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Abstract
When two genes interact to cause a clinically important phenotype, it would seem reasonable to
expect that we could leverage genotypic information at one of the loci in order to improve our
ability to detect the other. We were therefore interested in extending the posterior probability of
linkage (PPL), a class of linkage statistics we have been developing over the past decade, in order
to explicitly allow for gene × gene interaction. In this report we utilize a new implementation of
the PPL incorporating liability classes (LCs), which provide a direct parameterization of gene × gene
interaction by allowing the penetrances at the locus being evaluated to depend upon measured
genotypes at a known locus. With knowledge of the generating model for the simulated rheumatoid
arthritis (RA) data, we selected two loci for examination: Locus A, which in interaction with the
HLA-DR antigen locus affects risk of the dichotomous RA phenotype; and Locus E, which in
interaction with DR affects quantitative levels of the anti-CCP phenotype. The data comprised
nuclear families of two parents and an affected sib pair (ASP). Our results confirm theoretical work
suggesting that gene × gene interactions CANNOT be leveraged to improve linkage detection for
dichotomous traits based on affecteds-only data structures. However, incorporation of DR-based
LCs did lead to appreciably higher quantitative trait PPLs. This suggests that gene × gene
interactions could be effectively used in quantitative trait analyses even when families have been
ascertained as ASPs for a related dichotomous trait.
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Background
There is considerable interest in modeling gene × gene
interaction for purposes of mapping and understanding
complex traits (e.g., [1-3]). However, Vieland and Huang
[4] showed that for two-locus (2L) models and data
restricted to individuals who are affected (hereafter
referred to as affecteds-only data) (e.g., ASPs), gene × gene
interactions do not result in distinctive patterns in iden-
tity-by-descent (IBD) sharing, and therefore linkage anal-
ysis using ASPs cannot be used to distinguish interaction
from independent gene effects (heterogeneity), with a few
exceptions unlikely to be relevant to complex disorders.
They suggested as a corollary that methods designed to
exploit known interactions for purposes of mapping new
genes would not be fruitful in ASPs. On the other hand, if
the generating model involves more than two loci, then
gene × gene interactions may predict specific structure in
the (marginal) 2L IBD matrix even in affecteds-only data
[2-5]. However, even in this case whether numerical
effects would be substantial enough to provide meaning-
ful benefits has not been systematically investigated.

In this paper, we ask whether it is possible to improve on
our ability to map a new trait gene via linkage analysis by
using the causal variants at a known risk locus, under con-
ditions of gene × gene interaction, using a newly imple-
mented extension of the posterior probability of linkage
(PPL) to measure the strength of evidence for (or against)
linkage.

Methods
Family data
Analyses were performed on only the first 500 families
from the first 50 replicates to reduce PPL computation
time because using the full set of data and number of rep-
lications was wasteful of resources for our purposes here
(At the time of the initial draft of the paper, it would take
up to a couple of weeks to complete one replicate. Since
then, the program has improved greatly and reduced the
time to less than a day [6].). Based on inspection of the
answer file, we selected marker STRP16_6 for dichoto-
mous trait (rheumatoid arthritis, RA) linkage analysis.
This marker is at 27.44 cM on chromosome 16, 1.15 cM
away from Locus A. Because Locus A and DR interact to
increase RA risk (see the "Risk Multipliers" table in the
answer file), we then used the genotypes at DR to classify
individuals into liability classes. For computational con-
venience [6], we restricted attention to just two liability
classes: LC1 comprised individuals with two DR4 alleles
(the high risk group); LC2 comprised the remaining indi-
viduals (a low risk group).

For quantitative trait (QT) analysis, the phenotype anti-
cyclic citrullinated peptide antibody (anti-CCP) was cho-
sen, and Locus E was evaluated for linkage. Again, the gen-

erating model included an interactive effect of DR and
Locus E on anti-CCP levels. Anti-CCP measures were
standardized on the basis of all available parental values;
no other changes to the phenotypes were made. Linkage
analysis was applied to marker STRP18_22, located at
92.9 cM on chromosome 18, which is 1.4 cM away from
Locus E. As above, any individual with two copies of the
high-risk DR4 allele was coded as being in LC1, all other
individuals were coded to be in LC2.

Statistical analysis
The PPL is on the probability scale, can readily incorpo-
rate prior information, and is particularly suited to the
accumulation of evidence across multiple, potentially het-
erogeneous, data sets [7-9]. The unknown trait model is
treated as a vector of nuisance parameters, and integrated
out of the constituent likelihoods [10,11]; thus the
method is essentially model-free, while retaining the
strengths of likelihood-based analysis. Further, in applica-
tion to quantitative traits, this framework does not
assume normality at the population level or require pop-
ulation parameter estimates [12,13] in order to address
ascertainment.

As described in detail elsewhere [10,11], the PPL can be
computed from an ordinary LOD score, with the
unknown parameters of the trait model integrated out
rather than fixed at arbitrary values. The PPL can therefore
in principle be extended to incorporate any form of likeli-
hood for which LODs can be calculated. Thusfar we have
extended the original dichotomous trait PPL [7,14],
which already allowed for locus heterogeneity under the
admixture model [15], to include allowance for linkage
disequilibrium [16], sex-specific recombination [17,18],
quantitative traits [13], combined quantitative/dichoto-
mous traits (within the same pedigree) [12], implemented
in both two-point and and/or multipoint forms [19].

The standard dichotomous trait PPL is parameterized in
terms of the (sex-averaged) recombination fraction, the
admixture parameter, a disease allele frequency, and three
penetrances (one for each genotype, assuming a two-allele
locus). The standard quantitative trait (QT) PPL is param-
eterized similarly, except that instead of three penetrances,
the likelihood is written as a function of three genotypic
means and three genotypic variances [12,13]. (In the
present application we have set the three variances equal
to one another.) As elsewhere, we assume a 2% prior
probability of linkage [20]. Thus PPLs > 2% represent
(some level of) evidence in favor of linkage; while PPLs <
2% represent (some level of) evidence against linkage.
The PPL is on the probability scale, and is therefore
bounded by [0, 1]. For comparison purposes, we also
report MODs [21], which are LODs parameterized identi-
cally to the PPLs, then maximized over all parameters in
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the model (whereas the PPL is integrated over these same
parameters).

Here we extend the PPL once again, to allow different pen-
etrances for individuals in different LCs. The new exten-
sion of the PPL allows covariate-dependent penetrances.
Specifically, we assign individuals to liability classes (LCs)
based on covariate status. In the present application, we
use this parameterization to condition on the causal gen-
otype at the known risk locus DR; however, the same
model could be used to condition on other covariates,
such as age or sex [22]. We then include a separate pene-
trance vector in the likelihood for each LC in the model.
These penetrance vectors are then integrated over, rather
than fixed, to obtain a marginal posterior probability. In
the dichotomous trait analyses, we have constrained the
A-locus penetrances for individuals in LC1 to be greater
than or equal to the corresponding penetrances in LC2,
for each A-locus genotype, respectively. In the QT analy-
ses, we have constrained the genotypic means for individ-
uals in LC1 to be greater than or equal to means for
individuals LC2, again, for each E-locus genotype, respec-
tively. We have recently implemented a suite of PPL statis-
tics in a new package, KELVIN, designed for distributed
parallel computation over the parameter space [6,23].
KELVIN is based on a re-engineered version of VITESSE
[24,25], thusfar incorporating two-point and multipoint
linkage analysis of dichotomous and/or quantitative
traits, marker-trait linkage disequilibrium, and LCs.
Exportable software is currently under development.
Unsupported and platform specific version can be made
available by contacting the corresponding author.

Results
Linkage analyses at Locus A ignoring genetic information
at DR (i.e., without LCs) yielded an average PPL of 2.04%
(SD ≈ 0.0195), or essentially no evidence for or against
linkage. By comparison, the average PPL utilizing LCs
based on DR genotype is 2.28% (SD ≈ 0.0418), which is
numerically higher though virtually the same in practical
terms, and still yields essentially no evidence for linkage
(see Table 1). The within-replicate average PPL difference
is 0.25% (SD ≈ 0.0231), although only 7 out of 50 repli-
cates have higher LC-PPLs than PPLs. There is a slight
(though not statistically significant) tendency for the LC-

PPL to actually be lower in each replicate when LCs are
used. By contrast, The MOD roughly doubles (Table 1) in
magnitude because it is maximized over extra parameters,
but it still gives results that would not be interpreted as
evidence for linkage.

In stark contrast with the dichotomous trait results, the
quantitative trait linkage analyses at Locus E shows
marked increases in the average evidence for linkage with
the addition of DR information from 24% (SD ≈ 0.29) to
44% (SD ≈ 0.36) (see Table 1). The MODs are also larger
when DR information is incorporated. In order to ensure
the noticeably higher LC-PPL is not inflation simply due
to the increased number of parameters in the model, we
applied the same statistical analysis to the unlinked data
obtained from the first markers on each chromosome 1–
5 and 7; these markers were not annotated as being linked
to any of the simulated phenotypes. The average QT-PPL
was less than the 2% prior probability of linkage (data not
shown), indicating evidence against linkage. This illus-
trates that the observed increase in the PPL at the original
"linked" marker is not an artifact of including the addi-
tional penetrance parameters in the model. By contrast,
the MODs increase when the additional parameters of the
LCs are maximized over, at the unlinked markers as well
as at the linked marker. This illustrates a key distinction in
handling of nuisance parameters by integration (as with
the PPL) versus maximization (as with the MOD).

Conclusion
Gene × gene interaction (or other covariate dependencies)
can be directly represented in standard linkage likelihoods
using LCs [22]. While theoretical considerations suggest
that modeling gene × gene interactions in affecteds-only
data is moot for dichotomous traits under two-locus mod-
els, in the context of quantitative trait analysis as well as
under models with more than two loci, the situation
could be fundamentally different. By extending the PPL to
incorporate LCs for both dichotomous and quantitative
trait analyses, we have shown that, under these generating
conditions, utilizing genotypic information at the DR
locus when evaluating the evidence for or against linkage
to Locus A has no impact on our ability to detect Locus A
using dichotomous trait analyses; whereas, incorporating

Table 1: Average PPLs with and without DR liability classes (LCs)

PPL (SD)a MOD (SD)

No LCs With LCs No LCs With LCs

Locus A (Dichotomous Trait) 0.020 (0.020) 0.023 (0.042) 0.43 (0.46) 0.89 (0.64)
Locus E (Quantitative Trait) 0.24 (0.29) 0.44 (0.36) 2.87 (1.32) 4.81 (1.71)

aBy convention, PPLs of 3% or less are reported to three decimal places; while PPLs > 3% are reported to two.
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information on DR is beneficial in detecting Locus E using
quantitative trait analysis.

Discussion
By extending the PPL to include a direct representation of
gene × gene interaction (or other covariate dependencies),
we have shown that under the generating conditions used
in this simulation, incorporation of measured genotypes
at a known locus does not improve our ability to detect
linkage to another interacting locus for a dichotomous
trait. These results are fully consistent with previous theo-
retical work on affecteds-only data under two-locus mod-
els, despite the fact that the generating model involves
more than two loci and does include some unaffected
individuals (among the parents). It appears that, never-
theless, there is virtually no information in nuclear fami-
lies, that include only affected offspring, regarding the
genetic architecture of the trait; and that as a result, utiliz-
ing information at one locus when evaluating a second is
largely moot. This does not represent a specific limitation
of the PPL, but rather, a limitation of the data structures
provided in this simulation. See Kotti et al. [26] and Lar-
kin et al. [27] for similar conclusions based on a variety of
other statistical approaches.

We do have evidence that incorporation of gene × gene
interactions in this manner may be more helpful in larger
pedigrees, including even nuclear families with unaffected
as well as affected offspring (data not shown). However,
even in larger pedigrees, the utility of measured genotypes
in forming LCs will be governed in part by the relative rep-
resentation of different classes of individuals within the
data set (the distribution of phenotypes, genotype at the
marker being evaluated, and genotypes at the "risk" locus
being conditioned on); and this in turn is a function of the
underlying architecture of the trait together with the sam-
pling frame and ascertainment criteria. Further research is
needed to investigate other generating models that may
potentially benefit from the use of LCs to model gene ×
gene interactions.

By contrast, the simulated data clearly support the use of
LCs to model gene × gene interactions in quantitative trait
linkage, even when the data are ascertained as ASPs for a
related dichotomous trait. Apparently in this case suffi-
cient variation in the phenotype still remains so that
allowing genotypic means to depend on genotypes at a
known risk locus can lead to stronger evidence for linkage
at a second, interacting locus.
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