represent the confu-
sion matrices of the three pretrained models validated on the
validation dataset. The confusion matrix is drawn with truth
data and classifier results. From the confusion matrix, the
True Positive Value (TPV), False Positive Value (FPV), True
Negative Value (TNV), and False Negative Value (FNV) are
calculated. The diagonal elements represent the TPV of the
corresponding class. The different performance metrics such
as top_1 accuracy, top_5 accuracy, recall, precision, and
Cohen’s Kappa score are calculated using equations
mentioned in Table 2.

The kappa coefficient is the de facto norm for assessing
rater agreement, as it eliminates predicted agreement due
to chance. Cohen’s kappa value is obtained by equation
(3), where G denotes overall correctly predicted classes, H
denotes the total number of elements, cl denotes the overall
times class l that was predicted, and sl denotes overall times
class l occurred [33].

CK =
G ×H −∑L

l cl × sl
H2 − ∑L

l cl × sl
: ð3Þ

The kappa coefficient is used when the number of classes
more to determine its classification performance. The value
interprets the kappa score ranges from 0 to 1, and their
interpretation is provided in Table 3.
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All the pretrained models are trained from scratch to
classify gastrointestinal tract diseases using the Kvasir v2
dataset, and results are reported in Table 4. The VGG16

methods outperformed all the other pretrained models in
terms of all classification metrics. The model achieved the
highest top_1 classification accuracy of 96.33% compared
to the ResNet-18 and GoogLeNet models. The model also
performs a perfect recall and precision with 96.37% and
96.5%, respectively. The GoogLeNet model achieved better
accuracy over ResNet-18 with top_1 classification accuracy.
The kappa coefficient is calculated for models, from that
VGG16 and GoogLeNet model provided almost perfect
agreement with the value of 0.96 and 0.89, respectively.
Because of the high miss classification of diseases in the
category dyed lifted polyps, dyed resection margins, esopha-
gitis, standard Z-line, and polyps, ResNet-18 offers very low
metrics in terms of all classification metrics. Owing to the
injection of liquid underneath the polyp, the model is unable
to correctly distinguish dyed lifted polyps and dyed resection
margins, making the model more difficult to classify. The
VGG16 and GoogLeNet models are proved to provide better
accuracy in classifying the GIT diseases. However, the model
is more difficult to identify because of the interclass similar-
ity between dyed lifted polyps and dyed resection margins,
as well as the intraclass similarity between standard Z-line
and esophagitis.

The MCC is a more reliable statistical rate that produces
a higher rate when the prediction results are good in all four
values TPV, FPV, TNV, and FNV. It is calculated using
equation (4).
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Figure 13: ResNet-18 confusion matrix for GIT classification.
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Figure 14: GoogLeNet confusion matrix for GIT classification.

Table 2: Classification metrics.

Metric Equation

Accuracy (ACC)
TPV + TNV

TPV + TNV + FNV + FPV

Precision
TPV

TPV + FPV

Recall
TPV

TPV + FNV

F1-measure 2 ∗
Precision:Recall
Precision + Recall

Table 3: Cohen’s kappa interpretation.

Value ranges Interpretation (agreement)

0 No

0.01 to 0.20 Minor

0.21 to 0.40 Moderate

0.41 to 0.60 Reasonable

0.61 to 0.80 Significant

0.81 to 1.00 Perfect
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Using the Kvasir v2 datasets, the modified VGG16
model is compared with other models in classifying GIT
diseases based on results reported in the article showed in

Table 5. The Densenet-201 and ResNet-18 models that are
reported in the reference [34] achieved an accuracy of
90.74% and 88.43%. Both the models are trained for more
than 400 epochs, and it has taken roughly 10 hours to com-
plete training. The model reported in [35] has provided an
accuracy of 96.11%, which is very close to the proposed
method reported in Table 5. But the said model uses the
three stages model of baseline, Inception-V3, and VGG

Table 5: Performance analysis of proposed method with existing models.

Method Accuracy

DenseNet-201 [34] 90.74

ResNet-18 [34] 88.43

Baseline+Inceptionv3 +VGGNet [35] 96.11

Ensemble model [36] 93.7

Logistic regression tree [29] 94.2

Proposed method 96.33

Table 4: Performance analysis of pretrained models on GIT classification.

Model name Top_1 ACC (%) Top_5 ACC (%) Recall (%) Precision (%) F1-measure (%) Kappa score

VGG16 96.33 100 96.37 96.50 96.50 0.96

GoogLeNet 90.27 100 90.33 90.27 90.37 0.89

ResNet-18 78.77 99.99 78.91 78.77 78.75 0.75
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Figure 15: (a) VGG16 ROC for GIT classification. (b) Heat map for test data.
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model, which requires high computation power and
obtained the Matthews Correlation Coefficient (MCC) of
0.826. In [36], the CNN and transfer learning model is pro-
posed classify GIT diseases using global features. The model
achieves an accuracy of 93.7% with an MCC value of 0.71.
The logistic model tree proposed in the reference uses the
handcrafted features using 4000 images and achieves an
accuracy of 94.2% but with poor MCC values of 0.72 [29].
The person’s significant disadvantage should be knowledge
of feature extraction and feature selection techniques. The
modified pretrained model VGG16 obtained the MCC value
of 0.95, which outperforms all the other models. From the
MCC of all the states of the method, we found that the mod-
ified VGG16 method proves to be a perfect agreement for
classifying GIT diseases.

The time complexity of the modified pretrained model is
compared with the other models in classifying the GIT
diseases. The proposed models VGG16, GoogLeNet, and
ResNet-18 reported the training time of 1 hour 50 minutes,
1 hour, 7, and 57 minutes, respectively. The literature found
that DenseNet-201 [34] and ResNet-18 [34] have been
trained for more than 10 hours. The ROC curve in
Figure 15(a) depicts the tradeoff between true-positive and
false-positive rates. The ROC curve shows the performance
of the classification model at different classification thresh-
olds. It is plotted at different classification thresholds. The
ROC is drawn for the eight classes to determine the better
threshold for each category. The curve that fits the top left
of the corner indicates the better performance of classifica-
tion. Occlusion sensitivity is used to assess the deep neural
network’s sensitivity map to identify the image input area
for predicted diagnosis. The heat map for test data is shown
in Figure 15(b). This test procedure identified the region of
interest, which was crucial in the development of the
VGG16 model. The model’s occlusion sensitivity map is
visualized to determine the areas of greatest concern when
evaluating a diagnosis. The occlusion test’s greatest advan-
tage is that it shows unresponsive insights into neural net-
work decisions, also known as black boxes. The algorithm
has been disfigured without disrupting its performance since
the evaluation was performed at the end of the experiment.

6. Conclusion

These findings show that the most recent pretrained models,
such as VGG-16, ResNet-18, and GoogLeNet, can be used in
medical imaging domains such as image processing and
analysis. CNN models can advance medical imaging tech-
nology by offering a higher degree of automation while also
speeding up processes and increasing efficiency. The algo-
rithm in this study obtained a state-of-the-art result in
gastrointestinal tract disease classification, with 96.33% and
equally high sensitivity and specificity. Transfer learning is
helpful for various challenging tasks and is one solution to
computer vision problems for which only small datasets
are often accessible. Medical applications demonstrate that
advanced CNN architectures can generalize and acquire very
rich features, mapping information on images similar to
those in the ImageNet database and correctly classifying very

different cases. Compared to the various machine learning
and deep learning models used to classify gastrointestinal
tract disease, the VGG16 model achieves better results of
96.33% accuracy, 0.96 Cohen’s kappa score, and 0.95
MCC. The requirement of manually marking data is the
algorithm’s weakest point. As a result, the network could
inherit some flaws from an analyst, as diagnosing diseases
correctly is difficult even for humans in many cases. Using
a larger dataset labelled by a larger community of experts
will be one way to overcome this limitation.
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