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PURPOSE. To test the hypothesis that acute topical dorzolamide (DZ) decreases intraocular
pressure (IOP) and increases retinal and choroidal blood flow in the DBA/2J mouse model of
glaucoma.

METHODS. Retinal and choroidal blood flow were measured in 4- and 9-month-old DBA/2J
mice, and 4-month C57BL/6 (control) mice under isoflurane anesthesia using magnetic
resonance imaging. Ocular blood flow was measured at baseline, and 1 and 2 hours after
topical dorzolamide. Intraocular pressure was measured using a rebound tonometer in a
subset of animals at the same time points.

RESULTS. Baseline IOP in the 4-month-old DBA/2J mice and C57BL/6 mice was not significantly
different (P > 0.05), and IOP in both groups was less than in the 9-month-old DBA/2J mice (P
< 0.05 for both). Compared to baseline, dorzolamide reduced IOP at 1 and 2 hours after
dorzolamide in the 4- (P < 0.05) and 9-month-old (P < 0.01) DBA/2J mice, but not in the
C57BL/6J mice (P > 0.05). Baseline retinal blood flow was lower in the 4-month and 9-month-
old DBA/2J mice compared with the 4-month-old C57BL/6J mice (P < 0.05). Baseline
choroidal blood flow in the 9-month-old DBA/2J mice was less than in the C57BL/6J mice (P
< 0.05). Compared with baseline, both retinal and choroidal blood flow increased at 1-hour
post-dorzolamide and remained elevated 2 hours later in the 9-month-old DBA/2J mice (P <
0.05).

CONCLUSIONS. Dorzolamide lowers IOP and raises retinal and choroidal blood flow in older
DBA/2J mice, consistent with the study hypothesis.
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Animal models often utilize ocular hypertension to study
glaucoma pathogenesis, altered homeostatic mechanisms,

and pharmacology.1 One widely used model is the DBA/2J
mouse.2–6 The mouse DBA/2J has altered expression of two
proteins: tyrosinase-related protein 1 associated with iris
stromal atrophy, and glycoprotein transmembrane NMB associ-
ated with iris pigmentary dispersion, which raises intraocular
pressure (IOP) by blocking the trabecular meshwork and
reducing outflow facility.7,8 The resultant ocular hypertension
is associated with glaucoma-like retinal ganglion cell (RGC) loss
with age.

We previously used the ‘‘arterial spin labeling’’ magnetic
resonance imaging (ASL-MRI) technique to measure retinal and
choroidal blood flow (RBF and ChBF, respectively) in the DBA/
2J mouse model.9 We found that RBF and ChBF were reduced
in DBA/2J mice compared to C57BL/6 control mice, suggesting
a possible ischemic contribution to the optic neuropathy and
visual dysfunction that occur in older DBA/2J mice.10–18

Interestingly, there is evidence that lowering the IOP pharma-
cologically enhances RGC survival in older DBA/2J mice.19,20 It
is unknown whether lowering IOP would increase their ocular
blood flow, which might contribute to the enhanced RGC
survival. Therefore, to further characterize the DBA/2J model,
the goal of the present study was to test the hypothesis that
lowering IOP increases RBF and ChBF in the DBA/2J mouse at
different ages. To lower IOP, topical dorzolamide (DZ) was

chosen because it inhibits aqueous humor production21 and it
was assumed that an aqueous suppressant would be more
effective at lowering IOP than a drug that enhances outflow
facility (e.g., pilocarpine) since the ocular hypertension in the
DBA/2J model is due to obstruction of the trabecular outflow
pathway.

METHODS

The protocol was approved by the local Institutional Animal
Care and Use Committee in accordance with the Guide for the
Care and Use of Laboratory Animals and adhered to the ARVO
Statement for the Use of Animals in Ophthalmic and Vision
Research.

MRI Measurements of Blood Flow (BF)

Three groups of animals were used for MRI study: male wild-
type C57BL/6J mice aged 4 months (n ¼ 8), and male DBA/2J
mice aged 4 months (n ¼ 8) and 9 months (n ¼ 6). During
imaging, mice spontaneously breathed a mixture of 30% O2/
70% N2 with 1.6% isoflurane for anesthesia while the animals
were held in a custom-made holder with ear and tooth bars to
minimize motion. Respiratory rate was monitored via a force
transducer and maintained in a target range of 80 to 120 breaths
per minute by slight adjustments to the level of anesthesia.

iovs.arvojournals.org j ISSN: 1552-5783 826

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/


Heart rate and arterial oxygen saturation were also monitored
using oximetry (MouseOx; STARR Life Science Corp., Oak-
mont, PA, USA). Animal temperature was monitored and
maintained at 378C with warm water that circulated through a
water pad underneath the mouse throughout the experiment.

Blood flow MRI was acquired at baseline (before DZ
application). Then a single drop (5 lL) of dorzolamide HCL
ophthalmic solution (2%, Bausch and Lomb) was applied on
the left eye, and BF MRI was acquired again at 1 and 2 hours
after DZ application. The animals were allowed to recover after
the scans were completed.

MRI Parameters

Depth-resolved BF MRI was performed at a resolution of 42 3
42 3 400 lm in a magnet with a 150 Gauss/cm gradient
(Bruker Biospec 7 Tesla; Bruker Corp., Billerica, MA, USA)
using a custom circular eye coil for imaging (diameter¼ 6 mm)
and circular heart coil for ASL (inner diameter ¼ 8 mm).22,23

The blood flow scans were acquired with a gradient-echo,
echo-planar imaging sequence with a 6 3 6 mm field of view
and 144 3 144 matrix (42 3 42 lm resolution in-plane) zero-
filled interpolation to 256 3 256. The blood flow sequence
used a single, 400 lm coronal slice, two shots, 2.94-second
labeling pulse, 3.0-second repetition time, and a 13 ms echo
time. The slice was positioned near the optic nerve and tilted
perpendicular to the retina. Blood flow values were calculated
from images acquired over a 20-minute period and averaged
offline.

Image analysis was performed with custom software
(MATLAB; MathWorks, Inc., Natick, MA, USA), and STIMULATE
(University of Minnesota, www.cmrr.umn.edu) software pack-
ages as described in detail elsewhere.22 A semiautomated
process in (MathWorks, Inc.) was used to linearize the retina;
align the retina to correct for motion (if any) of the eye during
the scan; and conduct an automated profile analysis. Profiles
across the retinal thickness were obtained from images by
projecting lines perpendicular to the retina with profiles
obtained at 34 spatial interpolation. The blood flow (mL/min/
g) was calculated from the signal intensities of labeled and
nonlabeled images as: BF ¼ (k /T1)(SNL-SL)/(SL þ [2a-1]SNL)),
where k�(0.9 mL/g) is the tissue-blood partition coefficient for
water and is the value ([quantity of water/grams of tissue]/
[quantity of water/mL of blood]); T1 is 1.8 seconds at 7 Tesla,
SNL is the signal intensity (arbitrary units) of images with non-
labeled blood, SL (arbitrary units) is the signal intensity of
images with magnetically labeled blood, and a is the arterial
spin-labeling efficiency (0.7) for cardiac labeling in mice. Blood
flow profiles were averaged along the retina-choroid complex.
Two peaks were present in the averaged BF profile, located in
the inner retina and choroid. Measurements of retinal and
choroidal BF were determined from the corresponding peaks
of the average BF profiles for each animal. The arterial spin
labeling MRI method to measure retinal and choroid blood
flow has been corroborated with the microsphere technique.24

Intraocular Pressure (IOP) Measurements

Measurements of IOP were performed with a rebound
tonometer (Icare Tonolab, Helsinki, Finland)25,26 on both eyes
of 4-month-old C57BL/6J (n¼ 3), 4-month-old DBA/2J (n¼ 3),
and 9-month-old DBA/2J (n ¼ 3) male mice. These measure-
ments were taken on a separate occasion than the MRI scans.
The animals were anesthetized with 1.6% isoflurane and body
temperature was maintained at 378C using a heating pad. An
average of six readings were taken at baseline, and again at 1
and 2 hours post-DZ applications. A single drop (5 lL) of
dorzolamide HCL ophthalmic solution (2%, Bausch and Lomb)

was applied on each eye. The animals were allowed to recover
after the IOP measurements were completed. The same
protocol was followed for an additional group of 9-month-old
DBA/2J male mice (n ¼ 3) that received topical saline as a
control.

Arterial Pressure Measurements

We previously found that arterial pressure in older (age >6
months) C57BL/6 (n¼ 9) and DBA/2J (n¼ 9) mice was stable
for 1 hour under isoflurane anesthesia.9 To confirm that blood
pressure remained stable during the 2-hour period of
anesthesia in the present study, femoral arterial pressure was
measured in a 6-month-old C57BL/6 mouse and a 9-month-old
DBA/2J mouse under 1.6% isoflurane. A femoral artery
cutdown was performed and arterial pressure in the femoral
artery was measured for >2 hours using a servo-null micro-
pressure system (Model 900A; World Precision Instruments,
Sarasota, FL, USA) and a recording system (PowerLab;
ADInstruments, Colorado Springs, CO, USA).9 The technique
uses glass micropipettes drawn to a 3 to 5 lm diameter tip to
cannulate the target blood vessel. The pipette is filled with 2M
NaCl that permits an electric circuit to be established between
the pipette and a reference electrode placed in the tissue
nearby. The resistance across the pipette tip is monitored and a
pressure pod with a fast piezoelectric valve applies the
necessary pressure to the open end of the pipette to maintain
the resistance constant at the tip in the vessel. The applied
pressure is taken to be equivalent to the pressure in the vessel.
After the experiment, the mice were euthanized without
regaining consciousness.

Statistical Analysis

The intraocular pressure data for each animal were pooled (i.e.,
the six measurements in each eye were averaged and then the
mean IOP for the two eyes in each animal was averaged to give
a single IOP value per animal). All data are reported as mean 6
standard error of the mean, with significant differences
accepted at P < 0.05. Comparisons within strain by time
point were done by 1-way repeated measures ANOVA with
Bonferroni post hoc tests. Comparisons between strains by
time point were done by 2-way repeated measures ANOVA
with Bonferroni post hoc tests (GraphPad Prism, La Jolla, CA,
USA).

RESULTS

IOP

Figure 1 shows the IOP measurements at baseline, and 1 and 2
hours after topical DZ application outside the MRI scanner but
under otherwise identical conditions as in the MRI experi-
ments. Baseline IOP in the 9-month-old DBA/2J (22.7 6 0.2
mm Hg) mice was significantly higher than in the C57BL/6J
(11.4 6 0.6 mm Hg, P < 0.001) and 4-month-old DBA/2J (11.0
6 1.4 mm Hg, P < 0.001) mice. Baseline IOP was not
significantly different between C57BL/6J and 4-month DBA/2J
(P > 0.05), or between 9-month-old DBA/2J mice that received
DZ or saline (21.5 6 1.5 mm Hg, P > 0.05). One hour after DZ
application, the IOP in the 4- DBA/2J (7.5 6 0.4 mm Hg) and 9-
month-old DBA/2J (7.8 6 0.6 mm Hg) mice was significantly
lower than baseline (P < 0.05 and P < 0.01, respectively) and
remained significantly reduced (P < 0.05 and P < 0.01,
respectively) compared with baseline at 2 hours after DZ (7.5
6 0.8 and 8.0 6 0.15 mm Hg, respectively). The intraocular
pressure in the C57BL/6J mice was not significantly different
(P > 0.05) from baseline at 1 or 2 hours after DZ (8.8 6 0.2
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and 9.1 6 0.9 mm Hg, respectively). The intraocular pressure
also was not significantly different (P > 0.05) from baseline at 1
and 2 hours after saline instead of DZ in 9-month-old DBA/2J
mice (22.4 6 1.4 and 21.72 6 0.8 mm Hg, respectively).

MRI of Blood Flow

Figure 2A shows a layer-specific blood flow image from a
normal mouse eye. Figure 2B displays an example of RBF and
ChBF profiles in one control eye. The choroidal BF is markedly
higher than the RBF, and the middle avascular layer has a
minimal blood flow signal as expected.

Retinal BF and ChBF were measured at baseline, and 1 and 2
hours post-DZ application (Fig. 3). Baseline RBF was signifi-
cantly lower in both the 4- (0.90 6 0.08 mL/min/g) and 9-
month-old (0.78 6 0.05 mL/min/g) DBA/2J mice compared
with the C57BL/6J mice (1.24 6 0.11 mL/min/g). At 1 hour
after DZ, RBF was significantly increased (P < 0.05) in the 9-
month-old DBA/2J mice (1.17 6 0.03 mL/min/g), but not in
the C57BL/6J (1.13 6 0.06 mL/min/g) or the 4-month-old
DBA/2J mice (1.06 6 0.05 mL/min/g). At 2 hours after DZ, RBF

in the 9-month-old DBA/2J (1.14 6 0.07 mL/min/g) remained
elevated above baseline (P < 0.05). Although trending lower,
RBF in the C57BL/6J (1.06 6 0.05 mL/min/g) and 4-month
DBA/2J (0.95 6 0.07 mL/min/g) mice remained unchanged
from baseline at 2 hours after DZ.

FIGURE 1. Mean IOP measurements for 4-month-old C57BL/6J, 4-
month-old DBA/2J, and 9-month-old DBA/2J mice at baseline and at 1
and 2 hours post-DZ as well as 9-month-old DBA/2J mice before and
after topical saline. See text for description of statistically significant
differences.

FIGURE 2. (A) Layer-specific blood flow map of a C57BL/6J mouse eye at a resolution of 42 3 42 3 400 lm. Blood flow maps detect choroidal and
retinal vascular layers with the avascular zone in between. Scale bar: indicates the blood flow range. (B) Retinal and choroidal blood flow profiles
(mL/min/g) were calculated from the signal intensities of labeled images such as in Figure 2A.

FIGURE 3. Retinal (A) and choroidal BF (B) at baseline, and 1 and 2
hours after topical dorzolamide in 4-month-old C57BL/6J, 4-month-old
DBA/2J, and 9-month-old DBA/2J mice. See text for description of
statistically significant differences.
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Baseline ChBF was significantly lower in the 9-month-old
DBA/2J mice (3.42 6 0.27 mL/min/g) compared with the
C57BL/6J mice (6.61 6 0.62 mL/min/g) and the 4-month-old
DBA/2J mice (4.84 6 0.43 mL/min/g). At 1 hour after DZ,
ChBF significantly increased (P < 0.05) in the 9-month-old
DBA/2J mice (4.38 6 0.39 mL/min/g), but not in the C57BL/6J
(7.09 6 0.62 mL/min/g) and the 4-month-old DBA/2J (5.19 6

0.61 mL/min/g) compared with baseline. At 2 hours after DZ,
ChBF remained above baseline (P < 0.05) in the 9-month-old
DBA/2J mice (4.31 6 0.40 mL/min/g); however, ChBF in the
C57BL/2J (6.24 6 0.45 mL/min/g) and the 4-month-old DBA/2J
(3.92 6 0.41 mL/min/g) mice were not significantly different
from baseline, although both decreased significantly (P < 0.05)
from their 1 hour values. Choroidal BF in the 9-month-old DBA/
2J mice was lower than in the C57BL/6J mice at all time points
(P < 0.05).

Blood Pressure Measurements

Systemic blood pressure in a 6-month-old C57BL/6J and a 9-
month-old DBA/2J mouse were measured outside the MRI
scanner over a similar 2-hour period as the MRI experiments
(Fig. 4). The blood pressure was relatively stable in both
animals, averaging (mean 6 SD) 79 6 5 mm Hg in the C57BL/
6J mouse and 60 6 5 mm Hg in the DBA/2J mouse, consistent
with our previous experience with these mouse strains for 1
hour under anesthesia.9

DISCUSSION

Ocular hypertension and the consequent diminished perfusion
pressure available to drive blood through the ocular circula-
tions is the basis for the longstanding ischemic hypothesis of
glaucoma. The present study and other investigations of the
DBA/2J model support this hypothesis since it develops age-
related ocular hypertension, reduced ocular blood flow and
the RGC loss and decreased optic nerve axon density seen in
human glaucoma. The present study adds to the existing
literature by showing that acute pharmacologic IOP reduction
with topical dorzolamide in the older DBA/2J mouse is
associated with increased retinal and choroidal blood flow.

Dorzolamide is a carbonic anhydrase inhibitor commonly
used in glaucoma treatment to lower IOP.27 Its hypotensive
effect is mediated by inhibition of aqueous humor produc-
tion.21 In addition to its hypotensive effect, dorzolamide dilates
isolated retinal arterioles28,29 and so it may have a direct
vasodilatory effect in vivo. However, although topical dorzo-
lamide reaches the back of the eye,30,31 its ability to increase
blood flow in the retina, choroid and optic nerve has not been
shown consistently. In rabbits, acute dorzolamide had no effect
on choroidal perfusion,32 but chronic dosing increased optic
nerve head perfusion in one study33 and had no effect in
another.34 For humans, some studies reported no change in
retinal blood flow35–37 while others reported an increase.38–41

Similarly, for human optic nerve head blood flow, dorzolamide
was reported to have no effect42 or to increase perfusion43 and

FIGURE 4. Arterial pressure traces from a 6-month-old C57BL/6J mouse (top) and a 9-month-old DBA/2J mouse (bottom) over a 2-hour period of
anesthesia similar to that used in the MRI experiments table.
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to flatten the pressure-flow relationship.44 For human choroi-
dal blood flow, modest increases in perfusion indexes were
reported.43,45 The discrepancies in the literature are likely due
to differences in dosing protocols, and also the inherent
ambiguities in the methods used to measure blood flow in the
human ocular circulations. However, on balance, it does not
appear that dorzolamide has a dramatic hyperemic effect on
human retinal or choroidal blood flow.

What then accounts for the blood flow responses in the
present study? As ocular blood flow could be affected by
instability of systemic blood pressure over the course of the 2-
hour MRI experiments, we monitored arterial blood pressure
over the same period outside the MRI scanner. We found the
arterial blood pressure to be stable over 2 hours under
isoflurane anesthesia, consistent with our previous results in
larger cohorts of DBA/2J and C57BL/6J (n ¼ 9 each) during 1
hour of isoflurane anesthesia.9 Thus, the changes in ocular
blood flow after DZ do not seem to be due to systemic blood
pressure instability. By contrast, IOP in the older DBA/2J group
was markedly elevated at baseline and declined markedly after
dorzolamide. The perfusion pressure ranges for retinal and
choroidal pressure-flow autoregulation in the DBA/2J mouse
are unknown; however, the perfusion pressure below which
retinal and choroidal blood flow respond linearly to perfusion
pressure changes is approximately 40 mm Hg in several
species.46 Assuming the perfusion pressure was below the
autoregulatory cut-off pressure in the older DBA/2J mice at
baseline, it is plausible that the increase in perfusion pressure
when IOP decreased after DZ would cause the observed
increases in retinal and choroidal blood flow.

For the younger DBA/2J group and the C57BL/6J group, the
interpretation of the retinal and choroidal blood flow response
pattern is less clear. At baseline, their IOPs were similar and
relatively low, and did not fall markedly after dorzolamide. Thus,
IOP does not explain the reduced baseline retinal blood flow
and marginally reduced (P ¼ 0.07 by unpaired t-test) choroidal
blood flow in the younger DBA/2J group, nor does IOP explain
the fall in choroidal blood flow in the second hour after
dorzolamide. The differences in baseline retinal and choroidal
blood flows may be due to arterial pressure. Arterial pressures in
conscious C57BL/6J and DBA/2J mice are similar and around
100 mm Hg.47,48 Under isoflurane anesthesia, arterial pressure
may fall lower in DBA/2J mice than C57BL/6J mice, as suggested
by the two animals we tested (Fig. 4); higher IOP and low
arterial pressure would obviously contribute to the even lower
baseline retinal and choroidal blood flows in the older DBA/2J
mice. However, the fall in choroidal blood flow in the DBA/2J
and C57BL/6J during the second hour after dorzolamide cannot
be explained by perfusion pressure. A possible explanation is
washout of an endogenous vasodilator during the first hour
hyperemia, but this is speculative.

CONCLUSIONS

This study investigated the effects of acute topical application of
dorzolamide on IOP and retinal and choroidal blood flow in an
animal model of glaucoma. The results support the hypothesis
that acute topical dorzolamide decreases intraocular pressure
and increases retinal and choroidal blood flow in the older DBA/
2J mouse model of glaucoma. Future studies will investigate the
effects of chronic dorzolamide treatment on retinal and
choroidal blood flow in young and old DBA/2J mice.
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