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Sirtuin-1 (SirT1) is a nicotinamide adenine dinucleotide-dependent deacetylase and the
best characterized member of the sirtuins family in mammalians. Sirtuin-1 shuttles
between the cytoplasm and the nucleus, where it deacetylates histones and non-
histone proteins involved in a plethora of cellular processes, including survival, growth,
metabolism, senescence, and stress resistance. In this brief review, we summarize
the current knowledge on the anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-
senescence effects of SirT1 with an emphasis on vascular diseases. Specifically,
we describe recent research advances on SirT1-mediated molecular mechanisms in
aortic aneurysm (AA), and how these processes relate to oxidant stress and the
heme-oxygenase (HO) system. HO-1 and HO-2 catalyze the rate-limiting step of
cellular heme degradation and, similar to SirT1, HO-1 exerts beneficial effects in the
vasculature through the activation of anti-oxidant, anti-inflammatory, anti-apoptotic, and
anti-proliferative signaling pathways. SirT1 and HO-1 are part of an integrated system
for cellular stress tolerance, and may positively interact to regulate vascular function. We
further discuss sex differences in HO-1 and SirT1 activity or expression, and the potential
interactions between the two proteins, in relation to the progression and severity of AA,
as well as the ongoing efforts for translational applications of SirT1 activation and HO-1
induction in the treatment of cardiovascular diseases including AA.
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ROLE OF SIRT1 IN THE VASCULATURE

Sirtuin-1 (SirT1, mammalian homolog of silent information regulator (Sir2) in yeast) is a
nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase (Frye, 2000)
and the best characterized member of the sirtuins family in mammalians (Haigis and Sinclair, 2010).
Compelling evidence have demonstrated beneficial effects of SirT1 in the cardiovascular system,
generally attributed to anti-oxidant (Kawai et al., 2011; Zhou et al., 2011), anti-senescence (Ota
et al., 2010a; Thompson et al., 2014; Chen et al., 2016), anti-apoptotic (Hibender et al., 2016; Hou
et al., 2019), and anti-inflammatory effects (Sosnowska et al., 2017; D’Onofrio et al., 2018). In the
vasculature, SirT1 is expressed in the endothelium, vascular smooth muscle (VSM) and adventitia
(Potente et al., 2007; Miyazaki et al., 2008; Li et al., 2011; Fry et al., 2015; Chen et al., 2016; Ling
et al., 2017). SirT1 is localized mostly in the nucleus where it regulates gene transcription, in a
cell-specific manner, by deacetylating histone 3 (H3) and transcription factors, such as forkhead
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box O (FOXOs), nuclear factor kB (NF-kB), tumor protein 53
(p53), peroxisome proliferator-activated receptor-γ co-activator-
1α (PPARγ), and the DNA repair protein Ku70 (Brunet et al.,
2004; Michishita et al., 2005; Jeong et al., 2007; Chung et al., 2010;
Zeng et al., 2013; Sosnowska et al., 2017). Specifically, activation
of NF-kB and p53 promotes inflammation, apoptosis, senescence,
and oxidant stress in animal models of aortic aneurysm (AA;
Gomez et al., 2013; Leeper et al., 2013; Chen et al., 2016;
Moran et al., 2017) while activation of FOXOs and PPARγ

reverses these processes by opposing pro-inflammatory and
apoptotic factors in animal and human studies (Jones et al.,
2009; Oellerich and Potente, 2012; Radak et al., 2013; Motoki
et al., 2015; Tai et al., 2016; Lu et al., 2020). In addition to
gene transcription, SirT1 regulates the activity of several proteins,
such as endothelial nitric oxide synthase (eNOS), which is
activated to produce the vasoprotective mediator nitric oxide
(NO), upon SirT1-mediated deacetylation of lysines 496 and
506 in the eNOS calmodulin-binding domain (Mattagajasingh
et al., 2007). Conversely, NO is able to stimulate SirT1 expression
and activity via a positive feedback mechanism, at least in the
settings of statin- and cilostazol-induced SirT1 expression, which
is prevented by the eNOS inhibitor L-NAME (Ota et al., 2008,
2010a,b; Man et al., 2019).

SirT1 is essential for VSM structural and functional
homeostasis (Li et al., 2011; Gorenne et al., 2013; Fry et al.,
2015; Chen et al., 2016). Physiological cyclic stretch promotes
VSM contractile properties via SirT1/FOXO3a, thus maintaining
vasoconstriction (Huang et al., 2015). Interestingly, lack of SirT1
in VSM-specific SirT1-ablated mice does not induce any vascular
functional impairment per se (Fry et al., 2015). However, in
response to pro-inflammatory and pro-oxidant stressors, such as
angiotensin II (angII) infusion, arterial ligation, hyperlipidemic
apoE−/− genetic background, aging and a diet rich in fat and
sucrose, VSM SirT1 is absolutely essential to prevent maladaptive
arterial remodeling that leads to vascular disease, such as
atherosclerosis (Gorenne et al., 2013), aortic dissection (Fry
et al., 2015), and arterial stiffness (Fry et al., 2016). Differential
effects of SirT1 expression or activity levels in the vasculature are
uniquely dependent on disease type, stage and interacting factors
and thoroughly reviewed elsewhere (D’Onofrio et al., 2018; Man
et al., 2019). In this review, we will focus on yet another role of
SirT1 in vascular disease, namely aortic aneurysm, which only
recently started to be appreciated.

SIRT1 IN AORTIC ANEURYSM

Aortic aneurysms are abnormal aortic enlargements which
can develop in the thoracic (TAA) or abdominal (AAA)
regions. Although the pathogenesis behind different forms of
TAA and AAA may differ greatly, a combination of genetic
predisposition and hypertension, particularly in Marfan’s and
related syndromes, generally contribute to the development
of TAA prone to dissections, while smoking, male gender
and diabetes are the major risk factors for AAA prone to
ruptures. Overall, the most troublesome aspect of AA (TAA and
AAA), particularly in non-syndromic and idiopathic forms, is

that they often remain clinically undiagnosed until the aortic
wall dissects or ruptures, potentially causing sudden death
(Davies, 1998; Mody et al., 2014). Currently, treatment options
against these potentially lethal vascular conditions are limited
to blood pressure control and surgical repair, for which the
risk of mortality remains high at 30–50%, depending on the
repair method employed (Virani et al., 2020); therefore, novel
therapeutic targets are urgently needed. We have recently shown
that mice with VSM-specific deletion of SirT1 have a drastically
increased mortality (70%) in response to angII infusion due
to aortic wall dissection, particularly in the thoracic region,
which resulted from excess oxidant production and oxidant-
stimulated matrix metalloproteinases (MMPs) activation (Fry
et al., 2015). Consistent with these findings, VSM-specific
overexpression of SirT1 protects aged mice on apoE-deficient
genetic background, against angII-induced AAA and rupture by
opposing vascular senescence and inflammation (Chen et al.,
2016). Moreover, calorie restriction, which is known to activate
SirT1 (Guarente, 2013), prevents angII-induced AAA through
SirT1-dependent deacetylation of H3 at lysine 9 on the MMP2
gene promoter, which downregulates MMP2 and subsequent
elastin fragmentation in the aortic wall (Liu et al., 2016).

Furthermore, endothelial SirT1 has been shown to counteract
the deleterious effects of angII on AA formation, believed to
be driven mainly by endothelial, but not VSM, angII type
1α receptors (ATR1α) (Rateri et al., 2011). In a model of
Marfan’s syndrome (fibrillin-1 mutant mice, Fbn1mgR/mgR),
deletion of endothelial ATR1α decreased the incidence of TAA
(Galatioto et al., 2018). Since angII administration is known to
downregulate SirT1 expression and activity in aortic endothelial
cells (Marampon et al., 2013), these findings suggest that angII
could accelerate the development of TAA in renin-dependent
hypertensive Marfan individuals by suppressing SirT1/eNOS and
impairing endothelial function.

It is worth mentioning that SirT1 in hematopoietic cells has
recently emerged as an important mediator of AA formation.
Macrophage-specific deficiency of SirT1 increased the incidence
and exacerbated disease severity in a mouse model of angII-
induced AAA, by increasing the pro-inflammatory inducible
nitric oxide synthase, a marker of M1 macrophages, while
decreasing arginase and mannose receptor, two markers of
M2 macrophages. On the contrary, SirT1 overexpression in
macrophages, achieved by adenoviral transfection, had an
opposite effect (Zhang et al., 2018). Overall, multiple studies
indicate that SirT1 in variety of vascular cells is essential for the
maintenance of vascular wall integrity and to prevent AA.

SIRT1 AND OXIDATIVE STRESS IN
AORTIC ANEURYSM

An imbalance between the production of reactive oxygen species
(ROS) and the cellular anti-oxidant systems, defined as oxidant
stress, is a hallmark of vascular diseases, including atherosclerosis
and diabetic endothelial dysfunction (Brown and Griendling,
2015; Quintana and Taylor, 2019). A role of oxidant stress in the
development and progression of AA has been described recently
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(Quintana and Taylor, 2019). In human and animal studies,
NADPH oxidase (Nox) has been identified as a major source of
ROS contributing to the development of AA (Miller et al., 2002;
Yang et al., 2010; Jimenez-Altayo et al., 2018; van der Pluijm et al.,
2018). Ablation of Nox1, Nox2, Nox4 isoforms or of the non-
catalytic Nox subunit p47 in mice prevented the development
of AAA (Lu et al., 2016; Siu et al., 2017). This is explained by
the fact that Nox-derived ROS are important second messengers
in the vasculature, however, excessive ROS lead to increase
MMPs activation as well as inflammatory and apoptotic factors,
which contribute to the pathogenesis of AAA (Finkel, 2011; Miki
and Funato, 2012; Holmstrom and Finkel, 2014; Brown and
Griendling, 2015; Forrester et al., 2018; Quintana and Taylor,
2019). Similarly, the expression of anti-oxidant enzymes such
as superoxide dismutase, glutathione peroxidase, glutathione
reductase, and glutathione S-transferase decreases in aortae of
AAA and TAA patients (Dubick et al., 1999; Liao et al., 2008;
Zuniga-Munoz et al., 2017).

Endothelial and VSM SirT1 are known to regulate the cellular
redox state in the vascular wall by multiple mechanisms,
including direct deacetylation of FOXOs, NF-kB, Nrf2,
mitochondrial superoxide dismutase and Nox, which overall
decrease ROS production (Fry et al., 2015; Huang et al., 2015;
Zhang et al., 2017). Moreover, SirT1 inhibits the mitochondrial
adaptor protein p66Shc, a critical modulator of intracellular
redox state and a major contributor of oxidative damage-induced
endothelial dysfunction in the settings of diabetes (Zhou et al.,
2011; Paneni et al., 2013), by directly deacetylating its lysine
81 (Kumar et al., 2017). Taken together, these well-established
anti-oxidant effects of SirT1 are consistent with the findings that
VSM-specific SirT1 deletions in mice, and decreased expression
of SirT1 in human aorta, are associated with aortic dissection or
aneurysms (Fry et al., 2015; Chen et al., 2016).

Interestingly, SirT1 itself is a redox-sensitive enzyme. We
have shown that SirT1 oxidative post-translational modifications,
namely S-glutathionylation, at cysteine residues of its catalytic
domain, profoundly affects its enzymatic activity (Zee et al.,
2010; Shao et al., 2014). Reversible oxidative post-translational
modifications, such as S-glutathionylation, result in activation
or inactivation of proteins, thereby regulating signaling cascades
and preventing irreversible oxidation of protein thiols in
the settings of oxidative stress (Cohen et al., 2016; Byrne
et al., 2020). Consistent with our findings, redox factor-1
and apurinic/apyrimidinic endonuclease-1, two cellular reducing
agents, are able to restore NO bioavailability and endothelium-
dependent vasorelaxation, through the reduction of conserved
cysteine sulfhydryls in the SirT1 deacetylase domain (Jung
et al., 2013). The loss of this fine-tuned mechanism in human
endothelial cells exposed to oxidant stress, such as after exposure
to cigarette smoke or hydrogen peroxide, have been associated
with endothelial dysfunction (Chung et al., 2010). More recently,
we found that H2O2, as well as TGF-β1, a pro-fibrotic cytokine
known to be activated in Marfan’s syndrome and to upregulate
Nox4 in the vasculature (Lu et al., 2016; Siu et al., 2017; Zuniga-
Munoz et al., 2017; Jimenez-Altayo et al., 2018), increases the
reversible oxidation of SirT1 in aortic VSM cells (E. Budbazar and
F. Seta, unpublished results). Therefore, an impairment of SirT1

activity by oxidative post-translational modifications may be
causally linked to the development of AA, at least in individuals
with Marfan’s syndrome, possibly by exacerbating the deleterious
effects of oxidant stress, whereas preventing or boosting SirT1
activity in the aortic wall may prevent AA.

SIRT1 AND HO-1 IN AORTIC ANEURYSM

Heme oxygenase-1 (HO-1) and 2 (HO-2) catalyze the rate-
limiting step of the cellular degradation of heme. In the
presence of oxygen and cofactors, HO-1 and HO-2 metabolize
heme into carbon monoxide (CO), free iron and biliverdin,
subsequently converted to bilirubin (BR; Abraham and Kappas,
2005). Both HO-1 and HO-2 isoforms are catalytically active
in the vasculature (Thorup et al., 1999; Zhang et al., 2001), as
demonstrated by HO-dependent release of CO in rat aorta, renal
and cerebral arteries, and gracilis muscle arterioles (Kaide et al.,
2001; Zhang et al., 2001).

HO-1 and HO-2 regulate vascular tone and hemodynamic
function, mainly through CO production (Kaide et al., 2001,
2004; Zhang et al., 2001; Rodriguez et al., 2003; Arregui et al.,
2004). We and others have shown that HO inhibition causes
vasoconstriction (Kaide et al., 2001, 2004; Zhang et al., 2001;
Rodriguez et al., 2004) while CO generally promotes vasodilation
(Kaide et al., 2001, 2004; Arregui et al., 2004; Rodriguez et al.,
2011). The vasoconstrictor effects associated with HO inhibitors
are greater after NO synthesis inhibition (Zhang et al., 2001;
Rodriguez et al., 2003), linked in part, to amplification of
prevailing neurohormonal constrictor mechanisms (Rodriguez
et al., 2003). Importantly, NO synthesis inhibition elevates CO
formation both in vivo and in vitro (Rodriguez et al., 2004).
Therefore, the significance of the HO–CO system might be
particularly relevant in the settings of reduced NO bioavailability,
as it is the case for conditions associated with increased oxidant
stress and reduced NO levels, including numerous vascular
and renal diseases (Salom et al., 2007; Rodriguez et al., 2011;
Bonacasa et al., 2013).

HO-1 expression, but not HO-2, is increased in cultured
VSM and endothelial cells in response to various stress
stimuli (Christodoulides et al., 1995). Similar to SirT1, HO-
1 overexpression serves a protective role by virtue of anti-
oxidant (Ferrandiz and Devesa, 2008; Bonacasa et al., 2013),
anti-inflammatory (Lee et al., 2004), anti-apoptotic (Ferrandiz
and Devesa, 2008), and anti-proliferative (Deng et al., 2004;
Lee et al., 2004) effects in endothelial, smooth muscle cells
and macrophages in the vascular wall (Kim et al., 2011), by
increasing CO and/or biliverdin production or by reducing
the pro-oxidant heme levels (Abraham and Kappas, 2005;
Duvigneau et al., 2019). Like SirT1, HO-1 confers protection in
several vascular injury models, such us ischemic heart disease,
atherosclerosis, hypertension, diabetes, or vascular proliferative
diseases (Abraham and Kappas, 2005; Loboda et al., 2008; Kim
et al., 2011). Interestingly, single nucleotide polymorphisms in
the HO-1 promoter region, which results in a decreased ability to
upregulate HO-1, has been linked to AA disease risk in humans
(Schillinger et al., 2002). HO-1 deficiency in mice exacerbates the
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development of AA (Azuma et al., 2016; Ho et al., 2016), whereas
HO-1 overexpression, induced by heme treatment (Azuma et al.,
2016) or shear stress (Nakahashi et al., 2002), attenuated AA
progression by opposing inflammation (Azuma et al., 2016;
Ho et al., 2016) and oxidative stress (Nakahashi et al., 2002;
Ho et al., 2016).

Overall, HO-1 and SirT1 are part of the integrated system that
modulates the cellular response to stress and might positively
interact to regulate cardiovascular function. Treatment with
cobalt protoporphyrin, a HO-1 chemical inducer (Sodhi et al.,
2015), or HO-1 overexpression in macrophages (Nakamura et al.,
2018), consistently enhanced SirT1 expression. Conversely, SirT1
activity can modulate HO-1 biological effects in hepatic cells
(Sodhi et al., 2015; Nakamura et al., 2018), adypocites (Lakhani
et al., 2019), or myocardial tissue (Yu et al., 2019). Moreover,
in a human model of endogenous AT1R antagonism, SirT1
directly associates with improved NO-dependent vasodilation
via HO-1 (Davis et al., 2013). These interactions suggest that
positive feedback mechanisms between SirT1 and HO-1 might
be at play in the vasculature, and they may affect HO-1-
mediated cytoprotection in cardiovascular diseases. To this end,
pharmacological activation of miR-181b/SirT1/HO-1 signaling
axis reduced the development of ang II-induced AAA in apoE-
/- mice (Hou et al., 2019). Although the exact molecular
mechanisms accounting for the interaction between SirT-1 and
HO-1, and its functional significance in vascular pathology,
remain to be fully elucidated, the development of specific targeted
therapies that modulate the SirT1/HO-1 axis could represent a
new therapeutic strategy for the management of AA disease, as
well as other vascular diseases.

SEX DIFFERENCES, OXIDATIVE STRESS,
AND SUSCEPTIBILITY TO AA

Aortic aneurysm is more likely to occur in men than in women
(Singh et al., 2001) but women have a greater risk of AA
rupture and poorer outcome than men. Several factors may
contribute to sex-specific susceptibility of male to AA namely
differences in mechanical properties of the aorta, levels of aortic
wall MMPs, renin angiotensin system activity, or inflammatory
and immune responses, which might be influenced by sex
hormones, as thoroughly reviewed elsewhere (Boese et al., 2018;
Robinet et al., 2018). Interestingly, to dissociate the effects
of sex hormones from sex chromosome, Alsiraj et al. (2017)
used the four core genotype mouse model to create XX and
XY female offspring, showing that XY phenotypic females had
increased AA incidence and severity compared with XX females,
through increased inflammation and oxidative stress. Moreover,
castration prevented the progression of disease in a model of
angII-induced AA (Zhang et al., 2015). Since estrogen and
testosterone also differently influence redox balance (Boese et al.,
2018), the higher susceptibility of male to oxidative stress and
AA in animal studies, might be related to either the effects of sex
hormones or sex chromosomes genes on oxidant pathways.

Increased activation of Nox and ROS production are known
to be higher (Dantas et al., 2004), while the antioxidant capacity

is decreased (Rodriguez et al., 2010; Bonacasa et al., 2013),
in males compared to females in preclinical and clinical
studies (Sartori-Valinotti et al., 2007). Estrogen increases HO-
1 expression in cultured endothelial cells (Baruscotti et al.,
2010; Marcantoni et al., 2012) and the uterus of ovariectomized
animals (Cella et al., 2006). In contrast, HO-1 expression is
higher in females compared to males in several experimental
models of cardiovascular disease (Zampino et al., 2006; Bonacasa
et al., 2013). Noteworthy, our own work and others’, showed
that increased HO-1 expression and/or activity in female rats
was associated with decreased nitrosative stress and glomerular
damage in the diabetic kidney (Bonacasa et al., 2013) and
a lower susceptibility to cardiac ischemia compared to males
(Posa et al., 2013). In line with this notion, increased HO-
1 expression and activity in the female offspring of diabetic
mothers, was associated with lower nitrotyrosine levels, and
improved cardiovascular function in females compared to males
(F. Rodriguez and J. M. Sanchez, unpublished results). Therefore,
antioxidant HO-1 activity could improve vascular function partly
by compensating for the loss of NO bioavailability, in vascular
diseases, particularly in females.

Similarly to HO-1, SirT1 activity may be influenced by sex or
sex hormones. Estrogen induces SirT1 and SirT1/AMPK/histone
H3 pathway, which relates to the cardiovascular protective
effects of estrogen therapy (Bendale et al., 2013). Moreover,
SirT-1 downregulation in the female, but not male, hearts
directly correlated with a decline in mitochondrial anti-
oxidative defense and a pro-inflammatory shift (Barcena de
Arellano et al., 2019). Consistently, sex-specific downregulation
of the SirT1/AMPK/FOXO3a/PGC-1α regulatory network was
observed in male, but not female offspring, in response to
maternal high-fat feeding (Nguyen et al., 2017). Overall, the
possibility of a sex-specific regulation of SirT1 and HO-1 in the
context of oxidative stress, such as in AA, is intriguing. Further
studies addressing the functional significance of sex specific
changes in SirT1 and HO-1 in AA, and the correlation with
clinical features are warranted.

TRANSLATIONAL THERAPEUTIC
APPLICATIONS OF SIRT1 OR HO
ACTIVATION FOR AA

Substantial R&D has been invested in the quest of compounds
that could boost SirT1 activity for the treatment of cardiovascular
diseases. Thus far, numerous plant-derived molecules have shown
promising results, although proving their pharmacological
specificity remains a challenge. Liquorice-derived licochalcone
attenuates angII-induced AAA by modulating the miR-
181b/SirT1/HO-1 signaling axis (Hou et al., 2019). Resveratrol,
a grape-derived non-toxic polyphenol known to activate
SirT1, decreases the incidence of AAA in angII-infused
apoE−/− mice fed a high fat diet by increasing ACE2 and
downregulating NF-kB, Akt, ERK1/2 and ATR1 in human
aortic VSM (Moran et al., 2017). Similarly, resveratrol, but
not another putative SirT1 agonist SRT1720, prevented the
development of TAA in Fbn1C1041G/+ mice, a model of
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Marfan’s syndrome, by stimulating an endothelial cell-derived
factor, which downregulated miR-29b and upregulated Bcl-
2 in VSM cells, inhibiting their apoptosis (Hibender et al.,
2016). However, the beneficial effects of resveratrol and other
putative SirT1-specific agonists, such as SRT1720 and SRT2104,
are attributed to both SirT1-dependent and -independent
mechanisms (Park et al., 2012; Zordoky et al., 2015; Bonnefont-
Rousselot, 2016; Hibender et al., 2016; Moran et al., 2017; van
Andel et al., 2019). It is well established that resveratrol can
activate AMPK, inhibit cyclooxygenases and affect a variety
of other enzymes (Bonnefont-Rousselot, 2016; Wicinski et al.,
2018). Likewise, novel SirT1 activators, which were effective
in decreasing arterial stiffness and improving the lipid profile
of healthy cigarette smokers and elderly volunteers in clinical
trials (Libri et al., 2012; Venkatasubramanian et al., 2013,
2016), function as partial agonists of SirT1 or exhibit off-
target effects (Pacholec et al., 2010). Therefore, attempts to
develop alternative approaches to activate SirT1, rather than
direct agonists, are an active field of research. Manipulating
the metabolism of NAD+, the essential co-factor for SirT1
deacetylase activity, has proven very promising, as in some
cases, it recapitulates the effects of resveratrol (Baur, 2010). Both
niacin and nicotinamide supplementation increases NAD+ levels

and NAD+-dependent SirT1 activity in aortas and prevents
the development of AAA in mice (Horimatsu et al., 2019).
Similarly, nicotinamide phosphoribosyltransferase (NAMPT),
also known as visfatin, a methyltransferase crucial for the
synthesis of the NAD+ precursor nicotinamide mononucleotide
(Galli et al., 2013), has been shown to maintain aortic VSM
integrity through NAD/SirT1 pathway (Watson et al., 2017).
Additionally, we propose that understanding the role of oxidative
post-translational modifications, such as S-glutathionylation
of SirT1 cysteine residues, may lead to novel therapeutic
strategies (Figure 1). We previously shown that a redox-
resistant mutant SirT1 and overexpression of glutaredoxin-1,
a thioltransferase that removes S-glutathionylation on SirT1,
protects against liver metabolic disease (Shao et al., 2014, 2017).
Whether a similar approach could be implemented in the
clinic to treat AA and other cardiovascular diseases warrants
further research.

Lipid-lowering agents widely used in clinical settings, such
as probucol or statins, showed anti-proliferative effects on VSM
through HO-1 induction (Deng et al., 2004; Lee et al., 2004),
and decreased the development of experimental AA by inducing
HO-1 gene expression (Azuma et al., 2016; Piechota-Polanczyk
et al., 2018; Chen et al., 2020). Likewise, simvastatin-treated

FIGURE 1 | A graphical abstract of oxidative modifications of cysteine thiols and pharmacological agents that increase SirT1 and HO-1 activity. The reactive thiolate
anions of SirT1 exposed to ROS can react to form reversible (red and yellow, temporary inactivation) or irreversible (black, permanent inactivation). Glutathione (GSH)
adducts added by S-glutathionylation inactivate SirT1. SirT1-GSH adducts may be reversed by glutaredoxin-1 (Glrx1), forming oxidized GSH (GSSG) and active
SirT1 (green). HO-1 may interact with SirT1 through positive feedback mechanisms and metabolize heme into carbon monoxide (CO), free iron (Fe2+) and biliverdin,
subsequently converted to bilirubin (BR). NAD+, nicotinamide adenine dinucleotide; NAMPT, nicotinamide phosphoribosyltransferase; ROS, reactive oxygen species.
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patients with AA, showed higher levels of anti-oxidant HO-1 in
vascular tissue (Piechota-Polanczyk et al., 2018). Taken together,
these findings strongly support a key protective role of HO-1 in
limiting AA progression, and that statins and probucol may limit
AA progression through mechanisms involving HO-1, probably
independently of their lipid-lowering effects.

In contrast, it is important to consider that deleterious effects
of HO-1 (Jais et al., 2014) and SirT1 overexpression (Kawashima
et al., 2011) have been reported. In the case of HO-1 induction,
these deleterious effects relate to increased reactive free iron
(Suttner and Dennery, 1999) or reduced heme availability
(Duvigneau et al., 2019). Interestingly, it has been suggested that
there is a beneficial threshold of HO-1 overexpression (Suttner
and Dennery, 1999; Namba et al., 2014) operating in specific
subcellular localizations (Namba et al., 2014). Therefore, attempts
at targeting HO-1 enzymatic activity to treat AA, as well as other
vascular diseases, should aim at generating sufficient amounts
of HO-1 activity, in specific cell compartments, maintaining
suitable levels of intracellular heme and heme derived products
formed by HO, avoiding any undesirable effects. Similarly,
SirT1 activation or overexpression should be titrated to avoid
unwanted effects.

Overall, HO-1 and SirT1 are part of gene complexes
termed vitagenes (Calabrese et al., 2014), which provide
an integrated response to control oxidant stress-induced
tissue injury. Vitagenes products (i.e., heat shock proteins,
BR, CO, gluthathione) mediate anti-oxidant, anti-apoptotic,
anti-proliferative and anti-inflammatory actions (Abraham
and Kappas, 2005; Calabrese et al., 2014). Dietary anti-
oxidants (Abraham and Kappas, 2005; Moran et al., 2017;
Hou et al., 2019) and clinically widely used compounds, such

us statins, have shown favorable pleiotropic effects partly
mediated by HO-1 induction (Lee et al., 2004; Piechota-
Polanczyk et al., 2018) or SirT1 expression (Strycharz et al.,
2018), providing a strong rationale for their therapeutic benefits
in cardiovascular diseases, including AA (Hou et al., 2019).
Therefore, the importance of developing pharmacological
agents that activate an integrated response against oxidant
stress in AA seems evident. Still, there is no definitive
evidence from large scale clinical studies with anti-oxidant
supplementation (Egea et al., 2017), requiring a better
understanding of how each compound would affect the
sources of ROS in specific cell compartments, modulate
NAD + levels (Horimatsu et al., 2019), or affect ROS-induced
reversible modifications, such as protein S-glutathionylation
(Shao et al., 2014, 2017), for the suitable translation into
clinical settings.
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