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Abstract: The full-thickness articular cartilage defect (FTAC) is an abnormally severe grade of articular
cartilage (AC) injury. An osteochondral autograft transfer (OAT) is the recommended treatment,
but the increasing morbidity rate from osteochondral plug harvesting is a limitation. Thus, the
3D-printed bilayer’s bioactive-biomaterials scaffold is of major interest. Polylactic acid (PLA) and
polycaprolactone (PCL) were blended with hydroxyapatite (HA) for the 3D-printed bone layer of the
bilayer’s bioactive-biomaterials scaffold (B-BBBS). Meanwhile, the blended PLA/PCL filament was 3D
printed and combined with a chitosan (CS)/silk firoin (SF) using a lyophilization technique to fabricate
the AC layer of the bilayer’s bioactive-biomaterials scaffold (AC-BBBS). Material characterization and
mechanical and biological tests were performed. The fabrication process consists of combining the
3D-printed structure (AC-BBBS and B-BBBS) and a lyophilized porous AC-BBBS. The morphology and
printing abilities were investigated, and biological tests were performed. Finite element analysis (FEA)
was performed to predict the maximum load that the bilayer’s bioactive-biomaterials scaffold (BBBS)
could carry. The presence of HA and CS/SF in the PLA/PCL structure increased cell proliferation.
The FEA predicted the load carrying capacity to be up to 663.2 N. All tests indicated that it is possible
for BBBS to be used in tissue engineering for AC and bone regeneration in FTAC treatment.

Keywords: 3D printing; bilayer scaffold; biomaterials; tissue engineering; full-thickness articular
cartilage defects

1. Introduction

Articular cartilage (AC) injury from chronic joint stress or acute traumatic injuries results in
pain and swelling, causing long-term problems for patients [1–4]. The AC is devoid of blood vessels,
lymphatics, and nerves, hence there is a limited capacity for intrinsic healing and repair [3–6]. According
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to the International Cartilage Repair Society (ICRS) cartilage lesion classification system, the most
abnormally severe grade is classified when the lesion extends from the superficial of the AC to
the subchondral bone (grade IV: full-thickness AC defects) [7,8]. Currently, the most promising
technique to help full-thickness AC defect (FTAC) patients to resume their previous sporting activities
is the osteochondral autograft transfer (OAT), in which the defect is filled with the same person’s
osteochondral (OC) tissue taken from less weight-bearing areas on the femoral condyle. This can be
in the form of either a single large OC plug or multiple small plugs, and it achieves a congruency
of the AC surface in the load-bearing zone of the femoral condyle [6,9]. OAT implantation does
not have the same limitations as other treatments in terms of time of rehabilitation and predictable
cartilage-type results, and has become widely accepted as an effective treatment for high-grade AC
defects of the knee and talus [10–12]. However, there are some limitations of OAT such as the increased
morbidity rate at the donor site and high operation cost [6,13,14]. Thus, a biomedical engineering
strategy was used to eliminate the limitations of the OAT technique for FTAC. The bilayer biomaterials
scaffold and its fabrication process are of major interest to improve the treatment process and decrease
the limitations using low-cost local materials and fabrication techniques. In our previous study,
3D printing and the fabricated biomaterials filaments were demonstrated as being feasible for use
as an implantation device for bone fracture treatment [15]. Polylactic acid (PLA), polycaprolactone
(PCL), and hydroxyapatite (HA) were selected to fabricate 3D-printed filaments owing to both their
biological and mechanical abilities [15–22]. PLA is produced from 100% renewable resources and
can be obtained from the fermentation of corn, sugar beets, and rice [23]. The USA Food and Drug
Administration (FDA) approved PLA in the 1970s [24]. Since then, this polymer has been widely
applied for medical purposes owing to its excellent biocompatibility, biodegradability, and mechanical
properties [25–28]. PCL has been widely used in tissue engineering. The benefits of this polyester are
its biocompatibility, relatively slow degradation rate, substantially fewer acidic breakdown products
in comparison with other polyesters, and suitability for use in load-bearing applications [29–31]. It has
also been reported to have an exceptional ability to form blends with a wide variety of polymers [32].
PCL is considered as a non-toxic and tissue-compatible polymer that is widely used for medical
device fabrication, tissue engineering, and drug-release applications [33–45]. Modified PCL, using
monomers with various functional groups, copolymerization, and post-functionalization to introduce
functionality, demonstrates useful changes in its mechanical properties, hydrolytic degradation, and
crystalline structures compared with native PCL [46–50]. HA can be obtained from natural sources such
as mammalian bones, coral, and seashell [51–54]. HA is used in bone tissue engineering applications
owing to its bioactivity, osteo-conductivity, and biodegradability [55,56]. HA powder can be added
to other biomaterials to increase their biological properties [57,58]. Moreover, chitosan (CS) and
silk fibroin (SF) were selected to be additional materials for AC layer fabrication. CS is a type of
polysaccharide derived from chitin with a structure similar to the glycosaminoglycans (GAGs), which
are a component of the cartilage extracellular matrix [12,59]. CS is widely used in tissue engineering
applications owing to its porous structure, biocompatibility, biodegradability, non-cytotoxicity, and low
cost [57,58,60]. Furthermore, implantation of the CS scaffold could reduce the risk of bacterial infection
owing to its antimicrobial property [61–63]. Moreover, a previous study reported that the structure of
CS could promote osteo-conductivity [64]. Meanwhile, silk fiber is recognized as a raw material for the
textile industry and contains useful components (silk fibroin: SF) for biomedical applications such
as silk suture, wound dressing, drug delivery systems, and scaffolds [65–69]. Previous studies have
shown that the presence of SF in the scaffold could stimulate the proliferation properties of cells [57,70].
Besides, the integrated osteochondral scaffolds from silk fibroin can effectively support cartilage and
bone tissue generation in vitro and are potentially applicable for osteochondral tissue engineering
in vivo [71]. HA, CS, and SF can be extracted locally from industrial waste (HA: the meat industry,
CS: the seafood industry, and SF: silkworm farms and the silk textile industry). Thus, the use of these
materials for biomedical applications produces added value to local industrial waste. Because of their
properties, PLA, PCL, HA, CS, and SF were selected for use in this study. Three-dimensional printing
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and lyophilization were carried out to fabricate bilayer’s bioactive-biomaterials scaffold (BBBS) for
FTAC treatment. The principal aim of this study was to evaluate the mechanical/physical properties
and the biocompatibility of the BBBS as a biomedical strategy potentially useful in tissue engineering
for FTAC treatment.

2. Materials and Methods

The BBBS for FTAC treatment was designed based on the osteochondral area of the knee joint
femoral condyles, which consists of AC and bone layers. Therefore, the BBBS was developed to plug
into the injury site instead of the real osteochondral plug and provide both AC and bone regeneration
in the defect area. The AC layer of the scaffold (AC-BBBS layer) provides a proper environment for
chondrocyte cell culture before the implantation. Meanwhile, the bone layer of the BBBS (B-BBBS
layer) was prepared for bone formation inside the designed structure after being placed in the defect
area. The fabrication of BBBS is briefly presented in Figure 1.
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Figure 1. The fabrication diagram of the bilayer’s bioactive-biomaterials scaffold (BBBS). PLA, polylactic
acid; PCL, polycaprolactone; CS, chitosan; SF, silk fibroin; HA, hydroxyapatite; AC, articular cartilage.

2.1. Hydroxyapatite Preparation

For HA preparation, bovine bone was cut into small pieces. The tissue and ligament were removed
after soaking the bone in H2O2 (30%, Merck, Darmstadt, Germany) for 2 days. Then, the clean, small
pieces of bones were boiled in 100 ◦C water to eliminate organic substances. Next, the cleaned bones
were dried in a 120 ◦C hot air oven for 7 h to reduce the moisture. The dried bones were calcined at
850 ◦C for 3 h [52] before being ground by a local custom high-speed ball milling machine until the
particle size was less than 20 µm [72].

2.2. Silk Fibroin Preparation

SF was extracted from the local Thai Bombyx mori (Nang-Noi, Chiang Mai, Thailand) silk cocoons.
They were cut into small pieces and degummed in 0.02 M of Na2CO3 solution (Ajax Finechem Pty
Ltd., Auckland, New Zealand) at 90–100 ◦C for 30 min and rinsed with warm deionized (DI) water.
This process removes the sericin, which causes immunogenic reactions. The degummed silk was
dried overnight in a 37 ◦C hot air oven. Then, dried degummed silk was dissolved in ternary solvent
(CaCl2/C2H5OH/H2O; 1:2:8 in mole ratio) and incubated at 70 ◦C for 6 h [52]. CaCl2 and C2H5OH were
purchased from Ajax Finechem Pty Ltd., Auckland, New Zealand and Merck, Darmstadt, Germany,
respectively. The silk-ternary solution was dialyzed in DI water using a cellulose membrane (Dialysis
Tubing D9652, Sigma-aldrich, MWCO 12164, St Louis, MO, USA) at 4 ◦C for 72 h. DI water was
changed every 24 h. The dialyzed SF solution was centrifuged at 2000 rpm for 10 min to separate the
waste, and frozen at −80 ◦C. The frozen SF solution was lyophilized to obtain the SF sponges.
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2.3. Filament Extrusion

Composite biomaterial filaments for 3D printing were locally extruded using a desktop single-screw
extruder (Wellzoom Desktop Extruder Line II, Shenzhen Mistar Technology Co., Ltd., Guangdong,
China) with the filament cooling system, as shown in Figure 2. The material mixing ratios were obtained
from a previous study [15]. The PLA/PCL represented the mixed granules between 70% of PLA and
30% of PCL. The PLA/PCL/15HA represented 85% of PLA/PCL and 15% of HA [15]. PLA (Ingeo 3D850,
Natureworks LLC, Blair, Blair, NE, USA) and PCL (Mw 60,000 to 80,000 Da, Daigang Biomaterials,
Shandong, China) granules were blended to increase the material’s properties, both biological and
mechanical [73–75]. The preparation process of these blended materials was modified from a previous
study [15]. The PCL and HA were dry mixed in a local custom high-speed ball milling for 12 h. As a
result of the low melting temperature of PCL (approximately 60 ◦C), the softening temperature of
PCL is around 40 ◦C [76]. During the high-speed ball milling process, the heat accumulated up to
45 ◦C. Therefore, HA powder was thoroughly attached to the softening surface of the PCL granule.
The PLA granule was dried in a 60 ◦C hot air oven for 4 h to reduce the moisture. The dried PLA
was immediately added to the ball milling containing PCL + HA at 12 h and the milling process was
continued for another 12 h. The PLA/PCL filament was selected for the AC-BBBS layer fabrication,
while the PLA/PCL/15HA was selected for the B-BBBS layer.
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Figure 2. Wellzoom Desktop Extruder Line II with filament cooling system.

Extrusion conditions of both filaments for B-BBBS and AC-BBBS layers were set up similarly.
The temperature of the pre-heat chamber was set at 190 ◦C, while the extrusion nozzle was set in the
range of 190–200 ◦C. After turning the temperature on, the materials were kept in the pre-heat chamber
for 15 min before being supplied to the heated nozzle. The first run of the filament was manually
tracked to the water-cooling system until the starting tip of the filament reached the filament tractor.
Then, the extrusion speed and tractor speed were adjusted until the extruded filament diameter was
1.75 ± 0.05 mm and running smoothly. The filament, produced in the suitable conditions, was rolled to
the filament spool using a filament roller, which adjusted the rolling speed related to the filament tractor
speed. The diameters of the extruded filaments were measured and the extrusion parameters were
adjusted until the extruder provided a constant diameter (1.75 ± 0.05 mm) [77,78]. Then, the filaments
were randomly measured during the extrusion. The extruded filaments were randomly selected at 2 m
lengths. The diameters of the 2 m selected filaments were measured and recorded every 20 cm.
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2.4. Hydroxyapatite and Silk Fibroin Characterization

X-ray diffraction (XRD) was used to characterize the phase composition of the extracted HA and
the HA within the extruded filaments, while the functional group of SF sponge was characterized
using Fourier transform infrared spectroscopy (FTIR: Thermo Fisher Scientific, Waltham, MA, USA).

2.5. Mechanical Tests for 3D-Printed Specimen

Mechanical tests were performed to determine the mechanical properties for finite element
analysis. The mechanical test specimens from the extruded filaments were printed using a core XY
FFF 3D printer that was made locally by the Biomedical Engineering Institute (BMEI) laboratory,
as shown in Figure 3. The mechanical tests consisted of compression, tension, and bending. Each
test specimen followed the American Society for Testing and Materials (ASTM) and previous studies
for the recommended shape and size. The compression specimen was printed in a cylindrical shape
with a 10 mm diameter and 10 mm thickness (Figure 4). The specimen was placed in the compression
station of a universal testing machine (UTM). The crosshead motion rate was set at 5 mm/min with
a 10 kN loading cell [79]. The tensile specimen was printed in the recommended dimension of the
tensile testing standard (ASTM D638), as shown in Figure 4. The specimen was set in the tensile jig
fixture of the UTM. The crosshead motion was 5 mm/min with a 100 N loading cell [78]. The bending
test was performed on a rectangular-shaped 3D-printed specimen following the ASTM D790 standard
(Figure 4). The specimen was placed in the three-point bending testing set of the UTM. The crosshead
motion was 10 mm/min with a 5 kN loading cell [78].
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2.6. Biodegradation Test

The degradation of materials in vitro can be used to estimate their behavior in vivo. Phosphate
buffer saline (PBS) solution can be used for the polymer degradation test [80]. However, the biological
compound of the body fluid consists of several enzymes [81]. Lysozyme has been found in various
human body fluids in different concentrations [82] and it is one of the cheapest enzymes on the
biochemical market. Cubic 3D-printed specimens with 5 × 5 × 5 mm3 were used for the biodegradation
test (Figure 4). At first, the dry weight of each specimen was recorded as Ws. A previous study
estimated the mean serum lysozyme concentration in normal adults at 1.6 µg/mL [83]. Therefore,
biodegradability was evaluated after soaking the sample in PBS containing 1.6 µg/mL of lysozyme in a
37 ◦C incubator for 7, 15, and 30 days. The samples were repeatedly rinsed with DI water at the end of
the incubation period. The rinsed samples were frozen and lyophilized for 48 h. Finally, the final dry
weight of the specimens was recorded as We, and its biodegradation percentage was determined using
Equation (1).

Biodegradability (%) = (Ws −We) × 100/(Ws) (1)

2.7. 3D Printing Conditions and Scaffold Fabrication

The scaffold was printed using the core XY FFF 3D printer. The single platform was designed
to print continuously and be connected to the next platform. Every single platform was rotated 90◦

against the lower platform. Each platform was 0.5 mm in height and a printed set contained four
single platforms. The PLA/PCL/15HA was printed for three sets and the PLA/PCL was printed for the
last set. The total height of the 3D-printed structure was 8 mm with a 6 mm diameter, as shown in
Figure 5. The nozzle size of the printer was 0.4 mm. The printing conditions consisted of a 0.2 mm
printed layer height, and a nozzle melting temperature of 200 ◦C.
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After the 3D structure fabrication was completed, the CS/SF solution was prepared for
lyophilization. CS flakes derived from a squid pen with 94.69% deacetylation degree (Taming
Enterprise co., Ltd., Samutsakon, Thailand) were cut into small pieces and soaked in 1% (v/v) acetic
acid solution (100% acetic acid, Merck, Darmstadt, Germany) in the ratio of 0.5 g/100 mL, until
completely dissolved (approximately 3–5 days). Then, 0.5 g of SF sponge [15,57,58,84] was added
to the CS solution and homogeneously mixed. The 25% glutaraldehyde (GA: 25% in water, Merck,
Darmstadt, Germany) was diluted in DI water (1/100, v/v) and used as a cross-linking agent. Thereafter,
100 mL of CS/SF solution was mixed with 1 mL of the diluted GA solution before combining with
the 3D-printed structure. The CS/SF solution was filled in 96-well plates (flat bottom) at 150 µL/well.
Then, the 3D printing structure (PLA/PCL layer) was inserted into the well plate and frozen at −80 ◦C
freezer overnight. The frozen BBBS was lyophilized for 48 h. The final BBBS consists of the AC-BBBS
(PLA/PCL + CS/SF) and B-BBBS (PLA/PCL/15HA), as shown in Figure 1.

2.8. Scanning Electron Microscope (SEM) Observation

The morphology, outer surface, and inside structure of the BBBS were observed under SEM (JEOL
JSM 6400, Tokyo, Japan).

2.9. Cell Culture and Cell Viability Test

Cell culture for AC-BBBS layer: The human chondrosarcoma cell line, SW1353 chondrocyte-like
cells (ATCC®HTB-94™), were expanded in a T75 culture flask using 15 mL of the complete Dulbecco’s
modified Eagles medium (DMEM, Gibco®, Gaithersburg, MD, USA) with 10% fetal bovine serum
(FBS, Gibco®, Gaithersburg, MD, USA) and 1% of Anti-Anti (penicillin: 10,000 units/mL, streptomycin:
10,000 µg/mL, and Gibco Amphotericin B: 25 µg/mL, Gibco®, Gaithersburg, MD, USA) until reaching
cell confluence. The specimens were placed in 24-well plates. Then, 500 µL of the complete DMEM,
which contained 5000 cells of SW1353, was directly seeded on the surface of each specimen and the
specimens were allowed to absorb the cells containing DMEM for approximately 10 min. After that,
another 500 µL of the complete DMEM was filled in the well plate and incubated at 37 ◦C under
5% CO2.
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Cell culture for the B-BBBS layer: The human fetal osteoblast cell line, hFOB1.19
(ATCC®CRL-11372™), was expanded in a T75 culture flask using 15 mL of complete DMEM/F-12:
DMEM/Ham’s F-12 medium (phenol red free, Gibco®, Gaithersburg, MD, USA) supplemented
with 10% FBS and 1% Anti-Anti (penicillin: 10,000 units/mL, streptomycin: 10,000 µg/mL, and
Gibco Amphotericin B: 25 µg/mL, Gibco®, Gaithersburg, MD, USA) until reaching cell confluence.
The B-BBBS layer specimens were placed in 24-well plates. Then, 500 µL of complete DMEM/F-12,
which contained 5000 cells of hFOB1.19, was directly seeded on the surface of each specimen and the
specimens were allowed to absorb the cells containing DMEM/F-12 for approximately 10 min. After
that, another 500 µL of complete DMEM/F-12 was filled in the well plate and incubated at 37 ◦C under
5% CO2.

Cell viability test using MTT assay: MTT solution was prepared before the test. Phosphate buffer
saline (PBS tablets, AMRESCO, Inc., Solon, OH, USA) was dissolved in 100 mL of DI water, and 10 mL
of PBS solution was mixed with 50 mg of MTT powder (3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyl
tetrazolium bromide, AMRESCO, Inc., Solon, OH, USA). Then, the MTT solution was filtered using a
0.22 µm nylon syringe filter. The MTT solution was added to the testing well plate containing culture
medium with the dilution 1:10 (MTT: culture medium). Then, the testing well plate was incubated
in a CO2 incubator at 37 ◦C for 4 h. After the incubation, the solution in the testing well plate was
removed and the dimethyl sulfoxide (DMSO, Merck, Tokyo, Japan) solution was filled at 2 mL/well.
The testing well plate was shaken using a vertical shaker for 20 min. Finally, the optical density (OD)
of the solution of each well was measured using a spectrophotometer. The ODs were recorded, and the
cell viability was calculated using the following equation. The average OD of the control group on day
1 was assumed as healthy cells with 100% viability (ODC1). The OD of the other groups and culture
duration (ODGD) were calculated individually using Equation (2). The final cell viability percentage of
each group was presented as the average value.

Cell viability (%) = (ODGD) × 100/(ODC1) (2)

Cell viability test for AC-BBBS layer: There were three cell culture durations consisting of 1, 7,
and 14 days.

On day 1, the MTT assay was performed on the 1-day group, consisting of the control, PLA/PCL,
and PLA/PCL + CS/SF. The control represented the only cell culture without the testing specimen.
The PLA/PCL represented the cell culture with the 3D-printed PLA/PCL specimen. The PLA/PCL +

CS/SF represented the cell culture with the AC-BBBS layer specimen. According to the morphology of
our scaffold, the seeded cells had fallen as a result of gravity, passing through the porous cavities to the
bottom of the well plate. Therefore, the cells were attached on each layer of the specimen and on the
well plate. To investigate only the cells attached on the specimens, the PLA/PCL and PLA/PCL + CS/SF
specimens of the 7- and 14-day groups were moved from the initial well plate to a new well plate.
Thus, only cells attached on the specimen were continuously cultured in the new well plate until day 7
and 14. The leftover cells in the initial well plate of the 7-day group (on day 1) were selected to perform
the MTT assay, and the cell viability percentages of these leftover cells were used to calculate and
estimate the percentage of cell attached on the specimen of the 1-day group. Therefore, the cell viability
percentages on day 1 were presented in five groups consisting of the control, PLA/PCL, PLA/PCL +

CS/SF, cells attached on the PLA/PCL specimens (cell attached-PLA/PCL), and cells attached on the
PLA/PCL + CS/SF specimens (cell attached-PLA/PCL + CS/SF) groups.

On day 7 and day 14, the MTT assays were performed and the cell viability percentages were
presented in three groups consisting of the control, cell attached-PLA/PCL, and cell attached-PLA/PCL
+ CS/SF groups, as shown in Figure 6.
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Figure 6. The experimental flowchart of cell culture for the AC layer of the scaffold (AC-BBBS layer).

Cell viability test for B-BBBS layer: There were three cell culture durations consisting of 1, 7, and
14 days.

On day 1, the MTT assay was performed on the 1-day group, consisting of the control, PLA/PCL,
and PLA/PCL/15HA. The control represented the only cell culture without the testing specimen.
The PLA/PCL represented the cell culture with the 3D-printed PLA/PCL specimen. The PLA/PCL/15HA
represented the cell culture with the B-BBBS layer specimen. According to the morphology of our
scaffold, the seeded cells had fallen as a result of gravity, passing through the porous cavities to
the bottom of the well plate. Therefore, cells were attached on each layer of specimen and on the
well plate. To only investigate cells attached on the specimens, the PLA/PCL and PLA/PCL/15HA
specimens of the 7- and 14-day groups were moved from the initial well plate to a new well plate.
Thus, only cells attached on the specimen were continuously cultured in the new well plate until day
7 and 14. The leftover cells in the initial well plate of the 7-day group (on day 1) were selected to
perform the MTT assay and the cell viability percentages of this leftover cells were used to calculate
and estimate the percentage of cells attached on the specimen of the 1-day group. Therefore, the
cell viability percentages on day 1 were presented in five groups consisting of the control, PLA/PCL,
PLA/PCL/15HA, cells attached on the PLA/PCL specimens (cell attached-PLA/PCL), and cells attached
on the PLA/PCL + CS/SF specimens (cell attached-PLA/PCL/15HA) groups.

On day 7 and day 14, the MTT assays were performed and the cell viability percentages
were presented in three groups consisting of the control, cell attached-PLA/PCL, and cell attached-
PLA/PCL/15HA groups, as shown in Figure 7.
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2.10. Finite Element Analysis

For finite element analysis (FEA), the mechanical properties were obtained from the mechanical
tests. The simulating software ANSYS R15.0 Workbench (ANSYS, Inc., Canonsburg, PA, USA) was used
to analyze the maximum load that the designed structure could carry. The base of the model was fixed,
and the distributed compression load was applied to the surface of the model. The applied load was
randomly applied until the maximum principle stress of the model reached the minimum mechanical
strength of the 3D-printed materials. The AC-BBBS thickness for FEA was 2 mm, which was selected
from the normal thickness of the AC at the femoral condyles (approximately 1.65 to 2.65 mm) [85].
The mechanical properties of PLA/PCL were applied to the AC-BBBS layer. Meanwhile, the mechanical
properties of PLA/PCL/15HA were applied to another 6 mm of the structure (the B-BBBS layer) for
the FEA.

3. Results

3.1. XRD

The XRD patterns of local extracted HA, PLA/PCL, and PLA/PCL/15HA samples are presented in
Figure 8 within the 2θ range 10◦ to 60◦. The resolved XRD peaks of the local extracted HA and those of
HA in PLA/PCL/15HA are shown within the 2θ range 20◦ to 50◦. The sharp diffraction peak positions
of pure crystalline HA were observed and are presented in Table 1. The 2θ values of the local extracted
HA: 25.86◦, 31.86◦, 32.2◦, 32.97◦, and 39.99◦ correspond to the diffraction planes (h k l values) at (0 0 2),
(2 1 1), (1 1 2), (3 0 0), and (3 1 0), respectively. These main characteristic peaks of the local extracted HA
are similar to the Joint Committee on Powder Diffraction Standards (JCPDS) reference standard file
number 09-0432. Besides, the broad peak of the PLA/PCL blend component is located between 10.00◦

and 25.00◦. The composites reveal peaks for both HA and PCL/PLA. The presence of the crystalline HA
phase incorporated in the polymer matrix appears at almost the same peak positions compared with
the local extracted HA sample. This characteristic indicates that the dispersion of HA in the matrix is
very uniform. Nonetheless, their intensity is weakened because of the low content of HA incorporated
in the matrix.
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Figure 8. X-ray diffraction (XRD) patterns of polylactic acid (PLA)/polycaprolactone (PCL),
PLA/PCL/15HA, and local extracted HA show that the local extracted HA and its presence in
PLA/PCL/15HA are correspond to the characteristic peak of hydroxyapatite (HAp) (Joint Committee
on Powder Diffraction Standards file number (JCPDS) No. 9-432).

Table 1. The X-ray diffraction (XRD) peaks position of pure hydroxyapatite (HAp) the Joint
Committee on Powder Diffraction Standards file number 09-0432 (JCPDS 9-432) and local extracted
hydroxyapatite (HA).

2θ: HAp (JCPDS 9-432)
Plane

2θ: HA (Local Extracted)
h k l

21.82 2 0 0 21.85
22.902 1 1 1 22.99
25.354 2 0 1 25.47
25.879 0 0 2 25.86
28.127 1 0 2 28.14
28.967 2 1 0 28.97
31.774 2 1 1 31.86
32.197 1 1 2 32.2
32.902 3 0 0 32.97
34.049 2 0 2 34.09
35.481 3 0 1 35.49
39.205 2 1 2 39.27
39.819 3 1 0 39.99
42.03 3 1 1 42.09

43.805 1 1 3 43.8
45.306 2 0 3 45.3
46.713 2 2 2 46.75
48.104 3 1 2 48.14
48.624 3 2 0 48.68
49.469 2 1 3 49.54
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3.2. FTIR

The extraction of local Thai Bombyx mori (Nang-Noi) SF was characterized using FTIR. The random
coils (silk I) and β-sheet (silk II) are major conformations of the Bombyx mori SF structure. The FTIR
spectrum of the local extracted SF is shown in Figure 9. The FTIR spectrum of the local extracted SF
was related to the recommended wavenumbers, as presented in Table 2 [86]. The spectrum was also
similar to previous studies with the same extraction technique [15,86]. The FTIR peaks at 1637.7 cm−1,
1514.3 cm−1, and 1234.1 cm−1 represent amide I, amide II, and amide III, respectively.
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Table 2. Amide wave number and protein secondary structure of silk firoin (SF) [86].

Conformation

Amides and Wavenumbers (cm−1)

I
(CO Stretch)

II
(NH Deformation)

III
(CN Stretch, NH Bends)

β-sheet 1625–1640 1520–1530 1219–1245

Random coil 1625–1660 1520–1545 1257–1258

3.3. Compression Test

The compression tests were performed on the cylindrical specimens (Figure 10). The summary
of the compression testing results, consisting of the ultimate strain, ultimate stress, and modulus of
elasticity, is shown in Table 3. A significantly higher compressive stress was demonstrated by the
PLA/PCL/15HA specimen with 83.19 ± 1.63 MPa, compared with the PLA/PCL specimen.
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Table 3. Summary results of compression test. HA, hydroxyapatite.

Specimen Compositions Mechanical Properties Mean SD

PLA/PCL
Ultimate Strain (%) 9.97 1.07

Ultimate Stress (MPa) 77.92 2.40
Modulus of Elasticity (GPa) 1.01 0.04

PLA/PCL/15HA
Ultimate Strain (%) 10.68 1.43

Ultimate Stress (MPa) 83.19* 1.63
Modulus of Elasticity (GPa) 1.07 0.16

* Statistically significant vs. polylactic acid (PLA)/polycaprolactone (PCL).

3.4. Tensile Test

The tensile specimen is shown in Figure 10. Table 4 is the summary of all the mechanical properties
that result from the tensile test. The table summarizes the average elongation at break, ultimate stress,
and modulus of elasticity of the specimens from each material’s composition. The PLA/PCL specimen
provided the highest values of ultimate stress and modulus of elasticity, at 64.29 ± 3.64 MPa and
1.10 ± 0.03 GPa, respectively. The lowest ultimate stress, by a significant amount, was shown by the
PLA/PCL/15 specimen (52.91 ± 1.73 MPa) compared with the PLA/PCL specimens. The addition of
HA in the composite materials resulted in the lowest tensile stress.

Table 4. Summary results of tensile test.

Specimen Compositions Mechanical Properties Mean SD

PLA/PCL
Elongation at Break (%) 5.73 1.01
Ultimate Stress (MPa) 64.29 3.64

Modulus of Elasticity (GPa) 1.10 0.03

PLA/PCL/15HA
Elongation at Break (%) 5.58 0.45
Ultimate Stress (MPa) 52.91* 1.73

Modulus of Elasticity (GPa) 0.97 0.11

* Statistically significant vs. PLA/PCL.
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3.5. Flexural (Bending) Test

The rectangular specimen, as shown in Figure 10, of both material compositions was used in
flexural (bending) testing. Table 5 compiles the average and standard division results for both specimen
compositions. There was no difference between the PLA/PCL and PLA/PCL/15HA printed specimens.

Table 5. Summary of flexural (bending) test.

Specimen Compositions Mechanical Properties Mean SD

PLA/PCL
Ultimate Strain (%) 11.94 1.10

Ultimate Stress (MPa) 104.02 2.12
Modulus of Elasticity (GPa) 2.24 0.21

PLA/PCL/15HA
Ultimate Strain (%) 11.22 1.69

Ultimate Stress (MPa) 102.77 3.82
Modulus of Elasticity (GPa) 2.41 0.40

3.6. Biodegradation Test

The biodegradation test was performed on the cubic printed specimens, as shown in Figure 11.
The weight difference of the specimens was calculated and presented in biodegradation percentage,
as shown in Figure 12. After soaking the specimens in PBS solution containing lysozyme for 7, 15, and
30 days, the biodegradation percentage was obtained after comparing the collected data according
to degradation days with the data of the starting point. The degradation percentages are presented
as mean ± SD. The comparison between the degradation days of the same material compositions
presented a slight increase in the biodegradation percentage, related to the increasing number of
degradation days. However, a statistical difference was seen on day 30 for both groups. On day
30, PLA/PCL presented the highest degradation percentage (0.35 ± 0.05%), by a significant amount,
as compared with the same group on days 7 and 15. Furthermore, the PLA/PCL/15HA groups presented
the highest degradation percentage (0.33 ± 0.09%) on day 30, significantly higher than day 7 only.
When comparing between the PLA/PCL and PLA/PCL/15HA groups on day 15, the biodegradation
percentage of PLA/PCL/15HA (0.27 ± 0.09%) was significantly higher than that of PLA/PCL (0.2 ± 0.1%).
The dimensions of the specimens were also investigated, but there was no change in the dimensions
after 30 days of degradation.
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3.7. BBBS Morphology

The bilayer 3D printing structure was printed into the AC-BBBS and B-BBBS layers using PLA/PCL
and PLA/PCL/15HA filaments, respectively. Then, the AC-BBBS layer was combined with the CS/SF
solution and lyophilized, as shown in Figure 13.
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The structure and size of BBBS were designed based on the requirements of the consultant
orthopedic surgeons (Department of Orthopedics, Faculty of Medicine, Chiang Mai University,
Chiang Mai, Thailand). The difference between PLA/PCL and PLA/PCL/15HA layers was not easily
distinguishable because of the same color of the raw material granules. However, it can be seen
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at certain tilted angles. The different morphology of the printed structure between PLA/PCL and
PLA/PCL/15HA filaments was observed using SEM. Masking tape was placed to indicate the connecting
layer between PLA/PCL and PLA/PCL/15HA, as shown in Figure 14. The layer of PLA/PCL was better
organized than the PLA/PCL/15HA printed layer using the same printing conditions.
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After combining the 3D-printed structure to the CS/SF (Figure 13), the morphology of the
completed bilayer biomaterial cell scaffold was analyzed using SEM. The scaffold was cut in half
longitudinally, using a plain cutter, to observe the inside structure. The connection between each
layer was homogeneously melted, as shown in Figure 15a,b. In the AC-BBBS layer, the CS/SF solution
thoroughly filled the cavities in the 3D-printed structure, as shown in Figure 15b. The porous structure
of the CS/SF was distributed in the cavity and connected to the surface of the 3D-printed structure,
as shown in Figure 15c,d. Therefore, the interconnected porous CS/SF was thoroughly distributed in
the AC-BBBS layer.
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Figure 15. Scanning electron microscope (SEM) images of bilayer biomaterial cell scaffold: (a) free
cavities inside 3D-printed structure, (b) CS/SF porous structure filled the cavities of 3D-printed structure,
(c,d) CS/SF structure attached to the surface of the 3D-printed structure.
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3.8. Cell Viability Test for AC-BBBS

The MTT assay was performed on the scaffold with SW1353 cells and the cell viability percentage
is presented in Figure 16. On day 1, the MTT assay was performed, and the cell viability percentages of
the five testing groups, consisting of the control, PLA/PCL, PLA/PCL + CS/SF, cell attached-PLA/PCL,
and cell attached-PLA/PCL + CS/SF, are presented in Figure 16. The PLA/PCL + CS/SF group
presented the highest cell viability percentage (125.25 ± 9.36%), by a significant margin. The cell
viability percentages of PLA/PCL, cell attached-PLA/PCL, and cell attached-PLA/PCL + CS/SF were
106.79 ± 11.67%, 45.84 ± 8.72%, and 80.99 ± 6.11%, respectively. The PLA/PCL was the only group that
showed no difference from the control group. The comparison between cell attached-PLA/PCL and cell
attached-PLA/PCL + CS/SF indicated that the cell attachment ability of the PLA/PCL + CS/SF specimen
was higher than that of the PLA/PCL specimen.

On day 7, the cell viability of the control, cell attached-PLA/PCL, and cell attached-PLA/PCL +

CS/SF presented as 190.29 ± 14.49%, 111.17 ± 4.65%, and 252.92 ± 16.18%, respectively. On this day, the
cell viability percentages of all the groups were significantly higher than the same groups tested on
day 1. The cell viability percentage of the cell attached-PLA/PCL group was still significantly lower
than the control group, while that of the cell attached-PLA/PCL + CS/SF was significantly higher than
the control group.

On day 14, the cell viability percentage of cell attached-PLA/PCL + CS/SF dramatically increased
(308.28 ± 7.88%) and was significantly higher than the control and the cell attached-PLA/PCL groups
(254.56 ± 7.7% and 158.62 ± 16.61%). These results indicate the cell proliferation ability of both scaffolds
(PLA/PCL and PLA/PCL + CS/SF), especially in the PLA/PCL + CS/SF group. The cell viability
percentages of all groups were significantly higher than the same testing groups on days 1 and 7.
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3.9. Cell Viability Test for B-BBBS

The results are presented in Figure 17. The cell viability trend of the B-BBBS layer was in the
same direction as the AC-BBBS layer. On day 1, the cell viability percentages of the control, PLA/PCL,
PLA/PCL + CS/SF, cell attached-PLA/PCL, and cell attached-PLA/PCL/15HA were 100.00 ± 1.60%,
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100.30 ± 8.07%, 121.13 ± 4.98%, 52.87 ± 6.92%, and 75.17 ± 4.15%, respectively. The comparison between
the control group and the other groups showed that only PLA/PCL had no difference. On the other
hand, PLA/PCL/15HA presented the highest cell viability percentage, by a significant margin. In this
layer, cells were attached to the PLA/PCL/15HA specimen more than the PLA/PCL specimen, the same
as the result of the PLA/PCL + CS/SF specimen in the AC-BBBS layer.

On day 7, the cell viability percentages of the control, cell attached-PLA/PCL, and cell
attached-PLA/PCL/15HA were 167.44 ± 14.43%, 108.08 ± 19.61%, and 165.69 ± 18.55%, respectively.
All groups presented a significantly higher cell viability percentage compared with day 1. From
being significantly lower than the control group on day 1, the cell viability percentage of cell
attached-PLA/PCL/15HA showed no difference from the control group on day 7.

On day 14, the cell viability percentages of the control, cell attached-PLA/PCL, and cell
attached-PLA/PCL/15HA were 235.39 ± 8.51%, 177.18 ± 2.87%, and 277.21 ± 16.93%, respectively.
The cell viability percentage of cell attached-PLA/PCL/15HA was dramatically increased and
significantly higher than the control and cell attached-PLA/PCL groups.
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3.10. Finite Element Analysis

The mechanical properties of PLA/PCL and PLA/PCL/15HA were obtained from the mechanical
tests and applied to the FEA program. The lowest mechanical strength of the fabricated BBBS was the
tensile strength of PLA/PCL/15HA (52.91 ± 1.73 MPa). The base of the 3D model was fixed, and the
distributed compression load was randomly applied to the surface of the model (on the surface of the
AC-BBBS layer), as shown in Figure 18. After applying a series of compression loads to the surface of
the 3D model, the 663.2 N compression load presented the maximum stress at 52.908 MPa (Figure 19),
which reached the lowest mechanical strength of the fabricated BBBS. Therefore, the maximum load
should not be over 663.2 N or 66.32 kg. Moreover, the maximum deformation for the 663.2 N applied
load was 0.71 mm, as shown in Figure 20.
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4. Discussion

The characteristics of the extracted bioactive materials (HA and SF) were the same as their
standard characteristics (XRD and FTIR patterns). Thus, these extraction methods can be used to
extract HA and SF from industrial waste. Furthermore, the pathogens present in bovine bone are
removed at temperature above 800 ◦C [87,88]. Therefore, locally extracted HA has a low possibility of
transmitting diseases.

From the SEM observation, the local extruded filaments can be printed into the designed 3D
structure. In terms of 3D printing morphology, the PLA/PCL filament was well organized and
produced perfect layers. Meanwhile, for the PLA/PCL/15HA, the SEM observations showed that the
3D printing was inconsistent in some layers. However, the PLA/PCL/15HA printed layers kept the
overall morphology of the design structure, but could not be distinguished without a microscope.

The cell viability percentage of scaffolds from the AC-BBBS and B-BBBS layers can be plotted as a
progression chart, as shown in Figure 21. The presence of bioactive materials in the 3D-printed structure
significantly increased the cell viability percentage. The increasing cell viability percentage represented
cell proliferation. Therefore, the presence of bioactive materials also increased cell proliferation.
The slope of each line graph in Figure 21 shows the proliferation rates. In the AC-BBBS layer, the
PLA/PCL + CS/SF scaffold presented the highest slope from day 1 to day 7, which slightly increased from
day 7 to day 14. Meanwhile, the cell viability percentages of the control and the cell attached-PLA/PCL
were slightly increased from day 1 to day 14. Because of the similar structure of CS and GAGs, there
are several studies regarding the fabricated CS scaffold for cartilage regeneration [89–91]. CS can
provide a good structure for cartilage cell adhesion, and other bioactive materials or growth factors
can be added to encourage cell proliferation [57,92,93]. In this study, SF was added to increase the cell
proliferation ability. Previous studies have reported that the addition of SF provides better adhesion,
growth, and differentiation of chondrocyte cells [94–96]. Thus, the presence of CS with SF was the
main factor increasing the cell viability percentage in the AC-BBBS layer.
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Besides, the B-BBBS layer scaffold containing HA, which had the highest slope as shown in
Figure 21, presented the highest proliferation rate. The cell viability percentages of the control and
the cell attached-PLA/PCL were slightly increased from day 1 to day 14, the same as in the AC-BBBS
layer. Previous studies also reported the ability of commercial HA to promote cell proliferation [97,98].
Therefore, our local extracted HA is the key factor for cell proliferation in the B-BBBS layer.

The degradation of PLA/PCL and PLA/PCL/15HA specimens at the end of the experiment (day
30) presented no difference, and the degradation percentages were only 0.35 ± 0.05% (PLA/PCL) and
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0.33 ± 0.09% (PLA/PCL/15HA). From a previous study, the extracellular matrix formation of human
articular chondrocyte was completely filled in the scaffold at the end of 21 days of cultivation [99].
Therefore, during the cultivation period, the BBBS still provided structure for cell adhesion, which
lasted until the implantation phase. However, the mechanical properties of the BBBS during the longer
degradation period should be investigated to estimate their implantation conditions.

The mechanical properties of the 3D-printed specimens obtained from the mechanical tests were
similar to our previous study [15]. In terms of scaffold for osteochondral regeneration, the mechanical
properties of the scaffold should be related to those of natural AC and bone. Previous studies
mention the lubrication properties of the scaffold, which are responsible for the efficient lubrication
of AC [100,101]. However, there is no human-made material that can match the articulate friction
coefficient of major synovial joints such as hips and knees [102]. Thus, in future studies, the aim of
the AC chondrocyte generating AC tissue on the AC-BBBS before implantation in order to provide a
suitable lubrication for the joint is of great importance. Moreover, the B-BBBS aim to press-fit into the
defect area and let blood flow and clot inside the B-BBBS. The clot release growth factors and cytokines
before being absorbed and replaced with newly blood vessel [103]. Thus, natural tissue regeneration
occurs in the degraded cavities of BBBS over time.

The FEA was performed to estimate and predict the abilities of the BBBS to carry the compression
load. According to the OAT application, single or multiple bone plugs with intact AC were implanted
into the defect area [6,9]. During daily activities, the mechanical load was applied to the surface of the
knee and the plugs. In the case of a small implantation area, the mechanical load may be distributed to
the surrounding native tissue more than the plugs. If the contact area of the plugs reaches the critical
point, the mechanical load will be distributed on the plugs in the same way as in the surrounding
native tissue. The compression load at the contact area randomly depends on the contact angle [104].
Therefore, a dynamic FEA should be performed before surgery using the patient’s data, such as the
size of the defect area and the estimated number of BBBSs, to predict the ability of the BBBS to carry
the load. Furthermore, the BBBS thickness can be adjusted onsite using an ordinary knife or cutter.
The BBBS shape and size can also be customized using a 3D program.

5. Conclusions

From our findings, the BBBS for FTAC treatment demonstrated a high feasibility in terms of animal
implantation tests and clinical trials in the near future. The materials we tested from industrial waste
provided good biological properties compared with several studies in biomaterials for biomedical and
tissue engineering applications. Moreover, the 3D design can be customized to suit the defect area of
each patient with a high fabrication speed. Furthermore, 3D printers are now cheaper and easier to
access and use, hence treatments will be delivered sooner and at a reasonable price to poor patients in
remote areas. Further investigations, such as biomechanical tests, chemical releasing tests, the BBBS
biodegradation/mechanical relation, immunohistochemistry, and in vivo studies, must be performed
to investigate the effects of the implantation scaffold on the living body.
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