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ABSTRACT
Objective To research computational methods for
discovering body site and severity modifiers in clinical
texts.
Methods We cast the task of discovering body site and
severity modifiers as a relation extraction problem in the
context of a supervised machine learning framework. We
utilize rich linguistic features to represent the pairs of
relation arguments and delegate the decision about the
nature of the relationship between them to a support
vector machine model. We evaluate our models using
two corpora that annotate body site and severity
modifiers. We also compare the model performance to a
number of rule-based baselines. We conduct cross-
domain portability experiments. In addition, we carry out
feature ablation experiments to determine the
contribution of various feature groups. Finally, we
perform error analysis and report the sources of errors.
Results The performance of our method for discovering
body site modifiers achieves F1 of 0.740–0.908 and our
method for discovering severity modifiers achieves F1 of
0.905–0.929.
Discussion Results indicate that both methods perform
well on both in-domain and out-domain data,
approaching the performance of human annotators.
The most salient features are token and named entity
features, although syntactic dependency features also
contribute to the overall performance. The dominant
sources of errors are infrequent patterns in the data and
inability of the system to discern deeper semantic
structures.
Conclusions We investigated computational methods
for discovering body site and severity modifiers in clinical
texts. Our best system is released open source as part of
the clinical Text Analysis and Knowledge Extraction
System (cTAKES).

BACKGROUND AND SIGNIFICANCE
It is widely accepted that the clinical narrative
within electronic health records contains a substan-
tial part of the patient’s health information, but in
its raw form does not represent computable data
structures suitable for biomedical applications.
Increasingly over the last decade the field of clinical
natural language processing (NLP) has focused on
developing methods for the semantic processing of
clinical text that are use case and disease agnostic,
and can thus be incorporated into a variety of clin-
ical applications. The clinical NLP community has
been converging around the use of conventions and
standards for semantic processing to foster intra
and inter-operability such as the unified medical
language system1 (UMLS),2 Penn Treebank,3

PropBank,4 TimeML5 and Health Level 7. This
shift from use case-specific applications to more

general purpose and standards-based tools is char-
acteristic of the last few years of clinical NLP
efforts especially within the environment of mean-
ingful use stage 2.6

The transformation of free text into a structured
computable representation model is known as
Information Extraction.7 In the general NLP
domain, such representation models have been
defined by the NIST-sponsored Automatic Content
Extraction (ACE)8 and Text Analysis Conference
(TAC)9 shared tasks, which included templates for
person and organization and template slots such as
employee_of and city_of_residence. However,
these representations are of little relevance to the
clinical domain. Instead, representations such as the
Consolidated Clinical Document Architecture
(CCDA) for Meaningful Use Stage 2, the Clinical
Element Model10 (CEM) or the College of
American Pathologists (CAP) protocols are more
relevant. CCDA provides clinical and functional
context for practical implementations of the Health
Level 7 balloted standards6 and can be thought of
as the normalization target for electronic health
records information.
Body site and severity modifiers are two of the

attributes (or template slots) associated with health-
care representation models such as CCDA, CEM
and the CAP. These modifiers are usually attached
to a disease/disorder, sign/symptom or procedure.
Consider a sentence from a clinical record of a
rheumatoid arthritis patient: He still is not able to
work because of severe pain involving his wrists. In
this sentence we would like to discover two facts:
(1) that the body site of pain is the patient’s wrists,
and (2) that the severity level of pain is severe.
There is earlier work on discovering tumor body

sites from pathology notes. MedKAT/P11 employs
hand-built rules to populate a colon cancer tem-
plate in which the body location of the primary
tumor is one of the attributes. caTIES12 identifies
all tumor site mentions in pathology reports using
regular expressions. Martinez and Li13 explore a
machine learning methodology for populating a
colorectal cancer template with six attributes
including the tumor site. They report an F score of
58.1, for a model whose most predictive features
are based on UMLS and SNOMED-CT. Jouhet
et al14 work with pathology notes from the French
Poitou-Charentes Cancer Registry automatically to
discover the primary tumor site and code to the
International Classification of Diseases—Oncology
(ICD-O)15 codes using machine learning techni-
ques. Kuvuluru et al16 focus on extracting the
generic ICD-O code for primary cancers reported
in pathology reports. The body site of interest is
the one of the primary tumor. MedLEE17 18 ‘has
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an integrated syntactic and semantic component which is rea-
lized in the form of its grammar. The MedLEE grammar con-
sists of a specification of semantic (and sometimes syntactic)
components and is used to interpret the semantic properties of
the individual terms and of their relations with other terms, and
to generate a target output. The semantic grammar rules were
developed based on co-occurrence patterns observed in clinical
text.’ MedLEE’s scope includes processing radiology notes, dis-
charge summaries and clinical reports.

In this paper we demonstrate that the problem of body site and
severity modifier discovery can be successfully treated as a relation
extraction task, a well-established semantic processing task.
Relation extraction focuses on determining the relationships
between entities in text. We use the UMLS definitions to type the
relations and the entities. In our sample sentence, the entities pain
and wrists are the participants of the LocationOf relation and can
be succinctly captured as LocationOf(wrists, pain). The relationship
between the entity pain and the modifier severe can be expressed
as DegreeOf(pain, severe). The first argument of the LocationOf
relation is an anatomical site, while the second argument is a sign/
symptom, disease/disorder, or procedure. The first argument of the
DegreeOf relation is either a sign/symptom or a procedure, while
the second argument is a modifier (eg, significant, severe,marked).

In general, semantic processing of language aims to capture
the meaning behind the many surface forms that written lan-
guage can assume. For example, the relationship we represented
earlier as LocationOf (wrists, pain) is often also expressed in
clinical notes as pain in his wrists, pains involving his wrists,
wrist pain, or his main complaints of joint pain are presently at
the wrists bilaterally. Because of this diversity of clinical lan-
guage, a rule-based approach is hard to implement. Instead, we
adopt a supervised machine learning approach, in which we pair
up candidate clinical entities and delegate the decision about
whether they participate in a relation to a supervised classifier.

Supervised learning has been applied for relation extraction
in the general domain. Feature-based methods19 20 represent
relation instances using carefully engineered sets of features.
Kernel-based methods21 22 make it possible to explore large (in
some cases infinite) feature spaces automatically. In this work,
we attempt both approaches and demonstrate that the feature-
based approach is more promising for our task. In the clinical
domain, relation extraction was the focus of the 2010 integrat-
ing the biology and the bedside (i2b2)/VA shared task,23

although the targeted relations were very different from ours.
A recent work24 applied supervised learning for identifying ana-
tomical locations of a small number of manually selected action-
able findings in appendicitis-related radiology reports. Unlike
their work, we do not limit the input of our system to a set of
predefined findings; instead our system is potentially capable of
identifying the anatomical sites for any sign/symptom, disease/
disorder, or procedure that exists in UMLS. Open information
extraction25–27 offers an alternative to supervised learning via
the use of lightly supervised methods for extracting relations
and their arguments from large collections of text. However,
this work is not directly applicable to our task due to the diffi-
culty of mapping the open set of relations to our relations of
interest.
Our main contributions are:
1. We design and develop a machine learning system for disco-

vering intra-sentential body site and severity modifiers from
the clinical narrative, modeling the problem as a relation
extraction task.

2. We conduct feature ablation experiments to determine the
most salient features for the task.

3. We experiment with tree kernels, which have not been used
in the past for relation extraction from the clinical narrative.

4. We demonstrate that our models are highly portable across
different types of notes.

5. To allow result replication we make the gold standard
corpus we used in our experiments available to the research
community, and release our best-performing methods open
source as part of the Apache clinical Text Analysis and
Knowledge Extraction System28 (cTAKES)29 allowing repli-
cation of experiments as well as adoption and improvements
thus strengthening the clinical NLP ecosystem.

MATERIALS AND METHODS
Corpus
In our experiments, we utilize two annotated corpora that have
been in development for the past 3 years and that are now made
available to the community through data use agreements with
the contributing institution (to initiate the process, contact the
last author)—the Strategic Health Advanced Research Project:
area 4 (SHARP)30 and the shared annotated resource (ShARe).31

Table 1 provides the high-level characteristics of the corpora
and box 1 gives a few example annotations.

The SHARP corpus provides several layers of annotations—
syntax and semantics based on Treebank, PropBank and
UMLS,32 and normalization targets based on CEM.33 The
corpus consists of an equal amount of radiology notes, from
Mayo Clinic peripheral arterial disease patients, and breast
cancer oncology and pathology notes, from Seattle Group
Health. The SHARP corpus is annotated for such clinical
entities as drugs, diseases/disorders, signs/symptoms, procedures
and anatomical sites. Diseases/disorders, sign/symptoms and
procedures have body site modifiers expressed as a relation

Table 1 Description and statistics of the SHARP and ShARe
corpora

Corpus SHARP ShARe

Type of notes Radiology,
pathology, oncology

ICU notes,
discharge summaries

Tokens 70 704 104 918
Sentences 4801 8058
Entity mentions 11 781 5541
Entity mention pairs 36 865 6441
LocationOf relations 5025 2190
DegreeOf relations 729 702
LocationOf agreement 0.74 0.80
DegreeOf agreement 0.87 0.66

ShARe, Shared Annotated Resource; SHARP, Strategic Health Advanced Research Project.

Box 1 Example annotations

The [common femoral] had [moderate] [disease] without
[stenosis].
LocationOf(common femoral, disease); LocationOf (common
femoral, stenosis); DegreeOf(disease, moderate)

The patient had a [[skin] tumor] removed from [behind his left
ear].
LocationOf(skin, skin tumor); LocationOf(behind his left ear,
skin tumor)
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between the anchor and an anatomical site. Diseases/disorders
and sign/symptoms have a severity modifier, expressed as a rela-
tion between the anchor and a severity indicator normalized to
none, slight, moderate or severe. At the time of our experiments,
the ‘seed’ part of the SHARP corpus, consisting of 18 batches
(subsections) and a total of 183 notes, was fully completed
including double annotation and adjudication. We split this
corpus into training (140 notes: batches 2–9, 13–16, 18–19),
development (21 notes: batches 10, 17), and test (22 notes:
batches 11, 12) sets.

The ShARe corpus consists of MIMIC intensive care unit
notes and discharge summaries as part of the PhysioNet
project.34 It annotates parts of speech (POS) and phrasal chunks
consistent with the SHARP corpus. Annotated named entities
are a subset of the SHARP types: anatomical sites and diseases/
disorders. The latter have body site and severity modifiers also
consistent with the SHARP corpus. At the time of our experi-
ments, the first 13 batches of the ShARe corpus were fully anno-
tated and adjudicated. We used these 13 batches (130 notes) for
our experiments. We split the set of notes into a training set (80
notes), development set (25 notes), and test set (25 notes). The
full details of the ShARe annotations will be described in a sep-
arate paper; here we focus only on the relevant relation
annotations.

Inter-annotator agreement on these corpora is computed with
F1 score. Human agreement typically suggests the upper bound
of system performance but is not necessarily the ceiling.

Classification task
We view the problems of body site and severity modifier discov-
ery as relation extraction tasks. Formally, we define a relation
extraction task as: given two sets of entities, E and F, and a rela-
tion, R⊆E×F, find all pairs (e, f )∈R. Essentially, a relation extrac-
tion task requires us to search over all pairs of entities in E and
F, and identify the ones that participate in the relation R. The
set E will contain entities like symptoms and diseases for both
the body site (LocationOf) and severity (DegreeOf) relations,
while the set F will contain anatomical sites for the Location-Of
relation, and severity expressions for the DegreeOf relation.

We cast this relation extraction task as a supervised learning
problem. Given a pair of entities (e, f ), we train a classifier to
decide whether or not (e, f )∈R. Thus, the classification task is
binary and the classifier must assign each pair (e, f ) one of the
classes {R, No-R}. In particular, we focus on a sentence-level
task, in which the classifier must look at all pairs of entities
within a sentence, and learn to predict the class R if a relation
was annotated between those two entities, and the class No-R if
a relation was not annotated. We train two relation extraction
classifiers, one for R=LocationOf and one for R=DegreeOf.

In this paper, we train support vector machines (SVM) classi-
fiers for these tasks. SVM perform well on a variety of NLP
tasks.35

Classifier features
To train a classifier, we must characterize each (e, f ) pair with a
set of features that provide clues as to whether or not this pair
of entities participates in the relation R. We utilize rich linguistic
features including lexical, syntactic, and semantic features.
Figure 1 illustrates the features. Many of our features are based
on Zhou et al20 and the best-performing systems36 37 from
2011 i2b2 challenge.23 Below, we briefly summarize our features
and refer the reader to these publications for details:

▸ Token: the first and the last word of each entity, all words of
the entity as a bag, the preceding and the following three
words, and the number of words between the two entities

▸ POS: the POS tags of each entity as a bag
▸ Chunking: the head words of the syntactic base phrase

chunks between the two entities
▸ Dependency tree: the governing word and its POS tag for

each entity’s head word
▸ Dependency path: the length of the path through the

dependency from each entity to their common ancestor, and
the path between the two entities as a string

▸ Named entity: the number of entities between the two
entities, UMLS types of both entities, and whether the first
entity is enclosed in the second one (or vice versa).

We also experimented with tree kernel features, which have
been used successfully for relation extraction and semantic role
labeling in the general domain.38 39 Tree kernels offer a general-
ized approach to representing syntactic features. An instance is
represented by some phrase structure context, and the similarity
between two instance structures is computed by taking a
weighted sum of similar substructures (see Collins and Duffy40

for details). In this work, we use a representation called
path-enclosed tree,39 which, starting from a complete automatic
parse of a sentence, represents each potential relation instance
with the smallest sub-tree in the sentence containing both argu-
ments. In addition, new nodes labeled ARG1-{type} and
ARG2-{type} are inserted into the tree above the lowest node
that dominates the respective arguments, where {type} repre-
sents the UMLS semantic type of the argument. All features are
generated automatically by cTAKES, which includes a POS
tagger, a UMLS dictionary lookup, a phrase-chunker and the
dependency parser from Albright et al.41

Classifier parameters
In addition to a set of features, most supervised classifiers have a
set of parameters that are not set during the learning process,
and must be separately specified. SVMs have several such para-
meters, including the cost of misclassification (SVMC), the kernel
type (SVMkernel, eg, linear vs radial basis function), and add-
itional kernel-specific parameters (eg, SVMgamma in the radial
basis function kernel). To address specific issues associated with
entity-relation data, our models include several additional classi-
fier parameters beyond the standard SVM parameters.

Learning from imbalanced data is a central challenge in train-
ing relation extraction systems. Recall that we generate training
instances with classes {R, No-R} for all pairs of entities within
each sentence. As most entities and modifiers in a sentence are
unrelated, we typically end up with significantly more negative
than positive examples. Without additional guidance, most clas-
sifiers learn to favor the more dominant class. Thus, our models
include a down-sampling parameter, Pneg, to address this imbal-
ance. During training, this parameter is used randomly to
discard negative (ie, dominant class) examples with probability
(1—Pneg).

We also consider, as a classifier parameter, a variation to the
classification paradigm. Note that in the standard binary classi-
fier approach described above, if there is any overlap between
sets E and F we may have to classify two entities e and f twice:
once for the pair (e, f ) and once for the pair (f, e). An alterna-
tive to this approach is to train a three-way classifier. We first
order all of the entities by their location in the clinical text, and
then pair up entities only with other entities that are later in the
text. This means that we will see only (e, f ) or (f, e), but not
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both. Now, we train our classifier to assign each pair (x, y) one
of three classes: {R, R−1, No-R}, where the class R indicates that
the relation R(x, y) is present, the class R−1 indicates that the
relation R(y, x) is present, and No-R indicates that there is no
relation for either ordering of the entities. Thus in our set-up,
we have a strategy parameter that is set to one of {2-class,
3-class}.

The tree kernel requires the setting of a parameter λ, which
represents a discount of larger tree structures. In addition, tree
kernels can be used on their own or incorporated with other
features in a composite kernel, which takes a weighted linear
combination of a traditional feature kernel with a tree kernel.

Experimental set-up
Models are evaluated on these corpora using measures com-
monly employed in NLP—namely precision, recall and F1
score.7 42

To set the various model parameters (SVMC, SVMkernel,
SVMgamma, Pneg, strategy), models are trained on the training set
and evaluated on the development set. We explore the space of
possible parameter settings using a grid search, training one
model for each set of parameters. The parameter settings for
the model with the highest F1 on the development set are used
to train a model on the combination of the training and devel-
opment data. This final model is then evaluated on the testing
data. Note that this parameter tuning is performed separately
for the DegreeOf and LocationOf models, so the two models
may have different parameter settings chosen by their respective
grid searches. For the tree kernel parameters, we set λ=0.4, and
use a composite kernel (combining the grid search-optimized
feature kernel and the tree kernel), normalizing both kernels
and giving them equal weight. These tree kernel parameters can
be optimized using a grid search, but it is computationally quite
expensive to train tree kernels, so we set the parameters based
on values found to perform well in previous work.

We implement five rule-based baselines to which we compare
the performance of our system. The first four baselines only link
pairs of entities that have appropriate entity types for their
respective relations (DegreeOf or LocationOf). The first baseline

predicts relations only in sentences with exactly two entities.
The second baseline searches for sentences with one or more
modifiers (anatomical site for LocationOf, severity for
DegreeOf) and exactly one other entity, and predicts a relation
between the entity and the closest modifier. The third baseline
associates each modifier with the nearest entity, as long as there
is no intervening modifier. The fourth baseline predicts a rela-
tion only between entities that are enclosed in the same noun
phrase. The fifth baseline approximates a grammar/rule-based
system. It trains an SVM model using only the dependency path
feature (with words on both ends replaced with their UMLS
semantic types), essentially allowing the SVM to memorize
dependency paths between clinical entities that are likely indica-
tors of LocationOf or DegreeOf relations. We train a model
using only this feature, tuning the model parameters on the
development set.

RESULTS
Model tuning
As described earlier, a grid search over possible parameter set-
tings was performed using the training and development data.
This search determined that for the SHARP corpus, the best
parameters for the LocationOf classifier were SVMC=100.0,
SVMkernel=radial basis function, SVMgamma=0.01, Pneg=0.5
and strategy=3-class; the best parameters for the DegreeOf
classifier were SVMC=0.05, SVMkernel=linear, Pneg=1.0 and
strategy=3-class. For the ShARe corpus, the best parameters for
the LocationOf classifier were SVMC=100.0, SVMkernel=radial
basis function, SVMgamma=0.001, Pneg=1.0 and strategy=3-
class; the best parameters for the DegreeOf classifier were
SVMC=0.5, SVMkernel=linear, Pneg=1.0 and strategy=3-class.

So, for most models, the 3-class strategy was most effective
and downsampling was not necessary.

Model evaluation
In this section we conduct an evaluation on a held-out test set,
which provides an estimate of the system performance that can
be achieved in practice. For each corpus, we train the models
for the LocationOf and DegreeOf relations on the combination

Figure 1 Some of the features used to predict the LocationOf relation in an example sentence.
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of the training and development data, and using the parameters
determined in the previous section. We then evaluate the
models against the test set. We also evaluate the baseline models
on the same test set. To assess the portability of our models we
also evaluate the models trained on the SHARP training and
development sets against the ShARe test set. Results are shown
in table 2. We do not test a ShARe-trained model on the
SHARP test set because ShARe annotates only a subset of the
SHARP entity types (see the Corpus section). So for example, a
ShARe model will never see a procedure mention in the ShARe
training data, but would be asked to find relations for procedure
mentions in the SHARP test set.

Feature ablation experiments
To quantify the utility of each feature group, we performed all-
but-one feature ablation experiments on the development set.
That is, we left out each feature group, retrained the model, and
evaluated it on the development set. We report the results for
the SHARP corpus in table 3.

DISCUSSION
The results of our evaluation indicate that for both LocationOf
and DegreeOf, model performance is high—typically achieving
the same level as the human agreement. The performance of the
DegreeOf model is consistently higher than that of the
LocationOf model, probably because the task of discovering
DegreeOf relations is easier: on average, the arguments of a
DegreeOf relation are 0.61 tokens apart, while the arguments of

a LocationOf relation are 3.22 tokens apart, and for the
DegreeOf relation, the classifier had to consider only 2643 can-
didate entity pairs (28% of which were true relations), but for
LocationOf it had to consider 36 865 pairs (14% of which were
relations).

On the SHARP corpus, the SVM models outperformed all
five rule-based baselines. On the ShARe corpus, the SVM
LocationOf model outperformed all five baselines, but for
DegreeOf, baseline 3 performed as well as the SVM. Baseline 3,
which added relations for adjacent modifiers and entities, gener-
ally had good performance on DegreeOf, in which the argu-
ments were on average only 0.61 tokens apart. However, for
LocationOf, the baseline did not perform as well as the SVM
models, which could handle better the more distant and
complex relations. This was especially true on the SHARP
corpus, in which the SVM model outperformed baseline 3 by
0.166 F1 (0.740 vs 0.574).

Across different corpora, the results are consistently better
when the evaluation is conducted on the ShARe corpus. The
difference is probably due to the fact that the ShARe project
annotated fewer entity types than SHARP, making the task of
discovering body site and severity modifiers simpler. But we also
found that when evaluating on the ShARe test data, a model
trained on the SHARP data performs almost as well as a model
trained on the ShARe data, indicating that the SHARP model is
fairly portable to other domains.

Our feature ablation experiments indicate that most features
contribute to the overall system performance. Across both rela-
tion types, the most important feature group is the named entity
type features, followed by the token features, which is consistent
with the findings in the general domain.20 Unlike in the general
domain, where chunking features appear to be among the
largest contributors, in our experiments the chunking features
did not improve the performance by much. Similarly, tree
kernel features did not improve performance, contrary to
several studies in the general domain. Finally, similar to the
general domain, the dependency features provided only a
modest boost to the system performance.

To analyze the sources of errors, we manually reviewed 50
LocationOf errors the system made on the SHARP data. Out of
those 50, 22 instances were due to an error in the human anno-
tations and 28 instances were actual system errors. It appears
that the system errors could be attributed to one of three
sources:
1. Sentence segmentation errors (one instance)
2. Infrequent patterns in training data (eight instances)
3. Inability of the system to discern more complex semantic

patterns (19 instances).

Table 2 Model performance for on the SHARP and ShARe test
sets

Relation Test corpus Model Precision Recall F1

LocationOf SHARP Baseline 1 0.900 0.096 0.174
Baseline 2 0.910 0.198 0.325
Baseline 3 0.858 0.431 0.574
Baseline 4 0.551 0.522 0.536
Baseline 5 0.758 0.340 0.470
SVM trained on SHARP 0.786 0.699 0.740
Composite (TK+features) 0.828 0.661 0.735
Human agreement – – 0.744

ShARe Baseline 1 1.000 0.356 0.525
Baseline 2 1.000 0.381 0.552
Baseline 3 0.971 0.777 0.863
Baseline 4 0.521 0.700 0.598
Baseline 5 0.941 0.556 0.699
SVM trained on ShARe 0.953 0.867 0.908
SVM trained on SHARP 0.916 0.883 0.899
Human agreement – – 0.800

DegreeOf SHARP Baseline 1 1.000 0.044 0.084
Baseline 2 1.000 0.044 0.084
Baseline 3 0.907 0.857 0.881
Baseline 4 0.896 0.758 0.821
Baseline 5 0.860 0.473 0.610
SVM trained on SHARP 0.869 0.945 0.905
Composite (TK+features) 0.840 0.923 0.880
Human agreement – – 0.871

ShARe Baseline 1 0.944 0.121 0.214
Baseline 2 0.947 0.128 0.225
Baseline 3 0.977 0.887 0.929
Baseline 4 0.929 0.745 0.827
Baseline 5 0.404 0.979 0.571
SVM trained on ShARe 0.929 0.929 0.929
SVM trained on SHARP 0.926 0.887 0.906
Human agreement – – 0.664

ShARe, Shared Annotated Resource; SHARP, Strategic Health Advanced Research
Project.

Table 3 Performance of models with various features removed
on the SHARP development set

Included features

LocationOf DegreeOf

F1 ΔF1 F1 ΔF1

All 0.776 0.972
No token features 0.742 −0.034 0.909 −0.063
No POS features 0.768 −0.008 0.963 −0.009
No chunking features 0.766 −0.010 0.972 0

No named entity features 0.712 −0.064 0.904 −0.068
No dependency tree features 0.757 −0.019 0.944 −0.028
No dependency path features 0.755 −0.021 0.954 −0.018

SHARP, Strategic Health Advanced Research Project.
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An example of (2) is that the system mistakenly discovered
LocationOf(abdominal aorta, aortogram) in Aortogram: Patent
abdominal aorta that tapers from approximately 20 m… prob-
ably due to the frequent appearance of a similar pattern in the
data, for example, Lungs: Equal AE bilaterally, no rales, no
rhonchi in which Lungs (anatomical site) appears in a similar
position as Aortogram (procedure). An example of (3) is that
the system erroneously identified LocationOf(feet, femoropopli-
teal disease) in Non-invasive studies suggest significant femoro-
popliteal disease with monophasic Doppler signals in the feet
probably due to incorrectly attaching the PP with monophasic
Doppler signals to femoropopliteal disease even though such
attachment does not make sense semantically.

CONCLUSION
We presented a methodology for the discovery of two key attri-
butes from the clinical narrative—body site and severity. We
showed that the task can be successfully cast as a supervised
machine learning relation extraction problem, and that key fea-
tures include the surrounding tokens and UMLS named entities.
The best-performing methods identify LocationOf relations
with F1 of 0.740–0.908 and DegreeOf relations with F1 of
0.905–0.929. These models are implemented as modules within
cTAKES, thus providing an open source end-to-end system to
the community for research and direct use purposes. In add-
ition, the developed framework represents a general purpose
utility for the semantic task of relation extraction thus contribut-
ing to the clinical NLP ecosystem.

This work focused on the discovery of body site and severity
modifiers of clinical entities within the same sentence.
Extending this work to inter-sentential relations will probably
require leveraging sophisticated discourse processing including
coreference resolution and in some cases textual entailment.
Another challenge is relation discovery with underspecified,
omitted or implicit information. For example, a mass men-
tioned in a breast cancer pathology report without an explicit
anatomical site implies that the location is highly likely to be
the breast.

The work described here is a step towards building a classifi-
cation framework for relation discovery from the clinical narra-
tive. Although in this work, we focused on DegreeOf and
LocationOf relations, our system is easily extendable to many
other relation types. In fact, to include new relations, no soft-
ware changes are required; it is sufficient simply to include the
examples of new relation types in the training data. The SHARP
corpus currently includes several other UMLS relation types
such as manages/treats and causes/brings_about. We are planning
to retrain our system to include these relations in the near
future. Our next steps will also include the implementation of
the best methods in translational science applications such as
phenotyping for the electronic medical record and genomics,
informatics for i2b2, automatic disease activity classification43 as
part of the pharmacogenomics research network, and clinical
question answering as part of the multi-source integrated plat-
form for answering clinical questions.44
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