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Background: Postoperative cognitive dysfunction (POCD) is a common complication
characterized by a significant cognitive decline. Increasing evidence suggests an
association between the pathogenesis of POCD and Alzheimer’s disease (AD). However,
a comprehensive understanding of their relationships is still lacking.

Methods: First, related databases were obtained from GEO, ArrayExpress, CNGB, and
DDBJ repositories. De novo analysis was performed on the raw data using a uniform
bioinformatics workflow. Then, macro- and micro-level comparisons were conducted
between the transcriptomic changes associated with AD and POCD. Lastly, POCD was
induced in male C57BL/6j mice and the hippocampal expression levels of mRNAs of
interest were verified by PCR and compared to those in AD congenic models.

Results: There was a very weak correlation in the fold-changes in protein-coding
transcripts between AD and POCD. Overall pathway-level comparison suggested that
AD and POCD are two disease entities. Consistently, in the classical AD pathway, the
mitochondrial complex and tubulin mRNAs were downregulated in both the POCD
hippocampus and cortex. POCD and AD hippocampi might share the same pathways,
such as tryptophan metabolism, but undergo different pathological changes in
phagosome and transferrin endocytosis pathways. The core cluster in the hippocampal
network was mainly enriched in mitosis-related pathways. The hippocampal expression
levels of genes of interest detected by PCR showed good consistency with those
generated by high throughput platforms.

Conclusion: POCD and AD are associated with different transcriptomic changes
despite their similar clinical manifestations. This study provides a valuable resource for
identifying biomarkers and therapeutic targets for POCD.

Keywords: postoperative cognitive dysfunction, Alzheimer’s disease, bioinformatics, transcriptomics, high
throughput data
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INTRODUCTION

With the dramatic change in life expectancy (Granger and
Barnett, 2021), more surgeries are being performed in
progressively older adults. In the United States, approximately
35% of all operations are being performed on adults older
than 65 years (Evered et al., 2017). There are proportionately
more complications in older surgical patients than in younger
patients, postoperative cognitive dysfunction (POCD) in
particular (Evered et al., 2018). POCD is a neurological
complication characterized by impaired memory, deficits in
information processing, and reduced attention, accompanied
by changes in mood and personality. Furthermore, POCD
can persist years after surgery and is probably irreversible in
many cases with an increasing overall morbidity and mortality
(Subramaniyan and Terrando, 2019).

Alzheimer’s disease (AD) is the most common
neurodegenerative disease that leads to cognitive decline in
the elderly and is estimated to affect 26.6 million people
worldwide (Scheltens et al., 2021). As cognitive deterioration
is the same key feature of POCD and AD, it is reasonable
to speculate that these two diseases share certain biological
processes. Some reports have demonstrated that surgery and
anesthesia cause the accumulation of amyloid β (Aβ) proteins
and promote aberrant tau phosphorylation in vivo and in vitro,
which are pivotal pathological changes in the development of
AD (Bilotta et al., 2010; Arora et al., 2014; Evered et al., 2017;
Marques and Lapa, 2018). However, clinical trials have failed
to observe the significant deterioration of cognition in patients
with AD after surgery or anesthesia. This suggests that there is
a complex association between the pathogenesis of POCD and
AD. In this study, we performed a systematic bioinformatics
analysis and verification of high-throughput transcriptomic
data from both POCD and AD animal models to compare the
underlying molecular mechanisms of these two diseases. We
hypothesized that significant differences could be revealed, which
would provide clues to accelerate the study of novel diagnostic
biomarkers and therapeutic targets for POCD.

MATERIALS AND METHODS

Bioinformatics Workflow and Dataset
Collection
The overall bioinformatics workflow is presented in Figure 1A.
First, datasets were collected from the Gene Expression Omnibus
(GEO1), ArrayExpress2, China National GeneBank DataBase
(CNGB)3, and DDBJ4 in September 2021. The following
search criteria were applied: [(POCD OR post-operative
cognitive dysfunction OR PND OR perioperative neurocognitive
disorders)] OR (AD OR Alzheimer’s disease). Transcriptomic

1https://www.ncbi.nlm.nih.gov/geo/
2https://www.ebi.ac.uk/arrayexpress/
3https://db.cngb.org/
4https://www.ddbj.nig.ac.jp/index-e.html

datasets from the mouse hippocampus or cortex, generated
using microarray or RNA-sequencing (RNA-seq) platforms, were
analyzed. The summary and sample description of each dataset
were carefully evaluated by two investigators before inclusion.

Raw Data Processing
Raw data processing was performed using R (3.6.1) and Linux
shell. In summary, the main steps of data preprocessing
included quality control of the raw data, calculation of the
expression matrices, and quality control of the expression
matrices (Figure 1A). Qualified matrices were included in
the analyses. The robust multichip average algorithm (affy
package), the normexp and quantile method (limma package),
and the neqc function (limma package) were applied to
generate the expression matrices from the Affymetrix, Agilent,
and Illumina raw microarrays, respectively. The HISAT2-
featureCounts workflow was applied for mapping and counting
the RNA-seq datasets with GRCm38 (Mus musculus) used as the
reference genome. For platforms with no valid annotation file,
Rsubread and GenomicRanges packages were applied for probe
re-annotation. All non-protein-coding genes were removed using
the BiomaRt package in R.

Differentially Expressed Gene
Identification and Correlation Analysis
The log2 fold-changes and p-values were calculated using the
negative binomial distribution-based count model in the DEseq2
package for RNA-seq datasets, and the empirical Bayes model
in the limma package for microarray datasets. The Benjamini–
Hochberg method was used to adjust the p-values. Statistically
significant differentially expressed genes (DEGs) were defined
as those with the lowest deciles of adjusted p-values to avoid
introducing bias from different platforms and sample sizes.
Spearman’s correlation analysis was performed to calculate the
correlation coefficients. The generalized additive model was
applied to fit the results and to evaluate the similarities between
all evaluated transcriptomes.

Over-Representation Analysis
This was performed using clusterProfiler (version 3.12.0)
and ggplot2 (version 3.3.2) packages in R. Specifically, Gene
Ontology (GO) annotation5, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway6, and Reactome pathway7 queries
were realized via the Annotation Hub, KEGG Pathway Module,
and ReactomePA, respectively. A bubble plot was used for
visualization. A hypergeometric test was used for enrichment
analysis. Statistical significance was set at p < 0.05.

Gene Set Enrichment Analysis
This was implemented using the clusterProfiler package in
R with inputs of the ranked gene lists based on the log2

5http://geneontology.org/
6http://www.genome.jp/kegg
7http://www.reactome.org
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FIGURE 1 | (A) Overall study design and bioinformatics analysis workflow. (B) Flow diagram of dataset search and selection.

fold-change. The curated gene set from the Broad Institute’s
Molecular Signature Database (MSigDB; C2:KEGG) was queried
and transformed into mouse versions using the msigdbr package.
Subsequently, 1,000 permutations were performed to generate
significant p-values, which were defined as those <0.05 without
multiple hypothesis testing. For the single-term analysis, the
enrichment plot and pathview package in R were utilized to
generate gene set enrichment analysis plots and topology-based
pathway plots, respectively.

Pathway Level Comparison Based on
Gene Set Variation Analysis
This was performed in accordance with Ramsey (2018).
Briefly, the minimum expression-level cutoff was initially
calculated using the kernel density estimation for each dataset.
Genes that were not expressed based on the minimum
expression level cutoff were removed from the expression
matrix. Gene set variation analysis was used to map the
gene expression data to pathway-level matrices, and the
KEGG database was used for pathway annotation. Finally, the
gene set variation analysis-transformed data were merged and
visualized using principal coordinate analysis and principal
component analysis.

Meta-Analysis
This was performed using the robust rank aggregation package
in R, which implements a robust rank aggregation method
to combine the results from different studies (Kolde et al.,
2012). This method uses a probabilistic model, which makes
it robust to outliers and noise. The final list was ranked
according to significance scores. Significantly dysregulated

genes were defined as those with the lowest deciles of
significance scores.

Constructing the Protein–Protein
Interaction Network, Hub Gene
Recognition, and Cluster Analysis
Protein–protein interaction (PPI) network (PIN) analysis was
performed using the STRING database8. Edges with a combined
score > 0.4 were included in the topological analysis. The
average local clustering coefficient and PPI enrichment values
were applied to measure the network connections. Cytoscape
(version 3.9.0) was used to visualize the PIN and analyze the
characteristics of each node. The maximal clique centrality
algorithm in the CytoHubba plug-in was used to identify hub
genes (Chin et al., 2014).

Animals and Surgery
Male C57BL/6j (n = 10), congenic 5 × FAD (n = 5), 3 × TgAD
(n = 5), and APP/PS1 (n = 5) mice were provided by the Jiangsu
Animal Experimental for Medical and Pharmaceutical Research
Center. All animals were housed under specific pathogen-free
conditions until 12 months of age. After acclimation for at
least 1 week, animals were used in experiments. All animal
experiments in this study were approved by the Institutional
Animal Care and Use Committee (Approval No.: 2003021)
and the Laboratory Animal Ethics Committee of Nanjing
Medical University.

Male C57BL/6j mice (12 months old) were randomly
assigned into control and POCD groups. Exploratory

8https://string-db.org/

Frontiers in Aging Neuroscience | www.frontiersin.org 3 June 2022 | Volume 14 | Article 900350

https://string-db.org/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-900350 June 22, 2022 Time: 14:33 # 4

Wang et al. Comparing Cognitive Dysfunction Diseases

laparotomy under isoflurane anesthesia (1.5% isoflurane
mixed with oxygen at 2 L/min) was used to construct the
POCD model (Qiu et al., 2020). At the end of the procedure
and the following 3 days, 2.5% lidocaine cream was applied
to the incision to alleviate surgery-associated pain. Our
experiment conformed with the guidelines laid down by the
NIH regarding the care and use of animals for experimental
procedures. Methodological details are described in the
Supplementary Materials.

Behavioral Tests and Tissue Processing
The behavioral tests included the Morris water maze (MWM)
and trace fear conditioning (TFC); methodological details are
described in the Supplementary Materials. One hour after the
tests, all mice were deeply anesthetized with isoflurane and
euthanized by exsanguination. The brain was extracted to obtain
the hippocampus; the tissues were then frozen in liquid nitrogen
for RNA isolation and reverse transcription.

Quantitative PCR
Total RNA from the hippocampus was extracted with TRIzol
reagent (Invitrogen, Carlsbad, CA, United States), and reverse
transcription was performed using the SuperScript III first strand
synthesis system (Invitrogen, Carlsbad, CA, United States).
Quantitative PCR (qPCR) amplification was performed using
the STEP ONE Real Time PCR Detection System with SYBR
Green master mix (Applied Biosystems, Foster City, CA,
United States). Methodological details are described in the
Supplementary Materials.

Statistical Analysis
The data were first tested for normality (Shapiro–Wilk test) and
homoscedasticity (Levene’s test). All data are presented as either
the mean ± SEM or as the median and interquartile range.
Repeated measures analysis of variance (ANOVA) was performed
to compare the escape latency between the control and POCD
groups. For other comparisons, either a t-test (for two groups)
or one-way ANOVA (for more than two groups) was applied.
The post-hoc tests for one-way ANOVA were performed either
using the least significant difference (if the variance was equal)
or Dunnett’s T3 (if the variance was not equal) tests. Statistical
significance was set at a two-sided p-value < 0.05.

RESULTS

Characteristics of Datasets
In total, 776 datasets were identified from the GEO,
ArrayExpress, DDBJ, and CNGB genomics data repositories
(Figure 1B). Among these, 125 were retained for further
assessment after removing 651 duplicate datasets. After
reviewing the abstract and full text, nine datasets comprising
126 samples (AD hippocampus, n = 4; AD cortex, n = 3; POCD
hippocampus, n = 1; POCD cortex, n = 1) were included in
the final analysis (Figure 1B). These datasets were generated
by Affymetrix, Agilent, and Illumina microarrays, and Illumina
RNA-seq platforms (Table 1).

Mice from the POCD group underwent tibial fracture surgery
(GSE95426) or exploratory laparotomy (GSE174412), whereas
AD mouse models included the 3 × Tg, 5 × FAD, and

TABLE 1 | Dataset characteristics.

GEO
accession

Organism Tissue Experiment type Disease model Sex Age (months) Extracted
molecule

GSE95426 Mus musculus Hippocampus Expression profiling by
array

POCD mice Male 12–14 Total RNA

GSE174412 Mus musculus Cortex Expression profiling by
high throughput
sequencing

POCD mice Male 18 Total RNA

GSE135999 Mus musculus Hippocampus Expression profiling by
array

APP/PS1 AD mice Male/Female 12 Total RNA

GSE135999 Mus musculus Cortex Expression profiling by
array

APP/PS1 AD mice Male/Female 12 Total RNA

GSE165111 Mus musculus Hippocampus Expression profiling by
array

3xTg AD mice Male/Female 15–20 Total RNA

GSE93678 Mus musculus Hippocampus Expression profiling by
high throughput
sequencing

APP/PS1 AD mice Female 13 Total RNA

GSE168137 Mus musculus Hippocampus Expression profiling by
high throughput
sequencing

5xFAD AD mice Male/Female 18 Total RNA

GSE168137 Mus musculus Cortex Expression profiling by
high throughput
sequencing

5xFAD AD mice Male/Female 18 Total RNA

GSE60911 Mus musculus Cortex Expression profiling by
array

3xTg AD mice Female 20 Total RNA
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APP/PS1 models. All samples were collected from aged mice
(12–20 months old). The resources of the datasets included
GSE95426 (citation missing in GEO), GSE174412 (Wu et al.,
2021), GSE135999 (Hou et al., 2021), GSE165111 (Kim et al.,
2021), GSE93678 (Daugherty et al., 2017), GSE168137 (Forner
et al., 2021), and GSE60911 (Sykora et al., 2015). All raw data
were analyzed in accordance with the workflow described in the
Methods section.

Postoperative Cognitive Dysfunction vs.
Alzheimer’s Disease: Correlation
Analysis
Fold-change-based transcriptome-wide correlation analysis
was performed to compare the overall similarity. First, the
correlations of all protein-coding genes in the hippocampus
were analyzed between POCD and the different AD models
regardless of their statistical significance. A poor correlation
was determined between POCD and all AD models (APP/PS1
microarray: Figure 2A, Spearman’s R = −0.045; APP/PS1
RNA-seq: Figure 2B, Spearman’s R = −0.035; 5 × FAD
RNA-seq: Figure 2C, Spearman’s R = −0.029; 3 × Tg-AD
model: Figure 2D, Spearman’s R = 0.012). Similar results were
observed between the cortical transcriptomes of POCD and AD
(5 × FAD RNA-seq: Supplementary Figure 1A, Spearman’s
R =−0.0034; 3× Tg-AD microarray: Supplementary Figure 1B,
Spearman’s R = −0.038). In contrast, there was a better
correlation among AD models (Supplementary Figure 2A,
Spearman’s R = 0.17; Supplementary Figure 2B, Spearman’s
R = 0.22). Considering that high-throughput data are often
noisy, we extracted the protein-coding genes with the lowest
deciles of adjusted p-values for subset analysis. The correlation
coefficients were still consistently very low regardless of the
tissue resources (hippocampus: Figures 2E–H, Spearman’s
R =−0.13 to 0.042; cortex: Supplementary Figure 3; Spearman’s
R =−0.057 to 0.073).

Postoperative Cognitive Dysfunction vs.
Alzheimer’s Disease: Overall
Pathway-Level Comparison
The gene expression information of each sample was converted
into KEGG pathway-based matrices using gene set variation
analysis to facilitate an overall pathway-level comparison of
the AD and POCD models. These matrices were pooled
and visualized by principal coordinate analysis and principal
component analysis. Theoretically, dots with the same color
(the same condition), regardless of their shapes, should cluster
together if the animal models have similar pathway-level changes.
In contrast, there should be no clear boundary between dots
of different colors if the animal models underwent divergent
pathophysiological changes. As a result, the transcriptomes
of POCD and AD hippocampi (Figure 3) and cortexes
(Supplementary Figures 4, 5) had low pathway-level similarity.
In contrast, there was higher similarity between the different AD
models (Supplementary Figures 6, 7).

Comparison of Postoperative Cognitive
Dysfunction Animal Models Against the
Classical Alzheimer’s Disease Signaling
Pathway
Gene set enrichment analysis was initially performed on POCD
datasets using MSigDB (C2: KEGG) as the curated gene
set. The classical AD signaling pathway was non-significantly
dysregulated in either the POCD hippocampus or the cortex gene
set (Figure 4A and Supplementary Figure 8A; HP: enrichment
score = −0.19, p = 0.91; CX: enrichment score = −0.34,
p = 0.6). The POCD DEG lists were mapped to the AD
pathway graph using the pathview package in R. Mitochondrial
complex and tubulin mRNAs were downregulated in the
POCD and AD hippocampi and cortexes (Figure 4B and
Supplementary Figure 8B). In addition, transcripts of some

FIGURE 2 | Correlation analysis of all (A–D) and significantly dysregulated (E–H) protein-coding gene expression fold-changes between POCD and different AD
transgenic models in the hippocampus. (A) GSE95426 (POCD model microarray data) vs. GSE135999 (APP/PS1 model microarray data); (B) GSE95426 vs.
GSE93678 (RNA-seq data from APP/PS1 model); (C) GSE95426 vs. GSE168137 (RNA-seq data from 5 × FAD model); (D) GSE95426 vs. GSE165111 (3 × Tg
model microarray data). (E) GSE95426 (POCD model microarray data) vs. GSE135999 (APP/PS1 model microarray data); (F) GSE95426 vs. GSE93678 (APP/PS1
model RNA-seq data); (G) GSE95426 vs. GSE168137 (5 × FAD model RNA-seq data); (H) GSE95426 vs. GSE165111 (3 × Tg model microarray data).
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FIGURE 3 | Overall pathway-level comparison of the hippocampal transcriptomic changes between POCD and different AD transgenic models visualized through
principal coordinate analysis (A–D) and principal component analysis (E–H). (A) GSE95426 (POCD model microarray data) vs. GSE93678 (APP/PS1 model
RNA-seq data); (B) GSE95426 vs. GSE135999 (APP/PS1 model microarray data); (C) GSE95426 vs. GSE168137 (5 × FAD model RNA-seq data); (D) GSE95426
vs. GSE165111 (3 × Tg model microarray data). (E) GSE95426 (POCD model microarray data) vs. GSE93678 (APP/PS1 model RNA-seq data); (F) GSE95426 vs.
GSE135999 (APP/PS1 model microarray data); (G) GSE95426 vs. GSE168137 (5 × FAD model RNA-seq data); (H) GSE95426 vs. GSE165111 (3 × Tg model
microarray data).

inflammatory cytokines such as interleukin-1 (IL-1) and IL-6
were upregulated in the POCD hippocampus (Figure 4B and
Supplementary Figure 8B).

Postoperative Cognitive Dysfunction vs.
Alzheimer’s Disease: A Comparison of
Animal Models
A meta-analysis was performed using the robust rank aggregation
method to obtain a more robust result of the transcriptomic
changes in AD animal models, and the top 10% of the
dysregulated genes ranked by p-values were extracted. Class
1 and class 2 genes were defined as those dysregulated in
the same (Figure 5A) and different (Figure 5B) directions
in POCD and AD, respectively. Over-representation analysis
was then performed to explore the shared and unique
molecular pathways, which were visualized using bubble plots.
Class 1 genes in the hippocampus were mainly enriched in
tryptophan metabolism, antigen activation of B cell receptor
(BCR) leading to the generation of second messengers, and
FCERI-mediated Ca2+ mobilization. Class 2 genes in the
hippocampus were mainly enriched in the following pathways:
phagosomes, transferrin endocytosis and recycling, and antigen
processing and presentation. However, over-representation
analysis revealed cytokine–cytokine receptor interactions and
cholesterol biosynthesis were the most enriched pathway terms
for class 1 and class 2 genes, respectively, in the cortex
(Supplementary Figure 9). Detailed lists of enriched terms and
genes are shown in the Supplementary Tables 1–4.

Protein–Protein Interaction Network
Construction and Hub Gene
Identification
To further investigate the relationship between POCD and
AD in terms of the dysregulated genes, PINs were constructed
based on the String database. Only edges with a combined
score > 0.4 were included in the topological analysis. Networks
of the hippocampus (Figure 6A) and cortex (Supplementary

Figure 10) had significantly more interactions than expected,
indicating that the genes were biologically connected (average
local clustering coefficient for the network of hippocampus:
0.343; PPI enrichment value for the hippocampal network:
2.22e−16; average local clustering coefficient for the cortical
network: 0.357, PPI enrichment value for the cortical network:
4.44e−15). The cluster comprising the genes with the highest
scores calculated by the maximal clique centrality algorithm was
recognized as the core cluster for each network (Figure 6B).
Over-representation analysis showed that the core hippocampus
cluster was mainly enriched in mitosis-related pathways
(Figure 6C). The hub genes in the cortex network were mainly
associated with cholesterol biosynthesis and steroid metabolism
(Supplementary Figure 11).

Isoflurane Anesthesia and Exploratory
Laparotomy Induced Postoperative
Cognitive Dysfunction in Aged Mice
A diagram showing the timeline for behavioral tests is briefly
presented in Figure 7A. There were daily improvements in the
MWM latency during the early training phase, then a plateau was
reached. No significant difference was found in the escape latency
between the control and POCD group (Figure 7B). During
the probe test, the number of platform-crossing events and the
time spent in the target quadrant were remarkably reduced in
the POCD group compared with those in the control group
(Figures 7C–E). No significant difference in swimming speed
was observed between control and POCD groups (Figure 7F).
In the TFC test, mice in the POCD group exhibited less
freezing behavior than those in the control group (Figure 7G).
Taken together, isoflurane anesthesia and exploratory laparotomy
successfully induced POCD in aged mice.

Verification of Hippocampal mRNA
Expression via Quantitative PCR
The expression of 18 hippocampal mRNAs of interest was
measured using qPCR in control, POCD, and AD mice.
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FIGURE 4 | Comparison of the hippocampal gene expression pattern in POCD animal models against the classical AD signaling pathway. (A) Gene set enrichment
analysis showed that the classical AD signaling pathway is not significantly dysregulated in the POCD hippocampus (enrichment score = –0.19, p = 0.91). (B) KEGG
mapping of the dysregulated gene expression in the hippocampus (red and green: up and downregulated in POCD, respectively).

Tubulin-related mRNAs (Tuba3a and Tubb4a) were significantly
downregulated in both the POCD and AD hippocampi
(Figures 8A,B). Tfrc mRNA, which encodes the transferrin
receptor, responsible for cellular iron uptake, was upregulated
in the AD but downregulated in the POCD hippocampus
(Figure 8C). This phenomenon was also observed in terms
of mitosis-related mRNAs including Asf1b, Pbk, and Nusap1
(Figures 8D–F). Several genes encoding mitochondrial complex
I or II (Ndufs1, Sdhb, Sdhc) were downregulated in the POCD
hippocampus (Supplementary Figures 12A–F). However, we
found that Cdc20 mRNA, another mitosis-related mRNA, was

only slightly upregulated in the POCD hippocampus with
no statistical significance (Figure 8G). Both POCD and AD
increased the expression of inflammatory cytokine mRNAs (Il1
and Il6), as well as tryptophan metabolism-related mRNAs (Haao
and Lao1) (Supplementary Figures 12G–J).

DISCUSSION

Postoperative cognitive dysfunction and AD are both
characterized by cognitive dysfunction and have a high
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FIGURE 5 | Over-presentation analysis of class 1 and class 2 genes in the POCD and AD hippocampus. (A) Class 1 genes (dysregulated in the same direction in
POCD and AD); (B) class 2 genes (dysregulated in different directions).

prevalence among the elderly (Lin et al., 2020). It is reasonable
to postulate that these two diseases might share some common
pathological pathways (Fodale et al., 2010). Previous studies
have hypothesized that the aberrant function of the cholinergic
system and Aβ accumulation are important in AD and POCD
(Xie and Tanzi, 2006). However, clinical trials have not observed
significant cognition deterioration in patients with AD after
surgery or anesthesia, indicating that AD and POCD are quite
different in some respects (Seitz et al., 2011; Liu et al., 2013;
Steinmetz et al., 2013). Therefore, the aim of this study was to
determine the transcriptomic similarity between POCD and AD.
To our knowledge, this is the first systematic study on this topic.

The macro-level comparison of all protein-coding
transcriptomic changes between POCD and AD revealed a
very weak correlation. Further correlation analysis using the
dysregulated transcripts with the lowest p-values showed a
similar result. Pathway-level analysis using gene set variation
analysis showed that POCD and AD animal models are different

from a biological perspective. Finally, gene set enrichment
analysis showed that the classical AD signaling pathway was not
significantly dysregulated in POCD gene sets. Overall, these data
support the notion that AD and POCD are two disease entities
despite their similar clinical manifestations.

Then, we compared the transcriptome of POCD against the
classical AD signaling pathway, which revealed that mRNA
levels encoding the inflammatory cytokines IL-1 and IL-6
were upregulated in the POCD and AD hippocampus. This is
consistent with the well-accepted theory that neuroinflammation
is a driving force in POCD development, especially in the
hippocampus (Alam et al., 2018; Subramaniyan and Terrando,
2019). Moreover, hippocampal mRNAs of mitochondrial
respiratory chain complexes were downregulated in POCD,
which is consistent with results of previous studies (Netto
et al., 2018; Wei et al., 2019). A reduction in mitochondrial
complexes I, II, II, IV, and V has been intensively reported
in human AD (Fisar et al., 2019). Mitochondrial respiratory

Frontiers in Aging Neuroscience | www.frontiersin.org 8 June 2022 | Volume 14 | Article 900350

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-900350 June 22, 2022 Time: 14:33 # 9

Wang et al. Comparing Cognitive Dysfunction Diseases

FIGURE 6 | PPI analysis of the DEGs between the POCD and AD hippocampus. (A) PIN reconstruction of the hippocampal DEGs between POCD and AD. Red,
upregulated nodes; green, downregulated nodes. (B) The core cluster consists of eight genes with the color shading representing the score calculated by the
maximal clique centrality algorithm. (C) Over-presentation analysis of the core cluster.

chain deficiencies can cause neuronal degeneration and cell
death resulting from oxidative damage and energy detection.
Taken together, mitochondrial respiratory chain dysfunction
might be a noticeable feature of POCD, and targeted therapies
using PPAR-c and PGC-1a agonists previously developed for
AD treatment might yield a protective effect in POCD (Kim
et al., 2007; Golpich et al., 2017). Another finding of our study
is that the expression of microtubule-related mRNAs (Tuba
and Tubb) is decreased in the POCD and AD hippocampi.
Microtubule loss, reduced tubulin acetylation, and subsequent
axonal transport defects occur during the early preclinical stages
of AD (Vicario-Orri et al., 2015). There is increasing evidence
of several anesthetics exerting their effects via direct binding
to tubulin (Craddock et al., 2017). Furthermore, proteomic
analysis showed that tubulin gene expression was prominently
altered following exposure to volatile anesthetics (Pan et al.,
2008). Therefore, the reduced level of tubulin and concomitant
microtubule disassembly might be a common therapeutic target
for AD and POCD. In this regard, paclitaxel and its analogs,
which show efficacy in preventing Aβ accumulation in AD
models, are promising to have a protective effect on POCD
(Michaelis et al., 2005; Rice et al., 2005; Trojanowski et al., 2005).

Next, we made a direct comparison of the animal models. As
a result, POCD and AD might share similar pathways, such as
tryptophan metabolism. Tryptophan metabolism plays a pivotal
role in the synthesis of 5-hydroxytryptamine (serotonin), which
modulates a wide array of cognitive processes (Silber and Schmitt,
2010). Emerging evidence shows that increased tryptophan
plasma levels improve learning and memory in patients with
AD, along with a concomitant change in 5-hydroxytryptamine
synthesis (Maitre et al., 2020). However, there is a lack of
research on the relationship between POCD and tryptophan
metabolism, which deserves future investigation. Nevertheless,
POCD and AD might be associated with different pathological
changes in transferrin-related pathways. We observed increased
expression of Tfrc in the hippocampus of AD animal models,
which is associated with excessive iron accumulation and Aβ

deposition (Johnstone et al., 2012; Banerjee et al., 2016). However,
Tfrc was downregulated in POCD indicating decreased iron
uptake. Considering the important role of iron metabolism
in cognitive function, its pathological significance warrants
further investigation.

We also performed PPI analysis to reveal the intrinsic
relationship between the DEGs of AD and POCD. PPI analysis
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FIGURE 7 | Exploratory laparotomy successfully induces POCD in aged mice. (A) Diagram showing the timeline for behavioral tests and the operation. (B) Average
escape latency for the training phase in the Morris water maze (MWM) test. (C) The number of platform-crossing events in the probe trial of the MWM. (D) The time
spent in the target quadrant in the probe trial of the MWM. (E) Representative swimming traces of mice during the probe trial in the MWM test. (F) Swimming speed
during the probe trial of the MWM. (G) Freezing time in the trace fear conditioning (TFC) test. All experiments were repeated three times. *p < 0.05, **p < 0.01 vs.
control group. The data are presented as the mean ± SEM (n = 5).

FIGURE 8 | Expression levels of (A) Tuba3a, (B) Tubb4a, (C) Tfrc, (D) Asf1, (E) Pbk, (F) Nusap1, and (G) Cdc20 mRNA detected by qPCR in control, POCD, and
AD groups. All experiments were repeated three times. *p < 0.05, **p < 0.01 vs. control group. The data are presented as the mean ± SEM (n = 5).
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showed that the dysregulated genes in AD and POCD formed
biologically connected networks in the hippocampus and
cortex. Enrichment analysis of the core clusters highlighted
the central role of mitosis-related genes in the hippocampus.
It is suggested that mitotic dysfunction is implicated in AD
onset and contributes to neurodegeneration (van Leeuwen
and Hoozemans, 2015; Varghese et al., 2016). Consistent with
previous reports, most genes in the core cluster were upregulated
in the hippocampus of patients with AD. Only one of these
eight genes, namely Cdc20, was slightly upregulated in the POCD
hippocampal region. Further research is required to determine
whether this phenomenon indicates a potential role for mitosis
errors in POCD development.

Despite these findings, our analysis was based on transgenic
animal models of AD. These mouse models can recapitulate
familial early-onset AD (EOAD) (Bettens et al., 2013). However,
sporadic late-onset AD (LOAD) accounts for the majority of
AD cases (Sasaguri et al., 2017). Because EOAD and LOAD
phenocopy each other clinically and histologically, the amyloid
hypothesis—although based on molecular defects isolated in
EOAD—was plausibly proposed to underlie all forms of AD
(Small and Duff, 2008). Although inconsistencies exist between
sporadic and familial AD, clinical findings from a growing
number of Aβ-reducing drug trials in LOAD suggest that
transgenic models linking Aβ with tau are worth considering
and biologically plausible (Geschwind, 2003). Furthermore,
Forner et al. (2021) found that the gene expression profile
of 18 months 5 × FAD mice can better recapitulate the
human AD brain than those with younger age (Forner et al.,
2021), supporting the use of aged transgenic animal models.
However, future studies are still required to gain a better
knowledge of the extent to which these models actually
reproduce sporadic LOAD.

In addition to the above points, our study has some
technical limitations. First, we focused on only transcriptomic
data; therefore, future studies should include proteomic
and metabolomic data to provide a more comprehensive
understanding of the molecular mechanisms involved. Second, a
limited amount of POCD high-throughput data was identified
compared with that for AD, which might have introduced a
bias into our results. Third, mRNA expression, rather than
protein expression, was used to reconstruct the protein–protein
interaction network, which might not reflect the actual situation.
In conclusion, our study revealed the unique and shared
molecular mechanisms between POCD and AD and provides a
valuable resource for biomarker and therapeutic target discovery.
Some of our findings provide viable and promising treatment
targets for POCD and provide a strategy for investments in
long-term, well-planned, early intervention trials for POCD.
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