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Key messages

What is the key question?
 ► Can machine learning employ radiological data 
to improve prediction of risk of malignancy in 
pulmonary nodules?

What is the bottom line?
 ► A machine learning- derived artificial 
intelligence prediction model for risk of 
malignancy in pulmonary nodules using 
radiological data alone outperforms the best 
current multivariable risk prediction model.

Why read on?
 ► A new automated risk prediction model may 
improve the efficiency of a pulmonary nodule 
service.

AbsTrACT
background estimation of the risk of malignancy in 
pulmonary nodules detected by cT is central in clinical 
management. The use of artificial intelligence (ai) 
offers an opportunity to improve risk prediction. here 
we compare the performance of an ai algorithm, the 
lung cancer prediction convolutional neural network 
(lcP- cnn), with that of the Brock University model, 
recommended in UK guidelines.
Methods a dataset of incidentally detected 
pulmonary nodules measuring 5–15 mm was collected 
retrospectively from three UK hospitals for use in a 
validation study. ground truth diagnosis for each nodule 
was based on histology (required for any cancer), 
resolution, stability or (for pulmonary lymph nodes 
only) expert opinion. There were 1397 nodules in 1187 
patients, of which 234 nodules in 229 (19.3%) patients 
were cancer. Model discrimination and performance 
statistics at predefined score thresholds were compared 
between the Brock model and the lcP- cnn.
results The area under the curve for lcP- cnn was 
89.6% (95% ci 87.6 to 91.5), compared with 86.8% 
(95% ci 84.3 to 89.1) for the Brock model (p≤0.005). 
Using the lcP- cnn, we found that 24.5% of nodules 
scored below the lowest cancer nodule score, compared 
with 10.9% using the Brock score. Using the predefined 
thresholds, we found that the lcP- cnn gave one false 
negative (0.4% of cancers), whereas the Brock model 
gave six (2.5%), while specificity statistics were similar 
between the two models.
Conclusion The lcP- cnn score has better 
discrimination and allows a larger proportion of benign 
nodules to be identified without missing cancers than 
the Brock model. This has the potential to substantially 
reduce the proportion of surveillance cT scans required 
and thus save significant resources.

bACKground
Pulmonary nodules are commonly detected by 
thoracic CT. The proportion of scans showing 
nodules varies from 15% to 50%.1 Current guide-
lines acknowledge the importance of assessing 
the risk that a nodule is malignant with low risk 
nodules either having further interval scanning 
or no follow- up. The two most recent guidelines 

do not recommend follow- up for nodules<5 mm 
in maximum diameter1 or optional follow- up for 
nodules with an average of 6 mm diameter.2 Being 
able to predict more accurately which nodules are 
malignant will reduce the cost of extra scanning, 
the time taken to confirm the diagnosis for the 
patient and the risk of missing a malignant nodule. 
It will also allow earlier treatment in very early 
stage lung cancer, which is known to be associated 
with improved survival.3

Logistic regression models have been devel-
oped to aid risk prediction. The Brock University 
or PanCan model4 is one of the most accurate in 
external validations5–7 and is recommended in the 
British Thoracic Society guideline to decide whether 
nodules that are 8 mm or more in maximum diam-
eter should be further evaluated with PET- CT.1 
None of the commonly used risk models have been 
derived in UK populations, although the Brock 
model performed well in one external validation 
study.7 A concern with using any model in clinical 
practice is the accuracy of data input into the model; 
manual measurement of diameter and assessment of 
spiculation are known to vary considerably in inter- 
observer studies.2 8 9 There may also be consider-
able variation between different software packages 
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Figure 1 Collection of the ideal retrospective dataset. AI, artificial 
intelligence, EDC, electronic data capture.

Table 1 Details of nodules and associated clinical data

Cancer, n 
(%)

benign, n 
(%) Total (%)

Patient sex, counted by nodule

  Male 92 (39.3) 624 (53.7) 716 (51.3)

  Female 142 (60.7) 539 (46.3) 681 (48.7)

Nodule size (clinician- stated)

  5 mm 8 (3.4) 268 (23.0) 276 (19.8)

  >5 to ≤7 mm 17 (7.3) 438 (37.7) 455 (32.6)

  >7 to ≤10 mm 59 (25.2) 294 (25.3) 353 (25.3)

  >10 to ≤15 mm 150 (64.1) 163 (14.0) 313 (22.4)

Patient age (years), by nodule

  0–49 7 (3.0) 151 (13.0) 158 (11.3)

  50–59 27 (11.5) 201 (17.3) 228 (16.3)

  60–69 85 (36.3) 359 (30.9) 444 (31.8)

  70–79 91 (38.9) 320 (27.5) 411 (29.4)

  80–89 23 (9.8) 126 (10.8) 149 (10.7)

  90–99 1 (0.4) 5 (0.4) 6 (0.4)

Nodule contrast (autodetected)

  0 to ≤80 HU 104 (44.4) 581 (50.0) 685 (49.0)

  80 to ≤300 HU 130 (55.6) 582 (50.0) 712 (51.0)

Nodule locations

  Right upper lobe 83 (35.5) 235 (20.2) 318 (22.8)

  Right middle lobe 12 (5.1) 185 (15.9) 197 (14.1)

  Right lower lobe 36 (15.4) 309 (26.6) 345 (24.7)

  Left upper lobe 51 (21.8) 159 (13.7) 210 (15.0)

  Lingula lobe 6 (2.6) 37 (3.2) 43 (3.1)

  Left lower lobe 46 (19.7) 238 (20.5) 284 (20.3)

Nodule spiculation

  Non- spiculated 96 (41.0) 993 (85.4) 1089 (78.0)

  Spiculated 138 (59.0) 170 (14.6) 308 (22.0)

Centres by nodule

  Leeds 89 (20.3) 349 (79.7) 438 (31.4)

  Nottingham 93 (22.0) 330 (78.0) 423 (30.3)

  Oxford 52 (9.7) 484 (90.3) 536 (38.4)

“Oxford” includes data contributions from Reading and Frimley hospitals, overseen 
by clinicians from the central OUH site.

if the readings are made automatically. An artificial intelligence 
(AI)- based system can account for nodule size, margins, atten-
uation and other radiological factors consistently, and without 
requiring subjective judgement or data entry on the part of the 
reading radiologist or pulmonologist.

The IDEAL study (Artificial Intelligence and Big Data for 
Early Lung Cancer Diagnosis) is a two- part study funded by 
the National Institute for Health Research (NIHR) Invention 
for Innovation (i4i) that aims to use AI to improve accuracy of 
prediction of malignancy in pulmonary nodules within a UK 
clinical setting. The AI system used in this trial was developed 
by Optellum Ltd, a company which specialises in lung cancer 
diagnosis through image analysis. A risk prediction model called 
the Lung Cancer Prediction CNN (LCP- CNN) was constructed 
using a machine learning algorithm called Convolutional Neural 
Networks (CNN).10 11 The LCP- CNN was initially trained using 
the US National Lung Screening Trial (NLST) data12 which had 
been extensively marked up for machine learning applications 
within Optellum, under guidance from experienced thoracic 
radiologists at Oxford University Hospitals (OUH). LCP- CNN 
development is outside the scope of this paper, but some further 
details are given in the online supplementary appendix.

The IDEAL study is in two parts: the first enables valida-
tion of the AI method using retrospectively collected inciden-
tally detected data from three NHS hospitals; the second is an 
ongoing prospective data collection and evaluation study with 
results anticipated in 2021. A protocol describing part of the 
prospective trial has been published.13

Validation on UK clinical data is important, because there are 
significant differences between the training data and a typical 
UK incidental nodule patient population. Thus, good cross- 
validation performance on the NLST alone is not enough to 
guarantee efficacy in real patients. In particular, NLST has a 
narrow age range (55-74), are all heavy smokers, and have stan-
dardised low- dose chest protocols imaged over a decade ago. 
The IDEAL data is modern, from a population- appropriate mix 
of smokers and non- smokers, 18–99 years of age, using a wide 

variety of dose levels and protocols, including the use of contrast 
agents, and fields of view not optimised for chest viewing (eg, 
abdominal or cardiac scans in which the visible parenchyma 
contains a lung nodule). This paper describes the findings from 
the analysis of the full set of data collected retrospectively under 
the first part of IDEAL. The primary objective was to assess the 
diagnostic performance of the LCP- CNN by measuring the area 
under the receiver operating characteristic curve compared with 
ground truth diagnoses on the retrospective IDEAL validation 
set. Secondary objectives were to compare the new model with 
the Brock model and to evaluate both models for their ability to 
exclude benign nodules with exceedingly low likelihood of being 
cancer, allowing early discharge while not missing cancers.

MeThods
Data were collected retrospectively under the IDEAL pre- 
specified protocol from three different clinical sites. Data were 
enriched to contain at least a 10% cancer prevalence, but all 
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Figure 2 Receiver operating characteristic curves for the three centres and the full dataset. For each curve, the distance it follows along the upper 
horizontal axis is directly related to its ability to rule out benign nodules, and in all plots, the magenta curve for the LCP- CNN dominates that upper 
part of the plot. The LCP- CNN also approaches the y- axis at a higher sensitivity value than the Brock or diameter curves, indicating that at the high- 
specificity end (ie, ruling in cancers rather than ruling out benign nodules), the LCP- CNN also offers better stratification than the two simpler methods. 
AUC, area under the cuve; LCP- CNN, lung cancer prediction convolutional neural network.

Table 2 AUC results for each of the three centres individually and for the whole dataset overall

site nodules (n) Cancer (%) LCP- Cnn (95% CI) brock (95% CI) Maximal axial diameter (95% CI)

Leeds 438 20.3 88.1 (84.3 to 91.5) 83.4 (78.9 to 87.5) 77.6 (72.5 to 82.4)

Nottingham 423 22.0 89.0 (85.3 to 92.3) 87.3 (82.8 to 91.2) 82.3 (77.0 to 87.4)

Oxford 536 9.7 91.9 (88.5 to 94.9) 91.3 (87.3 to 94.6) 91.0 (86.8 to 94.4)

All 1397 16.8 89.6 (87.6 to 91.5)* 86.8 (84.3 to 89.1)* 83.1 (80.3 to 85.8)

‘Diameter’ simply means stratifying the nodules according to the maximal diameter on an axial slice and using that to create a receiver operating curve.
*P=0.0044 for LCP- CNN versus Brock.
AUC, area under the curve; LCP- CNN, lung cancer prediction convolutional neural network.

nodule types were included even those that might be assumed to 
be benign by experienced thoracic radiologists. IDEAL patients 
were recruited from one of the three trial centres: Oxford 
University Hospital NHS Foundation Trust (Oxford), Leeds 
Teaching Hospital NHS Trust (Leeds), and Nottingham Univer-
sity Hospitals NHS Trust (Nottingham). Oxford data contains 
images from the Oxford University Hospital NHS Foundation 
Trust, the Royal Berkshire Hospital NHS Foundation Trust 
and NHS Frimley Health Foundation Trust, shared through 
the Oxford Academic Health Science Network. Patients were 
identified either directly by a thoracic radiologist, or through 

an electronic search of CT chest scans previously performed on 
patients as part of their routine clinical care in the study sites. 
The scans were de- identified prior to analysis. Retrospective 
data collection ran from January 2018 to August 2019.

Inclusion criteria
 ► Male or female, 18 years or above.
 ► Reported as having one or more solid pulmonary nodules 

of 5–15 mm in maximal axial diameter detected on thoracic 
CT scan.
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Table 3 Sensitivity and specificity results for the rule- out thresholds

Model Threshold sensitivity (95% CI) specificity (95% CI)
negative likelihood 
ratio (95% CI)

True 
positive

False 
negative

True 
negative

False 
positive

LCP- CNN 1.28 99.57 (98.62 to 100.00) 28.03 (25.51 to 30.62) 0.02 (0 to 0.05) 233 1 326 837

Brock 1.17 97.44 (95.26 to 99.18) 29.23 (26.69 to 31.88) 0.09 (0.03 to 0.16) 228 6 340 823

LCP- CNN, lung cancer prediction convolutional neural network.

 ► CT slice thickness of 3 mm or less.

exclusion criteria
 ► Patient has more than 5 nodules of at least 5 mm.
 ► Technically inadequate CT scan (too much noise, motion 

artefact, or insufficient margins imaged on the nodule).
 ► Diagnosis is unknown or could not be established.
 ► Current or prior history of malignancy in the last 5 years.
If patients met inclusion criteria, clinical and radiological 

information was entered into an electronic data capture system 
[Castor Electronic Data Capture, Ciwit BV, Amsterdam, The 
Netherlands, 2018]. For each patient, data included the year and 
month of birth, sex, smoking status, and known risk factors such 
as a known history of emphysema and family history of lung 
cancer. For each nodule, the data collected were size, diagnosis, 
diagnostic method and presence of spiculation. The patient 
information was used for calculating Brock model scores for 
each of the nodules, as well as to offer other opportunities to 
improve logistic regression models for UK- based populations.13

The diagnosis for each nodule was established using one 
or more methods. For cancers, all diagnosis was required to 
be by histology. Benign lesions were defined by 1 year volu-
metric stability, 2 year diameter stability or resolution. For 
benign nodules classed as lymph nodes (either perifissural or 
subpleural), expert opinion by experienced chest radiologists 
was also accepted as a method of diagnosis.

Nodules were classified as follows:
 ► Primary adenocarcinoma of the lung.
 ► Other primary lung cancer.
 ► Cancer of unknown type.
 ► Benign subpleural lymph node.
 ► Typical benign perifissural lymph node.
 ► Other benign nodule (eg, infection or benign hamartoma).
The IDEAL retrospective dataset development process is 

summarised in figure 1. Clinicians uploaded de- identified CT 
studies linked to each patient from Castor to the central IDEAL 
data curation team. The baseline time point for each patient was 
marked up with a tool to outline and label all nodules relevant to 
IDEAL. Patients with inconsistent metadata (ie, tagged nodules 
not in line with Castor entries) were queried with the sites and 
excluded where necessary. Some annotated nodules were too 
close to the edge of the field of view of the CT to be able to be 
captured within the field of view of the AI tool, so 27 nodules 
(including one cancer) were excluded for this reason. Finally, 
cases with high levels of contrast were excluded (159 nodules in 
136 patients, including 30 cancers in 30 patients), because this 
has previously been found to lead to false negative results with 
some small cancers. The final dataset used in this paper consists 
of 1397 nodules in 1187 patients. Of these, there are 234 cancers 
in 229 patients. Challenging cases such as those excluded above 
will receive the current standard of care, rather than AI support, 
and so do not represent any increase in the risk of missed cancer 
detections through the application of AI.

table 1 gives an overview of the 1397 nodules and associated 
clinical factors. the median age of patients was 68 (iqr 60–75), 
and the median nodule diameter was 7 mm (iqr 6–10 mm). the 

median cancer nodule diameter was 12 mm (iqr 9–14 mm). 140 
(61%) of the cancer patients had cancers that were identified by 
histology as adenocarcinomas, and the other 89 cancer patients 
had other primary cancer diagnoses.

Application of the LCP-CNN
The LCP- CNN is an AI tool that analyses parts of a CT scan 
around a nodule of interest and provides a score from 0 to 100 
for that nodule. Like the Brock model, this score could be read as 
a likelihood of malignancy, but also like the Brock model, it is not 
calibrated to a UK clinical incidental nodule population, so it is not 
strictly correct to call it a probability of malignancy. For both the 
Brock model and the LCP- CNN, a higher score indicates a higher 
chance of malignancy. For reference, a description of the LCP- 
CNN derivation is given in the online supplementary appendix.

Performance metrics and statistical analysis
We measured efficacy by obtaining the LCP- CNN score for each 
nodule in the IDEAL retrospective cohort and comparing these to 
the ground truth diagnosis established as part of data collection. In 
each case, the reference CT was taken to be the earliest thin- slice 
CT (<1.5 mm slice spacing) available, and both the LCP- CNN and 
Brock model scores were calculated only using this single study. 
To mitigate the effect of excessive levels of contrast where nodules 
were detected by contrast- enhanced scans, scans were only evalu-
ated if the median attenuation in the aortic arch (measured algo-
rithmically) was 300 HU or lower.

The primary measure is the area under the curve (AUC), which 
is obtained along with a 95% CI computed using 10 000 boot-
straps with stratified sampling.14 AUCs and associated CIs are 
also computed for the Brock risk model, and directly from the 
nodule sizes (maximal axial diameter) alone. Note that the AUC 
is generally invariant to class imbalance (ie, the presence of a lot 
more benign nodules than cancers in the dataset), because the 
sensitivity and specificity of the dataset are calculated separately 
before being plotted against each other. If too large an imbalance 
occurs, this will still be reflected in a wide 95% CI, showing 
that more data are required. P- values to assess the significance of 
differences between the AUC values are also calculated using the 
same nonparametric bootstrap technique as the CIs.

The secondary endpoint is the sensitivity and specificity of 
the LCP- CNN estimate at an operating point set by a threshold 
value computed on the NLST development data. The threshold 
was chosen separately for the LCP- CNN and the Brock model, 
such that on a validation set withheld from the NLST training 
data, the false negative rate was 0%. Assuming that the NLST 
and IDEAL datasets are similar enough in score distribution, this 
should translate to measured sensitivity on the IDEAL data close 
to 100%, and measured specificity that shows what proportion 
of benign nodules could safely stratify into a ‘do not follow- up’ 
category for each of the two methods. As long as these sensi-
tivities are high enough (eg, over 99.5%), then a high speci-
ficity is important because it reflects the ability of each model 
to correctly identify patients who may not require follow- up, 
potentially reducing clinical burden. Because the two risk scores 
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Figure 3 Low- scoring cancer cases. (A) Woman aged 61 years 
(smoking status: ex- smoker) with a 7 mm cancer located in RUL, scoring 
1.19 (Brock=3.50). The median HU value in the aortic arch is 37. (B) 
Man aged 61 years (smoking status: unknown) with a 10 mm cancer 
located in the lingula lobe, scoring 2.18 (Brock=5.83). The median 
HU value in the aortic arch is 135. (C) Man aged 67 years (smoking 
status: current smoker) with a 7 mm cancer located in RLL, scoring 2.55 
(Brock=1.31). The median HU value in the aortic arch is 50. (D) Woman 
aged 71 years (smoking status: unknown) with a 7 mm cancer located 
in RLL, scoring 3.46 (Brock=2.26). The median HU value in the aortic 
arch is 217. CT appears not to be using a breath- hold protocol. The only 
cancer actually stratified into the ‘rule- out’ set is (A), possibly because 
of its atypical shape and smooth appearance. The cancer in (B) was not 
reimaged for another 2 years after this scan, and the patient’s lungs 
had several similar lesions that did not grow into cancers. For cases 
such as (D), reimaging the nodule with a standard breath- hold protocol 
would be expected to give a cleaner image on which the lung cancer 
prediction convolutional neural network yields a higher score. HU, 
Hounsfield unit; RLL, right lower lobe; RUL, right upper lobe.

(LCP- CNN and Brock) are not perfectly calibrated with one 
another (nor with the reference NLST dataset), the thresholds 
are not exactly in line, with the value for the LCP- CNN being 
1.28, and for Brock being 1.17.

resuLTs
The LCP- CNN achieved an AUC of 89.6% (95% CI 87.6 to 
91.5), compared with 86.8% (95% CI 84.3 to 89.1) for Brock 
(p<0.005). While the CI intervals overlap, the P- value itself is 
significant, and this is because for any dataset, the Brock and 
LCP- CNN AUCs are highly correlated. On a dataset where the 
Brock model performs well, the LCP- CNN still performs a few 
percentage points better, so the chance of sampling a dataset 
such that the LCP- CNN gives an overall AUC lower than the 
Brock model’s AUC is significantly small, and this is what the 
P- value represents. In any case, it is not uncommon for a point 
estimate to show significance while 95% CIs overlap. The full 
set of AUCs and 95% CIs for the LCP- CNN, Brock and nodule 
diameters on the three centres and overall dataset are given in 
table 2. The associated ROC curves are displayed in figure 2.

Considering the rule- out thresholds, the LCP- CNN had a 
sensitivity of 99.57 (95% CI 98.62 to 100.00) and a specificity 
of 28.03 (95% CI 25.51 to 30.62), compared with Brock’s sensi-
tivity of 97.44 (95% CI 95.26 to 99.18) and specificity of 29.23 
(95% CI 26.69 to 31.88). The LCP- CNN gave only one false 
negative (0.4% of cancers), but the Brock model gave six false 
negatives (2.5%). The sensitivity, specificity, diagnostic likeli-
hood ratio and numbers of true/false positives and negatives are 
summarised in table 3. Confidence intervals on the number of 
false negatives follow mathematically from these sensitivities, 
though for avoidance of rounding errors, the LCP- CNN gives 
one false negative with 95% CI (0, 3.21), and the Brock model 
gives six false negatives with 95% CI (1.93, 11.09), p=0.0340. 
The negative predictive values were 99.69% (95% CI 99.04% 
to 100%) for the LCP- CNN and 98.27% (95% CI 96.79% to 
99.44%) for the Brock model.

The seven false- negative cancer details are summarised in 
table 4. These also represent the set of cancers scoring in the 
bottom 25% of each model’s scores. LCP- CNN had signifi-
cantly fewer cancers in its bottom 25% of scores than Brock, 
p<0.0001. Figure 3 shows images from the four lowest- scoring 
cancers in the overall dataset. Using Brock scores, 146/1337 
(10.9%) of benign nodules score below this lowest cancer score. 
This represents the proportion of benign nodules that could 
have been safely excluded at 100% sensitivity, had the threshold 
not been set in advance on independent data. Using LCP- CNN 
scores, 328/1337 (24.5%) of benign nodules score below the 
lowest cancer score, suggesting that LCP- CNN has better poten-
tial than stratification for separating out benign nodules without 
including low- scoring cancer nodules. Figure 4 shows both 
benign and malignant nodules with scores provided by the LCP- 
CNN and Brock model.

When typical perifissural nodules and intra- pulmonary 
lymph nodes, which would not usually warrant follow- up, were 
excluded from the validation cohort the discriminatory ability 
of both models reduced. The LCP- CNN still outperformed the 
Brock model (AUC 86.4% (95% CI 82.2 to 90.3) compared 
with Brock AUC of 81.1% (95% CI 76.3 to 85.6); p=0.0113). 
Rule- out rates were also lower for this cohort, but the LCP- CNN 
still ruled out 16.7% of nodules with only one false negative, and 
Brock model ruled out 19.3% with six false negatives.

dIsCussIon
In this study, we describe the development and external valida-
tion of the LCP- CNN risk prediction model in a retrospectively 
collected and cancer- enriched UK dataset of nodules restricted 
to 5–15 mm in maximum diameter. The LCP- CNN was found 
to outperform the Brock model, which itself represents the most 
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Table 4 Details of incorrectly ruled- out cancers according to the Brock or LCP- CNN models

size (mm) diagnosis Location Age (years) sex smoking status brock score LCP- Cnn score result

5 Other primary Right middle lobe 61 Female Ex- smoker 0.57 16.72 Brock false negative

5 Adenocarcinoma Right middle lobe 71 Female Unknown 0.7 20.31 Brock false negative

5 Other primary Left lower lobe 61 Male Unknown 0.74 38.17 Brock false negative

5 Adenocarcinoma Left upper lobe 56 Male Ex- smoker 0.77 22.83 Brock false negative

5 Other primary Left lower lobe 72 Male Ex- smoker 0.78 56.19 Brock false negative

5 Adenocarcinoma Right upper lobe 71 Male Unknown 0.88 29.78 Brock false negative

7 Other primary Right upper lobe 61 Female Ex- smoker 3.5 1.19 LCP- CNN false negative

LCP- CNN, lung cancer prediction convolutional neural network.

Figure 4 Benign and cancer nodules of 8, 10 and 12 mm illustrating typical scoring behaviour of the LCP- CNN. (A) Woman aged 72 years (smoking 
status: ex- smoker) with a 8 mm benign nodule located in the lingula lobe, scoring 2.07 (Brock score 9.92). The median HU value in the aortic arch is 
246. (B) Woman aged 75 years (smoking status: current) with an 8 mm cancer located in LUL, scoring 69.27 (Brock score 8.20). The median HU value 
in the aortic arch is 84. (C) Woman aged 77 years (smoking status: unknown) with a 10 mm benign nodule located in the left lower lobe, scoring 1.51 
(Brock score 8.47). The median HU value in the aortic arch is 155. (D) Woman aged 83 years (smoking status: ex- smoker) with a 10 mm cancer located 
in LUL, scoring 82.54 (Brock score 31.49). The median HU value in the aortic arch is 53. (E) Man aged 65 years (smoking status: current) with a 12 mm 
benign nodule located in RUL, scoring 5.47 (Brock score 16.93). The median HU value in the aortic arch is 39. (F) Man aged 69 years (smoking status: 
ex- smoker) with a 12 mm cancer located in RUL, scoring 78.29 (Brock score 21.23). The median HU value in the aortic arch is 90. LCP- CNN, lung 
cancer prediction convolutional neural network. HU, Hounsfield unit; LUL, left upper lobe; RUL, right upper lobe.

discriminative baseline risk model available. LCP- CNN showed 
a sensitivity of over 99.5%, which approximates to the 0.5% 
background risk of cancer in a cohort of nodules in the UK 
and to that of the NELSON trial.1 15 Although the model was 
developed from the NLST dataset that only included low dose 
non- enhanced CT data, it still performed well when applied to 
CTs that were acquired for diagnostic purposes with a variety of 
acquisition parameters including administration of intravenous 
contrast. This is important because any model needs to perform 
well in a real- life situation and baseline detection of nodules is 
often via suboptimal CT studies.

Concerns have been raised about the number of nodules which 
may require surveillance imaging should lung cancer screening 
be implemented, and the consequent workforce demands (both 
radiographer and radiologist time) and also CT scanner capacity 
required for this. When set to a 100% sensitivity we found 
that Brock could have excluded 10.9% of benign nodules from 

follow- up and the LCP- CNN 24.5%. Only one of the nodules 
that LCP- CNN excluded turned out to be malignant (0.4% of 
cancers) compared with six using the Brock score (2.5%) which 
suggests that the LCP- CNN model can safely identify low- risk 
nodules which do not need to be followed up. This represents 
a potential considerable cost and resource saving using the LCP- 
CNN. While the difference in sensitivity at around 28% speci-
ficity may seem too small to be important, it is approximately a 
five- fold difference. BTS guidelines effectively set a threshold of 
0.5% for discharge of patients because this was the risk in the 
NELSON population where nodules conferred no extra risk; it 
was the baseline risk where no nodules were present. The LCP- 
CNN is able to achieve this stratification at the 28% specificity 
level.

The LCP- CNN is blind to patient clinical data in the way it 
is applied in this paper, and yet it still performs better than the 
Brock risk score. This may be explained by the fact that size 
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and spiculation are already visible to the LCP- CNN, and it is 
possible that age or parenchymal damage resulting from a 30 
pack- year smoking history is already visible to the LCP- CNN as 
it analyses the CT image, so there may not be much Brock meta-
data that is not already known to the LCP- CNN. Both models 
showed better discrimination when tested in the Oxford dataset 
compared with data from the other centres. It is not clear why 
this is, but it may have been influenced by the fact that there were 
fewer cancers in the Oxford dataset and a much larger propor-
tion of nodules (57% vs 16% in Nottingham and 9% in Leeds) 
were benign lymph nodes, that were both smaller in size and 
had a characteristic shape. Both the LCP- CNN and the Brock 
model give low scores in these nodules, increasing the number of 
nodules that were true negatives. The other two datasets, being 
more enriched with malignant nodules, may represent a greater 
number of challenging cases.

Further refinements
Although performing well, the LCP- CNN model may have been 
disadvantaged by the level of contrast enhancement on some 
scans. This potential source of error was reduced in the present 
study and will be in the prospective part of the study, which is 
now underway. Scans are only evaluated if the median attenua-
tion in the aortic arch (measured algorithmically) is 300 HU or 
lower.

One common feature on several of the low- scoring cancer 
cases (including example D in figure 3) was that the CTs came 
from scan protocols where the patient did not appear to be 
performing a full inspiration breath- hold, which makes the 
appearance of such scans qualitatively different from those seen 
in the training set. It may therefore be appropriate to exclude 
scans where there is significant breathing artefact, although the 
extent of this will need to be defined.

The scores from the LCP- CNN are provided on a per- nodule 
basis. For the purpose of ruling a patient out from follow- up, it 
may be sufficient just to take the highest- scoring nodule within 
a patient, since any nodule scoring above the rule- out threshold 
indicates that the patient should be scheduled for follow- up, if 
the LCP- CNN were being used as part of the clinical decision- 
making process. However, the number of nodules within a 
patient is correlated with malignancy, as can be seen from the 
coefficient for “number of nodules” in the Brock model, so it 
may be more appropriate to have a more complex method of 
combining scores into a single number per patient.

Both Brock and the LCP- CNN are used for baseline assess-
ment of nodules and have not been evaluated for nodule surveil-
lance. Surveillance is somewhat different to baseline assessment 
because information may be used to both predict malignancy 
and also the growth rate. The latter is important because it can 
guide the next diagnostic step. A rapidly growing nodule, if not 
already identified by a baseline nodule risk model as malignant 
and requiring a further test such as PET- CT, may require more 
urgent intervention with biopsy or resection, whereas a slower 
growing nodule may prompt a more conservative approach. This 
forms part of nodule management guidelines.1

Using machine learning, we have developed and externally 
validated a new risk prediction model which compares favour-
ably with the most accurate multivariable model in current usage 
and may also have a role to play in identifying low- risk nodules 
which do not need further surveillance. It is important that this 
model is further refined to include further attention to scan 
quality and incorporation of additional clinical and CT data. 
The model is being tested in a prospectively collected cohort in 

routine clinical practice to establish whether the results seen here 
are reproducible and what the impact of better risk prediction 
has on the efficiency of nodule management, timely diagnosis 
and quality of life for patients.

Contributors DrB drafted and finalised the manuscript with help from lcP, who 
provided the analysis, including all statistical analyses. The model was trained and 
internally validated by Optellum authors. all authors read and contributed to the final 
version. Fg is the principal investigator.

Funding This is a summary of independent research funded by the national 
institute for health research’s i4i Programme, iDeal: artificial intelligence and Big 
Data for early lung cancer Diagnosis, ii- lB-0716-20006.

disclaimer Views expressed are those of the authors and not necessarily those of 
the nhs, the national institute for health research or the Department of health and 
social care.

Competing interests several members of the authorship are employed by 
Optellum, the company that has developed the risk prediction artificial intelligence 
tool.

Patient consent for publication not required.

ethics approval The study was approved by the Oxford University hospitals 
research ethics committee.

Provenance and peer review not commissioned; externally peer reviewed.

data availability statement Data are available upon reasonable request. 
Pseudomymised data can be requested.

open access This is an open access article distributed in accordance with the 
creative commons attribution non commercial (cc BY- nc 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non- commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non- commercial. see: http:// creativecommons. org/ licenses/ by- nc/ 4. 0/.

orCId id
David r Baldwin http:// orcid. org/ 0000- 0001- 8410- 7160

reFerenCes
 1 callister MeJ, Baldwin Dr, akram ar, et al. British thoracic society guidelines for 

the investigation and management of pulmonary nodules. Thorax 2015;70(suppl 
2):ii1–54.

 2 MacMahon h, naidich DP, goo JM, et al. guidelines for management of incidental 
pulmonary nodules detected on cT images: from the Fleischner society 2017. 
Radiology 2017;284:228–43.

 3 rami- Porta r, Bolejack V, crowley J, et al. The iaslc lung cancer staging project: 
proposals for the revisions of the T descriptors in the forthcoming eighth edition of 
the TnM classification for lung cancer. J Thorac Oncol 2015;10:990–1003.

 4 McWilliams a, Tammemagi Mc, Mayo Jr, et al. Probability of cancer in pulmonary 
nodules detected on first screening cT. N Engl J Med 2013;369:910–9.

 5 van riel sJ, ciompi F, Jacobs c, et al. Malignancy risk estimation of screen- detected 
nodules at baseline cT: comparison of the Pancan model, lung- raDs and nccn 
guidelines. Eur Radiol 2017;27:4019–29.

 6 Winkler Wille MM, van riel sJ, saghir Z, et al. Predictive accuracy of the Pancan lung 
cancer risk prediction model -external validation based on cT from the Danish lung 
cancer screening trial. Eur Radiol 2015;25:3093–9.

 7 al- ameri a, Malhotra P, Thygesen h, et al. risk of malignancy in pulmonary nodules: a 
validation study of four prediction models. Lung Cancer 2015;89:27–30.

 8 nair a, Baldwin Dr, Field JK, et al. Measurement methods and algorithms for the 
management of solid nodules. J Thorac Imaging 2012;27:230–9.

 9 revel M- P, Bissery a, Bienvenu M, et al. are two- dimensional cT measurements of 
small noncalcified pulmonary nodules reliable? Radiology 2004;231:453–8.

 10 lecun Y, Bengio Y, hinton g. Deep learning. Nature 2015;521:436–44.
 11 huang g, liu Z, lvd M, eds. Densely connected convolutional networks. 2017 ieee 

conference on computer Vision and Pattern recognition (cVPr), 2017, 21-26 July 
2017.

 12 aberle Dr, adams aM, Berg cD, et al. reduced lung- cancer mortality with low- dose 
computed tomographic screening. N Engl J Med 2011;365:395–409.

 13 Oke Jl, Pickup lc, Declerck J, et al. Development and validation of clinical prediction 
models to risk stratify patients presenting with small pulmonary nodules: a research 
protocol. Diagn Progn Res 2018;2:22.

 14 efron BTr. An introduction to the bootstrap. new York: chapman and hall, 1993.
 15 horeweg n, van rosmalen J, heuvelmans Ma, et al. lung cancer probability in 

patients with cT- detected pulmonary nodules: a prespecified analysis of data from the 
nelson trial of low- dose cT screening. Lancet Oncol 2014;15:1332–41.

312 Baldwin DR, et al. Thorax 2020;75:306–312. doi:10.1136/thoraxjnl-2019-214104

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0001-8410-7160
http://dx.doi.org/10.1136/thoraxjnl-2015-207168
http://dx.doi.org/10.1148/radiol.2017161659
http://dx.doi.org/10.1097/JTO.0000000000000559
http://dx.doi.org/10.1056/NEJMoa1214726
http://dx.doi.org/10.1007/s00330-017-4767-2
http://dx.doi.org/10.1007/s00330-015-3689-0
http://dx.doi.org/10.1016/j.lungcan.2015.03.018
http://dx.doi.org/10.1097/RTI.0b013e31824f83e1
http://dx.doi.org/10.1148/radiol.2312030167
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1056/NEJMoa1102873
http://dx.doi.org/10.1186/s41512-018-0044-3
http://dx.doi.org/10.1016/S1470-2045(14)70389-4

	External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules
	Abstract
	Background
	Methods
	Inclusion criteria
	Exclusion criteria
	Application of the LCP-CNN
	Performance metrics and statistical analysis


	Results
	Discussion
	Further refinements

	References


