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We present a new methodology based on directional data clustering to represent white matter fiber orientations in magnetic
resonance analyses for high angular resolution diffusion imaging. A probabilisticmethodology is proposed for estimating intravoxel
principal fiber directions, based on clustering directional data arising from orientation distribution function (ODF) profiles. ODF
reconstructions are used to estimate intravoxel fiber directions using mixtures of von Mises-Fisher distributions. The method
focuses on clustering data on the unit sphere, where complexity arises from representing ODF profiles as directional data. The
proposed method is validated on synthetic simulations, as well as on a real data experiment. Based on experiments, we show that
by clustering profile data using mixtures of von Mises-Fisher distributions it is possible to estimate multiple fiber configurations in
a more robust manner than currently used approaches, without recourse to regularization or sharpening procedures. The method
holds promise to support robust tractographic methodologies and to build realistic models of white matter tracts in the human
brain.

1. Introduction

Diffusion magnetic resonance imaging (MRI) is an MRI
method that is able to characterize the diffusion displacement
of water molecules in structured tissues of the human brain
[1]. The key idea behind diffusion MRI is that of anisotropic
diffusion. In structured tissues water mobility is not always
the same in all directions. Molecular motion is favored in
directions aligned with bundles of parallel fibers, such as
in the human brain’s white matter. The natural diffusion
of water molecules can reveal in vivo microscopic details
about the architecture of both normal and diseased tissues.
White matter fiber tractography is commonly implemented
using the principal diffusion direction of the diffusion tensor
imaging (DTI) model [2]. Popular fiber tracking approaches,
such as the streamline tracking algorithm [3], uses the DTI
model to extract the orientation dependence of the diffu-
sion probability density function (PDF) of water molecules.
However, the standard single-tensor DTI model is based on a
Gaussian diffusion assumption; thus unable to resolve cross-
ing and splitting of fiber bundles. Extended tensor models

for fiber tracking based on mixture of Gaussian densities [4]
and multitensor models [5] have been proposed to enable
detection ofmultiple orientation distribution function (ODF)
maxima per voxel.

On the other hand, several studies have shown that
fiber tracking based on high angular resolution diffusion
imaging (HARDI) techniques is improved and less sensitive
to noise errors compared to tensor based tracking [6–8]. The
application of these methods is based on the assumption
that the principal directions extracted from the ODF can
be interpreted as principal directions of the underlying
fiber architecture. The most commonly used approach for
identifying fiber directions is to extract the local maxima
of the reconstructed ODF, where this function surpasses
a certain threshold. Thresholding avoids selecting smaller
ODF peaks that may appear due to noise. Typically, local
maxima of the reconstructed ODF are located simply by
selecting a large number of randomly sampled points on the
sphere and searching within a fixed radius neighborhood
[6]. For two-fiber populations, the major fiber is identified
by the largest local maximum (the global maximum), and
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the minor fiber is identified by the second largest local
maximum [9]. Some more sophisticated heuristics built on
this basic approach have been proposed. For instance, in [10],
a Quasi-Newtonmethod is used to refine the position of each
local maximum. Afterwards, duplicate local maxima and any
insignificant spikes with function values smaller than some
threshold are removed. In [11] a spherical Newton method
was proposed. However, as shown in [12, 13], the peaks of the
ODF profiles identified by these methods do not necessarily
match the orientations of the distinct fiber populations.
An approach using a mixture of von Mises-Fisher (vMF)
distributions has been proposed in [14]. However, in [14] the
model needs to fit a mixture of four vMF distributions by
a nonlinear least-squares technique to synthesize diffusion
ODF profiles, before fiber directions are estimated by local
maxima algorithms.

All these procedures have in common the fact that they
apply deterministic procedures toODF reconstructed profiles
in order to evaluate intravoxel principal fiber directions.
In this paper we will refer to this class of deterministic
procedures as the standard (Std) approach for intravoxel
principal fiber mapping. The main purpose of the Std
approach is to support tractographic methodologies, able to
build realistic models of white matter tracts in the human
brain. Probabilistic tractography algorithms have been devel-
oped to resolve fiber crossings at the intravoxel level under
looser constraints than deterministic tracking methods. In
particular, the approach of using the Stdmethod for mapping
intravoxel fiber directions in probabilistic tractography is
pervasive in currently available packages, such as “MRtrix”
(find SH peaks) [15], “Camino” (sfpeaks) [16], “DSI Studio”
(find peak) [9], and “FSL” (peakfinder) [17]. However, using
deterministic intravoxel procedures to support probabilistic
fiber mapping in the brain jeopardizes rigorous fiber tractog-
raphy and may originate deficient maps of white matter fiber
networks.

In this paper, we present a new methodology based
on directional data clustering to represent white matter
fiber orientations in magnetic resonance analyses for high
angular resolution diffusion imaging. The method focuses
on clustering data on the unit sphere, where complexity
arises from representing ODF profiles as directional data.
A clustered mixture-model approach to model directional
ODF data based on von Mises-Fisher (vMF) distributions
is used, in order to support the probabilistic estimation of
intravoxel fiber directions. In this “clustered vMF” approach,
each estimated voxel fiber direction is associated with a
component of the fittedmixture of vMF distributions. Hence,
each voxel fiber principal direction may be specified by the
summary statistics of the estimated vMF component in the
mixture.

Based on voxel ODF reconstructions, our method esti-
mates intravoxel fiber directions by clustering mixtures of
von Mises-Fisher distributions fitted to probabilistic distri-
butions. As opposed to other approaches where mixture of
vMF distributions are used to represent diffusion [14, 18], our
method works directly with the sampled ODF distributions.
It should be noted that the proposed clustered vMF method
is not used for ODF reconstruction. The ultimate objective

of our analysis is to estimate principal fiber directions
using statistical clustering approaches, in order to support
robust probabilistic tractographic algorithms [19]. Before
applying the clustered vMF approach we need to obtain
the ODF profiles at each voxel. For this purpose, in this
paper we use the Generalized 𝑞-Sampling Imaging (GQI)
method proposed in [9]. Similarly to other methods for ODF
reconstruction, GQI uses shell or grid sampling schemes to
extract information about the extent of diffusion anisotropy,
and map vector fields that represent the fiber orientations
at each voxel. The paper reports on the use of a GQI
approach for reconstruction, but other methods could be
used as well. For instance, the author’s package “gdimap”
[20] (see Section 3.5) is a free, open source software package
that supports three different ODF reconstruction methods.
Nevertheless, it should be emphasized that the aim of this
work is to present a new methodology for fiber directional
mapping and not to compare ODF reconstruction methods.

The rest of the paper is organized as follows. In Section 2
we introduce the theoretical basis of the computational
methods that have been used to drive the experiments
reported in Section 3. Two basic methodologies are analyzed:
(i) the GQI method for ODF reconstruction, and (ii) the
mixture of vMF distributions for fiber crossing mapping
and directional estimation. These methodologies have been
applied to simulated experiments as well as to real data exper-
iments. In Section 3.1, we report on analyses for synthetic
data simulation of crossing fibers. In Section 3.2 we compare
the proposed clustered vMF approach for ODF orientation
estimation with the Std approach for crossing fibers mapping
via local maxima extraction. Section 3.3, provides details
on simulations with curved fiber bundle simulations. In
Section 3.4 a publicly available DICOM data set from the
“Advanced Biomedical MRI Lab, National Taiwan University
Hospital” is analyzed. Section 3.5 provides details on the
implementation environment used to support reproducible
research. Finally, Section 4 draws conclusions and presents
guidelines for future research.

2. Materials and Methods

In this work, the experiments, analyses, and implementation
reported in Section 3 were performed using the GQI method
for ODF reconstruction. In Section 2.1, we present a brief
overview of theGQImethod.The reconstructedODFprofiles
are then used to estimate the orientation of voxel ODF
profiles, using directional clustering based onmixtures of von
Mises-Fisher (vMF) distributions. In Section 2.2, we present
this new proposed approach for mapping fiber orientations.

2.1. GQI. The generalized 𝑞-sampling imaging method as
proposed in [9] derives a Fourier transform relation between
𝑘-space and 𝑞-space imaging to estimate the ODF directly
from diffusion MR signals. The GQI method is based on
a relationship between the spin density function 𝑄(R) and
the diffusion-weighted signal 𝑊(q), through the cosine
transform relation

𝑄 (R) = ∫𝑊(q) cos (2𝜋q ⋅ R) 𝑑q, (1)
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where R is the diffusion displacement during the diffusion
time Δ, and q is the coordinate in 𝑞-space. The diffusion-
weighted signal 𝑊(q) can be estimated directly from any
unbiased 𝑞-space sampling scheme, such as grid, shell, or
nongrid sampling scheme [21]. In GQI, the measured spin
density function 𝑄(R) is used to derive the spin distribution
function (SDF) 𝜓(u), which is assumed effectively as the
ODF of interest. While the diffusion ODF is a probability
distribution of the diffusion displacement, the SDF represents
a quantitative distribution of the spins undergoing diffusion.
The quantity of spins that undergo diffusion in a particular
radial direction u is summarized by the spin density function

𝜓 (u) = ∫
𝐿Δ

0

𝑄 (Lu) 𝑑L, (2)

where 𝐿
Δ
is the diffusion sampling length (Einstein length)

within the diffusion time Δ. The relation between the
acquired diffusion images𝑊(q) and the spin density function
𝜓(u) is obtained from (1) and (2) to get

𝜓 (u) = 𝐿Δ ∫𝑊(q) sinc (2𝜋𝐿Δq ⋅ u) 𝑑q, (3)

where sinc(𝑥) = sin(𝑥)/𝑥 for all 𝑥 except 0, and sinc(0) = 1.
For computational purposes, the GQI reconstruction proce-
dure is obtained from (3) by expressing 𝜓(u) as a weighted
sum of sinc functions in the form

𝜓
𝑠 (u) = 𝐿Δ

𝑞𝑚

∑

𝑞=𝑞1

𝑊(q) sinc (2𝜋𝐿Δq ⋅ u) , (4)

where𝑚 is the total number of sampling points over 𝑞-space.
In summary, as shown in [9, 21], the SDF along each

radial direction is equivalent to the ODF, and the ODF
reconstruction procedure can be obtained by applying (4) to
the sampled 𝑞-space data.

2.2. Fiber Mapping Based on Directional Data Clustering.
The second main feature of the proposed methodology
is concerned with multiple directional mapping. Starting
with the raw HARDI signal acquired on a grid of 𝑞-space,
the ODF profile is estimated at each voxel, considering a
sampling density of unit vectors on a unit S2 grid. When
a threshold is applied to the estimated ODF at each voxel,
the nonthresholded unit vectors provide directional statistics
information about the estimated ODF profile.Themain ODF
orientations at each voxel relevant for fiber tracking may
be estimated by clustering the nonthresholded unit vectors.
This directional clustering procedure has several advantages
compared to traditional approaches for orientation mapping.
In fact, current best practices perform multiple maxima
extraction based on procedures which are very sensitive to
the localmodes that appear in the reconstructedODFs. Signal
noise and low sampling resolution yield deformed ODF
reconstruction profiles, thus affecting accuracy and precision
in multiple orientation evaluations. In contrast, estimating
orientations from clustered directional data is much less
sensitive to local modes in the reconstructed ODF profile.

Moreover, the procedure is more robust to noise since it
estimates orientations statistically from sampled data.

For directional clustering estimation, we consider a
mixture of 𝑘 von Mises-Fisher (vMF) distributions [22]
that serves as a model for directional ODF profile data,
corresponding to multiple fiber orientations. A mixture of 𝑘
vMF distributions has a density given by

𝑓 (x | Θ) =
𝑘

∑

ℎ=1

𝛼
ℎ
𝑓
ℎ
(x | 𝜃
ℎ
) , (5)

where 𝑓
ℎ
(x | 𝜃

ℎ
) denotes a vMF distribution with parameter

𝜃
ℎ
= (𝜇
ℎ
, 𝜅
ℎ
) for 1 ≤ ℎ ≤ 𝑘, Θ = {𝛼

1
, . . . , 𝛼

𝑘
, 𝜃
1
, . . . , 𝜃

𝑘
},

and the 𝛼
ℎ
are nonnegative and sum to 1. A 𝑑-dimensional

unit random vector x ∈ S𝑑−1 is said to have 𝑑-variate vMF
distribution if its probability density function is given by

𝑓
ℎ
(x | 𝜇, 𝜅) = 𝑐

𝑑 (𝜅) 𝑒
𝜅𝜇
𝑇x
, (6)

where ‖𝜇‖ = 1, 𝜅 ≥ 0, 𝑑 ≥ 2, and 𝑐
𝑑
(𝜅) is a normalizing

constant [23].The density𝑓
ℎ
(x | 𝜇, 𝜅) is parameterized by the

mean direction 𝜇 and the concentration parameter 𝜅. The 𝜅
parameter characterizes how strongly the unit vectors drawn
according to 𝑓

ℎ
(x | 𝜇, 𝜅) are concentrated about the mean

direction 𝜇. In this work, we used the procedure for clustering
directional data outlined in [22], and implemented in [24].

The principal ODF profile directions are extracted
directly from the estimated clusters. The number of fibers in
each voxel is automatically estimated from the reconstructed
ODF profile by the vMF approach using the Bayesian Infor-
mation Criterion (BIC) criterion [25]. In other words, “BIC”
is used to decide on the number of components to select.
All relevant statistical information about theODForientation
and multiple fiber components may then be extracted from
this fitting process.

3. Results and Discussion

3.1. Simulated Profiles. To validate our approach, we first
simulated fiber crossing by generating diffusion images from
the sum of two exponentials. For a given 𝑏-factor and noise
level, we generate the diffusion-weighted signal 𝑆(u

𝑖
) =

∑
𝑛

𝑘=1
𝑝
𝑘
𝑒
−𝑏u𝑖𝑇D𝑘u𝑖 + noise, where u

𝑖
is the 𝑖th gradient direc-

tion on the sphere, 𝑛 is the number of fibers, andD
𝑘
is the 𝑘th

diffusion tensor profile rotated about the 𝑧-axis by a varying,
user-specified angle. Each fiber was represented by a prolate
diffusion tensor with typical eigenvalues {1700, 200, 200}

(×10−6mm2/s) [26], and 𝑏-values within the range 𝑏 =

{1500, 6000} (s/mm2). We tested noise-free and noisy fiber
profiles with Rician noise added to the simulated diffusion
profile, for a typical standard deviation level of 𝜎 = 0.033, or
signal-to-noise ratio SNR = 𝑆

0
/𝜎 ≈ 30with 𝑆

0
= 1 [6]. Rician

noise data was synthesized by 𝑆 = ‖𝑆
𝑓
+ 𝑁(0, 𝜎),𝑁(0, 𝜎)‖,

where 𝑆
𝑓
is the synthesized noise-free signal, 𝑁(0, 𝜎) is a

random sample drawn from the normal distribution with
mean 0 and standard deviation 𝜎, and ‖ ⋅ ‖ is the 𝐿

2
-

norm operator. This procedure is commonly used in other
neuroscience toolkits [15, 16].
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(a)

(b)

Figure 1: (a) Examples of synthesized noise free diffusion profiles. The red lines indicate the fiber directions used in the simulations.
(b) Reconstructed fiber profiles from the simulated profiles in (a). The colored lines indicate the estimated fiber directions using mixtures of
vMF distributions. The 𝑏-values used in the simulations were 𝑏 = {1500, 3000, 5000, 3000, 5000}, and the angles between crossing fibers were
[90∘, 90∘, 50∘, 60∘, 50∘] (from left to right).

(a)

(b)

Figure 2: (a) Examples of synthesized noisy diffusion profiles, with Rician noise level 𝜎 = 0.033 (SNR ≈ 30). The red lines indicate the fiber
directions used in the simulations. (b) Reconstructed fiber profiles from the simulated diffusion profiles in (a). The colored lines indicate the
estimated fiber directions using mixtures of vMF distributions. The 𝑏-values used in the simulations were 𝑏 = {1500, 3000, 5000, 3000, 5000},
and the angles between crossing fibers were [90∘, 90∘, 50∘, 60∘, 50∘] (from left to right).

Sampling densities of 𝑁 = 81 and 𝑁 = 321 on the 𝑆2
hemisphere, corresponding to a third and seventh-order
tessellation of the icosahedron, were used in ODF profile
mapping. Figure 1(a) illustrates examples of synthesized
noise-free diffusion profiles using the procedure described
above with 𝑁 = 321 on the 𝑆2 hemisphere. These diffusion
profiles were then used to reconstruct ODF profiles using
the GQI method for reconstruction, and vMF mixtures for
directional mapping, originating the estimated ODF profiles
and fiber directions shown in Figure 1(b). Figure 2 shows
similar examples for noisy diffusion profiles synthesized
with Rician noise level 𝜎 = 0.033. Profiles for two and
three crossing fibers are illustrated in these figures. The
angles for the three examples of two-fiber simulations shown
in Figure 1(a) were {90

∘
, 90
∘
, 50
∘
}, and the corresponding

𝑏-values were 𝑏 = {1500, 3000, 5000}. The influence of the

𝑏-values in the reconstructed ODF profiles is clearly visible.
For the two examples of three-fiber simulations illustrated in
Figure 1(a), the angles between simulated fibers were 60∘ in
one case, and 50∘ in the other case, with 𝑏-values 𝑏 = 3000 and
𝑏 = 5000, respectively. As shown, even with noisy profiles,
crossing angles of 50∘, and more than two crossing fibers,
the clustered vMF procedure is able to correctly identify the
underlying fiber orientations in the diffusion profiles.

3.2. Comparative Estimation Errors. To evaluate the precision
and robustness of the procedures for estimating crossing fiber
angles and selecting the correct number of fibers, we com-
pared the proposed clustered vMF approach with a currently
often used approach for crossing fiber mapping. As referred
to in the Introduction, local maxima of the reconstructed
ODF are often identified simply by selecting a large number
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of randomly sampled points on the sphere and searching
within a fixed radius neighborhood [6]. For crossing fibers,
the major fiber is identified by the largest local maximum
(the global maximum), and the minor fiber is identified
by the second largest local maximum [9]. We refer to this
procedure as the standard (Std) approach.This Std procedure
is implemented in several neuroimaging software packages.
In this work, we have followed the implementation of the
Std procedure used in the “DSI Studio” package, publicly
available from the NITRC repository (http://www.nitrc.org/)
(see also http://sites.google.com/a/labsolver.org/dsi-studio/).

We conducted statistical random tests for estimating fiber
angles between crossing fibers. The tests simulated diffusion
profile voxels with two-crossing fibers of different angles and
SNRs typically encountered in diffusion MRI acquisitions,
randomly positioned within the unit sphere. Each test used
600 samples for crossing angle estimation and selection of
the number of fibers. For the clustered vMF approach, the
automatic BIC selection procedure for estimating the number
of fibers per voxel mentioned in Section 2.2 was applied.
The boxplots on Figure 3(a) depict the angular precision
and dispersion of the estimated fiber directions in degrees,
for crossing angles between fibers of {90∘, 80∘, 70∘, 60∘, 50∘},
and SNR = {10, 20, 30}, using the proposed clustered vMF
approach. The boxplots on Figure 3(b) show equivalent
results for the Std method. We performed the tests using
sampling densities of𝑁 = 321 on the 𝑆2 hemisphere, 𝑏-value
= 3000, and threshold = 0.4. Angular precision is quantified
by the average of the angular errors between the estimated
fiber directions and the true ones inside the voxel.The results
in Figure 3 were obtained with two fiber compartments with
equal volume fractions, 𝑤

𝑖
= {0.5, 0.5}, 𝑖 = 1, 2. To account

for different volume fractions within the voxels, Figure 4
shows the results of the tests for fiber compartments with
volume fractions𝑤

𝑖
= {0.7, 0.3}, 𝑖 = 1, 2.The tests reported in

Figure 4 were conducted with SNR = {10, 15, 20}, and 𝑏-value
= 6000.

Our results suggest that “clustered vMF” is globally
more robust than the Std approach. The crossing angles
are estimated with low dispersion for the range of crossing
angles considered. In our tests, the Std method showed lower
accuracy and precision than the clustered vMF method for
crossing angles below 60∘ and low 𝑏-values. In these cases, the
Std method is typically enhanced with better regularization
procedures, higher 𝑏-values, or better ODF reconstruction
approaches [27], to improve ODF peak resolution discrim-
ination. The clustered vMF estimation shows low noise-
sensitivity, stressing the advantage of statistical procedures
over traditional deterministic procedures for directional fiber
estimation.

3.3. Curved Fiber Bundle Simulation. In [28] an example of
two crossing fiber bundles was used to generate a synthetic
tensor diffusion-weighted MRI field of dimension 32 × 32.
In this example one of the fiber bundles is curved, to enable
simulation of fiber bundles crossing for various intersection
angles at each voxel. We have used a similar example to
illustrate the reconstruction of fiber bundle orientations,

using the GQI reconstruction and the vMF mixture pro-
cedures outlined in this paper with a 𝑏-value 𝑏 = 4000.
Figure 5 illustrates the reconstructed ODF orientations for
the curved fiber bundle simulation. This figure is the result
of a Rician noise simulation with 𝜎 = 0.033 (SNR ≈ 30),
showing that the crossing orientations at each simulated voxel
have been correctly identified, paving the way to enhanced
tractographic procedures.

3.4. Real Data Experiments. In this section we report
on experiments using a DICOM data set provided by
the “Advanced Biomedical MRI Lab, National Taiwan
University Hospital.” Specifically, we have used the
data set “DSI 203-point 2mm” publicly available from
http://dsi-studio.labsolver.org/download-images. This data
set is from a normal 24-year-old male volunteer and has been
provided as a demonstration data set in connection with
the “DSI Studio” software for diffusion MR images analysis
[9]. The data set was obtained with an echo planar imaging
diffusion sequence with twice-refocused echo, dimension
96 × 96 × 60, and slice thickness 1.9mm. Further details
on the data set specification are available from the internet
address mentioned above.We have tested our model with the
two 𝑏-tables that accompanies the data set. One is a 𝑏-table
for a S2-like grid denoted by “dsi203 bmax4000.txt.” The
other is the 𝑏-table for the 3D-DSI sampling scheme used
in the DICOM data acquisition. This 𝑏-table has 203 points
uniformly distributed on a 3D grid limited to the volume of
the unit sphere. In both tables, the 𝑏-values range from 0 to
4000. The ODF reconstructions were performed with 321

points uniformly distributed on the unit S2 hemisphere.
Using the GQI method outlined in Section 2.1, we

obtained estimates of the ODFs at each voxel. The results
reported in this section in connection with the application of
the GQI method were obtained using the 3D-DSI sampling
scheme for computing the GQI basis functions. These basis
functions were then used to estimate the voxel’s ODF profiles
onS2 grids. To summarize anisotropic properties of the ODF
and infer the underlying crossing patterns of the fibers we
used the generalized fractional anisotropy (GFA) metric [9,
29]. A GFA threshold of 0.4 applied on the normalized ODF
was used prior to visualization. Figure 6 shows RGB (red-
green-blue) color-maps to highlight directional information
for coronal slices in range {59–62}, computed from the ODF
principal directions using the clustered vMF procedure. This
figure uses a GFA-modulated directionally encoded color
(DEC) map [30] to highlight major fiber areas. The color
encoding is illustrated in the central inset panel in Figure 6.

Figure 7 shows glyph-map fields of estimated ODF pro-
files, for voxels in coronal slice 60, using sampling densities
of 𝑁 = 321 on the 𝑆2 hemisphere. The black rectangle in
Figure 7(a) delineates a region which includes the superior
longitudinal fasciculus (SLF), superior corona radiata (CR),
and the intersection with the left part of the body of
the corpus callosum (CC). Figure 7(b) depicts a zoomed
image of the selected region. The localization of the selected
brain regions within the slice is illustrated in Figure 8:
CR—yellow areas, SLF—blue areas, and CC—green area.
These areas were extracted with reference to the “ICBM

http://www.nitrc.org/
http://sites.google.com/a/labsolver.org/dsi-studio/
http://dsi-studio.labsolver.org/download-images
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Figure 3: Boxplots representing the mean estimation error for various crossing angles between fibers and SNRs. Fiber compartments with
weights 𝑤

𝑖
= {0.5, 0.5}, 𝑖 = 1, 2, 𝑏-value = 3000, and threshold = 0.4 were used in the simulations. (a) refer to the clustered vMF method.

(b) refer to the Std method.



International Journal of Biomedical Imaging 7

90 80 70 60 50
True crossing angle

M
ea

n 
es

tim
at

io
n 

er
ro

r(
∘
)

vMF: SNR = 10

0

2

4

6

8

10

90 80 70 60 50
True crossing angle

M
ea

n 
es

tim
at

io
n 

er
ro

r(
∘
)

vMF: SNR = 15

0

2

4

6

8

10

90 80 70 60 50
True crossing angle

M
ea

n 
es

tim
at

io
n 

er
ro

r(
∘
)

vMF: SNR = 20

0

2

4

6

8

10

(a)

90 80 70 60 50
True crossing angle

M
ea

n 
es

tim
at

io
n 

er
ro

r(
∘
)

0

2

4

6

8

10
Std: SNR = 10

90 80 70 60 50
True crossing angle

M
ea

n 
es

tim
at

io
n 

er
ro

r(
∘
)

0

2

4

6

8

10
Std: SNR = 15

90 80 70 60 50
True crossing angle

M
ea

n 
es

tim
at

io
n 

er
ro

r(
∘
)

0

2

4

6

8

10
Std: SNR = 20

(b)

Figure 4: Boxplots representing the mean estimation error for various crossing angles between fibers and SNRs. Fiber compartments with
weights 𝑤

𝑖
= {0.7, 0.3}, 𝑖 = 1, 2, 𝑏-value = 6000, and threshold = 0.4 were used in the simulations. (a) refer to the clustered vMF method. (b)

refer to the Std method.
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Figure 5: Reconstructed ODF orientations for the curved fiber
bundle simulation with Rician noise level 𝜎 = 0.033 (SNR ≈ 30).

Figure 6: RGBmaps (DEC-maps) for coronal slices {59, 60} (upper
panels), and {61, 62} (lower panels), using the clustered vMF
method for directional estimation and the GQI method for ODF
reconstruction.The central inset panel illustrates directionally color
encoding.

DTI-81 Atlas,” LONI Laboratory of Neuro Imaging, UCLA,
http://www.loni.ucla.edu/Atlases. These areas are typically
fiber crossing regions, where major fiber tracts intersect at
approximately orthogonal angles [31, 32]. The central green-
ish region distinctly maps the body of the corpus callosum,
where the horizontal single-fiber orientation pattern is clearly
identified.

Figure 9(a) illustrates the voxel fiber orientations which
were estimated for coronal slice 60, using the clustered vMF
procedure outlined in Section 2.2 with GFA threshold equal
to 0.4. In this figure the colored areas represent the RGB-
map overlay to facilitate the location of important tissue
structures. A zoomed image of the area marked by the
black rectangle on Figure 9(a) is depicted in Figure 9(b).
This area was selected to encompass the regions of inter-
est (ROIs) depicted in Figure 8. For clarity of orientation
visualization, Figure 10 visualizes the fields of line-mappings
without overlays estimated by the clustered vMF method for

coronal slice 60. For comparative purposes, similar figures
using the Std method for orientation mapping are shown in
Figures 11 and 12.

Figure 7(b) shows that the estimated orientation of the
crossing fibers is consistent with the fiber tracts in the
surrounding white matter tissue. This analysis is reinforced
in the line-maps shown in Figures 9 and 10 for coronal slice
60. The circles depicted in Figures 9 and 11 mark voxel fields
with high density of crossing fibers, based on the vMF and Std
methods, respectively. Although a quantitative assessment of
the best representation is difficult to evaluate with real data
sets, it can be qualitatively observed that the clustered vMF
method estimates a higher density of crossing fibers in these
circled areas than the Std method.

A comparison with the results obtained with the applica-
tion of the “DSI Studio” package is illustrated in Figure 13.The
GQImethod implemented in “DSI Studio” was applied to the
same data, gradient table, and coronal slice referenced above,
yielding the results shown in Figure 13. “DSI Studio” uses
the quantitative anisotropy (QA) measure [9], instead of the
GFAmeasure, as fiber threshold parameter.The visualization
shown in Figure 13 was drawn using a QA threshold equal
to 0.024. Although the representations shown in Figure 13
and Figures 9–12 use different threshold indices, the line
mappings appear qualitatively similar.

3.5. Implementation and Reproducible Research. The anal-
yses and figures described in this work were performed
using software programmed entirely in R [33]. The R-
package gdimap [20] implements the reconstruction and
clustered vMF estimation methodology described in this
work and is freely available from the CRAN repository
(http://CRAN.R-project.org/). The R language programming
system has been the platform of choice for many researchers
working in the neuroscience and neuroimaging fields [34].
R provides a reproducible research environment to many
well-developed statistical tools needed for the analysis of
neuroimaging data. In particular, the packages “oro.nifti”
[35], “movMF” [24], and “rgl” [36], have been used for
manipulating and visualizing medical imaging data. The
package “oro.nifti” is used for reading and writing NIfTI
formatted data sets; “movMF” provides support for fitting
and simulating mixtures of von Mises-Fisher distributions;
“rgl” is an OpenGL rendering device interface, which
provides an interactive viewpoint navigation facility for the
R programming language.

4. Conclusions

The approach of using the standard deterministic method,
Std, for mapping fiber directions is pervasive in currently
available packages. However, using deterministic procedures
to support probabilistic fiber mapping jeopardizes rigorous
fiber tractography and may originate deficient maps of white
matter fiber networks. We should bear in mind that these
packages are used regularly by hundreds of neuroimaging
researchers, medical practitioners, and neuropsychologists,
with scarce knowledge of the internal code workings and
assumptions. We have proposed a new probabilistic method

http://www.loni.ucla.edu/Atlases
http://CRAN.R-project.org/
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(a) (b)

Figure 7: Glyph-map fields of estimated ODF profiles for voxels in coronal slice 60 (a). Zoomed image of the selected region marked by the
black rectangle on (a), encompassing the ROIs depicted in Figure 8 (b).

Figure 8: Coronal brain slice 60 showing the location of selected brain regions: CR—yellow areas, SLF—blue areas, and CC—green area,
according to the “ICBM DTI-81 Atlas.”

(a) (b)

Figure 9: Line-maps for the field of profiles estimated by the clustered vMF method with GFA threshold equal to 0.4, for voxels in coronal
slice 60, using a RGB map overlay (a). Zoomed image of the selected region marked by the black rectangle on (a), encompassing the ROIs
depicted in Figure 8 (b). Circled areas mark voxel fields with high density of crossing fibers.

for estimating and mapping fiber directions from ODF
reconstructions for the purpose of supporting probabilistic
tractographic algorithms. In this approach, each estimated
voxel fiber direction is associated with a component of the
fittedmixture of vMFdistributions. Each voxel fiber principal
direction is defined by the summary statistics of the estimated

vMF component in the mixture. Fully probabilistic tractog-
raphy may now profit from this statistical information for
fiber tracking.Weperceive this approach as amajor departure
from current practices in fiber tracking methodologies.

Based on experiments, we have shown that by applying
directional data clustering procedures to mixtures of vMF
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(a) (b)

Figure 10: Line-maps for the field of profiles estimated by the clustered vMFmethod, for voxels in coronal slice 60, using a GFAmap overlay
(a). Zoomed image of the selected region marked by the black rectangle on (a), encompassing the ROIs depicted in Figure 8 (b).

(a) (b)

Figure 11: Line-maps for the field of profiles estimated by the Stdmethod, for voxels in coronal slice 60, using a RGBmap overlay (a). Zoomed
image of the selected region marked by the black rectangle on (a), encompassing the ROIs depicted in Figure 8 (b). Circled areas mark voxel
fields with high density of crossing fibers.

(a) (b)

Figure 12: Line-maps for the field of profiles estimated by the Std method with GFA threshold equal to 0.4, for voxels in coronal slice 60 (a).
Zoomed image of the selected region marked by the black rectangle on (a), encompassing the ROIs depicted in Figure 8 (b).
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(a) (b)

Figure 13: Line-maps for the field of profiles estimated with the “DSI Studio” package. The GQI method implemented in this package was
applied to the same data, gradient table, and coronal slice as in Figures 9–12, using a QA threshold equal to 0.024 (a). Zoomed image of the
selected region marked by the black rectangle on (a), encompassing the ROIs depicted in Figure 8 (b).

distributions multiple fiber configurations can be estimated
in a robust manner, without recourse to ad hoc regularization
procedures. The simulation tests show that this clustered
vMF approach achieves good angular resolution, being able
to discriminate multiple crossing fibers with relatively small
separation angles (50∘) and typical Rician noise levels. Using
real data sets we found by inspection that the clustered
vMF method estimates a higher density of intravoxel fiber
crossings than the Std method in brain regions with multiple
crossing fiber bundles. A denser net of crossing fibers in
these regions is supported by histological studies. On the
other hand, our tests suggest that the traditional method
of extracting fiber directions based on local maxima of
the reconstructed ODF suffers from both low accuracy
and low precision for small crossing angles and/or low 𝑏-
values. In these cases, appropriate regularization procedures
or enhanced ODF reconstruction techniques should be care-
fully selected, before intravoxel fiber mapping is performed
in order to mitigate these effects. However, regularization
procedures are based on heuristics that are difficult to be
appropriately tuned to the data at hand.

More comprehensive tests have to be conducted to evalu-
ate the performance of the proposed clustered vMF method
in other fiber configurations, such as fiber splitting or fiber
kissing. In any case, the clustered vMF procedure is not
restricted by considerations of voxel fiber symmetry, or odd
number of fibers per voxel. The procedure applies statistical
information criteria to decide on the number of components
(voxel fibers) to select.The automatic selection criterion used
for discriminating between single- and crossing-fiber voxel
configurations, as well as for estimating the number of fibers
per voxel, was found adequate in the tests. In summary, we
think that statistical procedures tend be more robust than
deterministic ones for diffusion MRI data, which is subject
to different types of unspecified noise and partial volume
averaging effects.

One of the main purposes of caring for rigorous fiber ori-
entationmapping is to support the difficult task of tracing the
trajectory of white matter fiber tracts in vivo [19]. We intend

to build on the quantitative and qualitative information
provided by the proposed directional statistics approach to
support the study of white matter bundle networks in the
human brain. In particular, this information may be com-
bined with atlas-basedmethods to build robust tractographic
algorithms for complex fiber configurations.
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[10] B. Jian, B. C.Vemuri, E. Özarslan, P. R. Carney, andT.H.Mareci,
“A novel tensor distribution model for the diffusion-weighted
MR signal,” NeuroImage, vol. 37, no. 1, pp. 164–176, 2007.

[11] K. M. Jansons and D. C. Alexander, “Persistent angular struc-
ture: new insights from diffusion magnetic resonance imaging
data,” Inverse Problems, vol. 19, no. 5, pp. 1031–1046, 2003.

[12] M.-R. Nazem-Zadeh, K. Jafari-Khouzani, E. Davoodi-Bojd, Q.
Jiang, and H. Soltanian-Zadeh Hamid, “Clustering method for
estimating principal diffusion directions,” NeuroImage, vol. 57,
no. 3, pp. 825–838, 2011.
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