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INTRODUCTION
Regular resistance exercise is an excellent strategy that enhanc-

es physical fitness, including muscle strength and skeletal muscle 
hypertrophy [1-3]. Although the optimal resistance exercise pro-
tocol for promoting muscular strength is unknown, it is common 
for resistance-trained men to perform resistance exercise to skel-
etal muscle hypertrophy. Resistance exercise provides mechanical 

tension, which induces skeletal muscle overload [4,5]. It has been 
postulated that resistance exercise–induced chronic skeletal mus-
cle damage in men contributes to the triggering of skeletal muscle 
dysfunction via increase in markers of skeletal muscle damage [6]. 
These skeletal muscle damage markers, including creatine kinase 
(CK), creatine kinase–myocardial band (CK-MB), troponin(s), 
B-type natriuretic peptide (BNP), lactate dehydrogenase (LDH) 
[7-10], and myoglobin, play a role in skeletal muscle soreness 
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ABSTRACT Ursolic acid (UA) supplementation was previously shown to improve skel-
etal muscle function in resistance-trained men. This study aimed to determine, using 
the same experimental paradigm, whether UA also has beneficial effects on exercise-
induced skeletal muscle damage markers including the levels of cortisol, B-type na-
triuretic peptide (BNP), myoglobin, creatine kinase (CK), creatine kinase-myocardial 
band (CK-MB), and lactate dehydrogenase (LDH) in resistance-trained men. Sixteen 
healthy participants were randomly assigned to resistance training (RT) or RT+UA 
groups (n=8 per group). Participants were trained according to the RT program 
(60~80% of 1 repetition, 6 times/week), and the UA group was additionally given UA 
supplementation (450 mg/day) for 8 weeks. Blood samples were obtained before 
and after intervention, and cortisol, BNP, myoglobin, CK, CK-MB, and LDH levels were 
analyzed. Subjects who underwent RT alone showed no significant change in body 
composition and markers of skeletal muscle damage, whereas RT+UA group showed 
slightly decreased body weight and body fat percentage and slightly increased lean 
body mass, but without statistical significance. In addition, UA supplementation sig-
nificantly decreased the BNP, CK, CK-MB, and LDH levels (p<0.05). In conclusion, UA 
supplementation alleviates increased skeletal muscle damage markers after RT. This 
finding provides evidence for a potential new therapy for resistance-trained men.
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through tears in supportive connective tissue [11], sarcolemma 
[12], basal lamina [13], z-disk [14], and in structures that injure 
contractile elements and the cytoskeleton [15]. Furthermore, in-
terventions that decrease markers support attenuation of skeletal 
muscle damage, increase in physical function, and maintenance 
of the intracellular anabolic metabolism for training adaptation 
process. Toward this end, different approaches have been tried 
to recognize the best novel supplementation strategy that can 
protect against increased skeletal muscle damage markers in 
resistance-trained men.

Various nutritional approaches [16], in particular plant-origin 
products [17], enhance skeletal muscle function [18] and anabolic 
response to resistance exercise [19]. Although dietary supple-
mentation has been shown to increase muscle strength, it has 
not been determined whether dietary supplementation with 
resistance training (RT) may protect against increase in skeletal 
muscle damage markers in resistance-trained men. Furthermore, 
the importance of this study is highlighted by the recent rise in 
strategies for prevention of skeletal muscle damage using supple-
mentation in resistance-trained men [20]. In particular, ursolic 
acid (UA), a pentacyclic triterpenoid carboxylic acid, is found in 
various plants, edible vegetables, and medicinal herbs. Its biologi-
cal activities are widely recognized, including its anti-oxidant, 
anti-inflammatory, and anti-hyperlipidemic effects [21,22]. Re-
cently, UA has been reported to increase skeletal muscle mass 
[23], reverse ischemia-induced cardiac dysfunction in mouse 
cardiac myocytes [24], and improve cardiac failure in animals 
[25]. However, the effects of UA on skeletal muscle damage mark-
ers in resistance-trained men are yet to be investigated. Thus, we 
aimed to determine the role of UA supplementation on the levels 
of markers of skeletal muscle damage in resistance-trained men. 

METHODS 

Participants

Sixteen healthy resistance-trained male volunteers (mean age, 
33.00±1.30 years; mean body weight, 85.14±3.16 kg) were enrolled 
in the study. All participants were experienced resistance-trained 
(RT) athletes who had consistently trained under personalized 
skeletal muscle hypertrophy programs for 3 years. To further 
verify the effect of UA on skeletal muscle damage in resistance-
trained men, participants without injury who performed RT at 
least three times per week to sustain skeletal muscle hypertrophy 
with repetition range, as previously described in the literature, 
were recruited [26]. Participants with chronic diseases such as 
cardiovascular diseases, hypertension, diabetes, or obesity di-
agnosed 6 months before the study were excluded. Participants 
were randomly divided into two groups: RT (control group) and 
RT+UA (intervention group). The intervention was performed 
for 8 weeks. All participants was given informed consent before 

participation in the study, and ethical approval was given by the 
Institutional Review Board at Pusan National University. 

RT protocol

The RT program was designed by a professional strength and 
conditioning specialist. The specialist determined the 1 repetition 
maximum (1 RM) intensity for each subject before the study, as 
previously described [27]. All subjects trained 6 times per week 
and adopted the program to become familiar with all exercise 
sessions. The program was started in the early evening after the 
participants returned from work. Participants performed the RT 
program for 8 weeks, consisting 26 exercise types (13 upper-body 
and 13 lower-body training exercises). Every exercise included 
60% to 80% of 1 RM, and all five sets were completed with 60 to 
90 s inter-set rest, as previously described [27].

UA supplementation

The participants took one 150 mg UA capsule (Labrada, Hous-
ton, TX, USA) after each meal, for a total of 3 capsules/day (450 
mg in total), for 8 weeks. The supplementation protocols were 
given in detail in our previous study [27]. We monitored the di-
etary pattern of the subjects via cellular phone or via laboratory 
visits during the study.

Body composition and blood parameters 

Body composition and blood parameters were measured before 
and after the 8-week intervention period. Body composition was 
measured using a multi-frequency electrical impedance analyzer 
(X-scan Plus II, Jawon Medical, Seoul, Korea). Blood samples 
were obtained from the antecubital vein after 10 hours of fasting. 
The blood samples were centrifuged at 1,500 g and 4°C for 15 min 
and frozen at –80°C until analysis. CK, LDH, and CK-MB levels 
were measured using an automated analyzer from Hoffman-
LaRoche (Basel, Switzerland). Cortisol level was measured using 
an automated analyzer from Hitachi (Tokyo, Japan). myoglobin 
level was measured using an automated analyzer from Beckman 
Coulter (Brea, CA, USA). BNP level was measured using enzyme-
linked immunosorbent assay kits from Biosite Inc. (San Diego, 
CA, USA) [28]. 

Statistics analysis

All data were expressed as mean±standard error (SEM) using 
SPSS version 22.0 (IBM, Armonk, NY, USA). To determine the 
mean difference between groups, the data were analyzed using 
two-way analysis of variance with repeated measurements (group 
[RT and RT+UA] by time [before and after 8 weeks]). If the inter-
action (time x group) was found to be significant, within-group 
comparisons were made using paired t-test. Statistical signifi-
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cance was set at p<0.05.

RESULTS

Characteristics of participants

Participants were assigned to either the RT group (n=8) or 
the RT+UA group (n=8) for the 8-week intervention period. The 
baseline characteristics of the study participants are presented 
in Table 1. There were no significant differences in the baseline 
characteristics of the participants between both groups. Body 
weight and body fat percentage slightly decreased in both groups 
after 8 weeks, but were not statistically significant. On the con-
trary, lean body mass was slightly increased in both groups after 8 
weeks, but without statistical significance. 

Makers of skeletal muscle damage 

The changes in the levels of skeletal muscle damage markers 
from baseline to after 8 weeks are presented in Table 2. In the 
RT group, there were no significant changes in any parameters 
before and after 8 weeks, whereas for the RT+UA group, there 
was a significant treatment-by-time interaction for BNP, CK, CK-
MB, cortisol, LDH, and myoblobin (p<0.05). In addition, in the 
RT+UA group, UA supplementation significantly decreased the 
levels of BNP, CK, CK-MB, and LDH (p<0.05). The changes in all 

parameters were significantly (p<0.05) different between groups 
(Fig. 1). 

DISCUSSION
In the present study, we found that RT with UA supplementa-

tion in resistance-trained men caused a decline in the levels of 
skeletal muscle damage markers, such as BNP, CK, CK-MB, and 
LDH. However, we did not find significant reduction in body 
weight or body fat percentage or increase in skeletal muscle mass. 
These findings suggest that UA supplementation has beneficial 
effects on attenuating the increase in skeletal muscle damage 
markers in resistance-trained men during the 8-week RT. 

Regular RT enhances skeletal muscle mass and muscular 
strength, which sustains physical fitness [29]. RT leads to suc-
cessful skeletal muscle hypertrophy, but it also causes increase in 
skeletal muscle damage markers and reduction in skeletal muscle 
regenerative factors [30,31]. Thus, it is important to maintain the 
balance of these parameters in resistance-trained men. Addition-
ally, the use of these programs without concomitant nutritional 
support can lead to skeletal damage and soreness, which can have 
an effect on increased CK in blood and block the recovery of 
skeletal muscle damage and function [32]. Based on these previ-
ous results, we hypothesized that the participants who underwent 
regular, high-intensity RT would have a higher level of skeletal 
muscle damage markers during the 8 weeks. Unexpectedly, we 

Table 1. Characteristics and body composition of participants at baseline and after 8 weeks of interventions

Variable
RT (n=8) RT+UA (n=8)

Baseline 8 weeks Baseline 8 weeks 

Age (years) 33.12±3.12 - 32.87±2.87 -
Body weight (kg) 83.75±4.69 82.85±4.68 86.53±4.51 84.05±4.52
Lean body mass (kg) 70.48±3.81 70.88±3.61 69.52±3.96 70.76±3.56
Body fat percentage (%) 13.86±1.11 11.16±1.30 10.87±0.87 9.21±0.88

Data are presented as mean±SE. RT, resistance training; UA, ursolic acid.

Table 2. Markers of skeletal muscle damage at baseline and after 8 weeks of intervention

Variable
RT (n=8) RT+UA (n=8)

Baseline 8 weeks Baseline 8 weeks

BNP (pg/ml) 1.31±0.29 1.56±0.13 1.94±0.24 1.04±0.19†,#

CK (U/L) 614.50±169.08 858.75±201.38 811.25±144.53 251.35±88.86†,#

CK-MB (ng/ml) 8.50±1.43 8.72±1.38 9.96±0.72 6.47±0.96†,#

Cortisol (ug/dl) 10.50±0.91 12.04±0.86 12.25±0.95 9.95±0.98#

LDH (U/L) 243.12±21.20 263.37±25.25 287.37±22.33 215.75±12.94†,#

Myoglobin (ng/ml) 42.41±4.65 46.72±5.33 51.06±4.37 37.80±5.30#

Data are presented as mean±SE. BNP, B-type natriuretic peptide; CK, creatine kinase; CK-MB, creatine kinase–myocardial band; LDH, 
lactate dehydrogenase; RT, resistance training; UA, ursolic acid. †p<0.05 vs. baseline (within-group). #p<0.05 vs. the RT group (group-by-
time interaction).
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found that the level of skeletal muscle damage markers, such as 
CK (39.73%), BNP (19.08%), CK-MB (2.58%), cortisol (14.66%), 
LDH (8.23%), and myoglobin (10.16%), showed a slight tendency 
to increase with RT, but statistical significance was not reached. It 
is possible that in some of the previous studies resistance-trained 
men, who always performed high intensity RT, have sustained 
increase in skeletal damage markers, compared with untrained 
men [33]. However, other study reported that an increase in CK 
levels in blood damages the skeletal muscle cell structure [34] and 
leads to a decrease in exercise performance after high RT periods 
[35]. These findings suggest that the RT protocol cannot possibly 
affect higher levels of these markers in resistance-trained men 
compared with untrained men. In addition, the discrepancy be-
tween the present and previous studies might be due to difference 
in RT intensity, and duration of training in resistance-trained 
men. Thus, further studies are necessary to elucidate the influ-
ence of RT protocols on the exercise-induced release of skeletal 
muscle damage markers to understand its role in the physiologi-
cal response to RT protocols in resistance-trained men. 

Recently, growing evidences suggest that UA is beneficial for 
the improvement of energy expenditure and skeletal muscle func-
tion through the activation of protein synthesis and inhibition 
of skeletal muscle atrophy [36-38]. Additionally, the rationale 
behind our selection of UA was the recent strong finding based 
on the level of biomarkers of cardiac and liver damage in disease 
rodent models [39,40]. However, whether UA supplementation 
affects release of skeletal muscle damage markers during RT in 
resistance-trained men is unclear. As expected, we found that RT 
with UA supplementation in resistance-trained men promoted 
a decline in the level of skeletal muscle damage markers, such 
as serum BNP, CK, CK-MB, and LDH. These findings suggest 

that the decrease in the levels of these markers induced by UA 
may lead to the recovery of the skeletal muscle damage mark-
ers during RT in resistance-trained men. It is important to note 
that UA supplementation is considered to contribute to decrease 
in skeletal muscle damage markers. A similar study by Radhiga 
et al. [40] suggested that UA could decrease CK, CK-MB, and 
LDH in rats with cardiac infarct. In addition, Bakhtiari et al. [36] 
reported that UA promoted skeletal muscle regeneration by dif-
ferentiation of satellite cells. These results suggest that UA exhib-
ited protective effect against increased skeletal damage markers 
and degradation of regeneration factors including satellite cells in 
resistance-trained men. This study, therefore, is the first to report 
that UA supplementation effectively suppresses skeletal muscle 
damage markers in resistance-trained men. Our results provide 
a compelling evidence that UA can be a potential dietary method 
for inhibition of skeletal muscle damage markers during RT in 
resistance-trained men, with in-depth molecular mechanisms 
requiring further investigation.

The presented results have some limitations. First, the sample 
size observed in this study was relatively small. Second, we only 
studied healthy resistance-trained men. Future study on UA 
supplementation with and without RT should be performed in 
participants with chronic diseases such as skeletal muscle atro-
phy, aging, obesity, and diabetes. Third, follow-up studies are 
necessary to determine the relationship between skeletal muscle 
damage markers and skeletal muscle function. Finally, the dura-
tion of high-intensity exercise was short. 

In conclusion, the present study revealed that UA supplementa-
tion inhibited the skeletal muscle damage markers during RT in 
resistance-trained men, hence suggesting that it will be an alter-
native therapy against skeletal muscle damage after RT.

Fig. 1. Percentage of changes in markers of skeletal muscle damage at baseline and after 8 weeks of RT and RT+UA in resistance-trained 
men. (A) B-type natriuretic peptide (BNP), (B) creatine kinase (CK), (C) creatine kinase–myocardial band (CK-MB), (D) cortisol, (E) lactate dehydroge-
nase (LDH), and (F) myoglobin. Data are presented as mean±SE. *p<0.05, vs. the RT group.
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