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This paper aims to present a novel efficient scheme in order to more effectively control the

multiple input and multiple output (MIMO) uncertain nonlinear systems. A wavelet fuzzy

brain emotional learning controller (WFBELC) model is proposed, which is comprises

the benefit of wavelet function, fuzzy theory and brain emotional neural network. When

it is used as the main tracking controller for a MIMO uncertain nonlinear systems, the

performances of the system, such as the approximation ability, the learning performance

and the convergence rate, will be effectively improved. Meanwhile, the gradient descent

method is used to adjust the parameters online of WFBELC and the Lyapunov function

is employed to guarantee the rapid convergence of the control systems. For the sake of

the further illustrating the superiority of this model, two examples of uncertain nonlinear

systems, a Duffing-Holmes chaotic system and a Chua’s chaotic circuit, are studied.

After compared with other models, the test results show that the proposed model can

be applied to obtain more satisfactory control performance and be more suitable to deal

with the influence of the uncertainty of the MIMO nonlinear systems.

Keywords: wavelet function, brain emotional neural network, fuzzy system, uncertainty, compensator controller

INTRODUCTION

Uncertainty is an unavoidable problem in most technological cases. For the uncertain nonlinear
systems, the acquisition of information is ordinarily limited and incomplete. Therefore, a model-
free approach is usually used to effectively describe a system with the random characteristics in
terms of structure and parameters (Lahmiri et al., 2013; Nikolić et al., 2013; Lin et al., 2014;
Gosztolya and Szilagyi, 2015; Zhang et al., 2015). One of these effective methods is to combine
the fuzzy inference system and neural network (NN) while building models. Then, the fuzzy neural
network (FNN) not only offers a unique and flexible framework for knowledge representation but
also processes the quick learning ability of NN. Moreover, wavelet analysis technology uses the
dilation parameter and the translation parameter of mother wavelet, so the approximation of the
signal can be more precise and more rapid due to the time-frequency localization properties ofWF.
When it is used as the activation function, it will possess the capability to analyse non-stationary
signals to find the local details of the signal (Lin and Li, 2014). Therefore, combining the type-1
fuzzy inference, neural network (NN) and the wavelet function to construct wavelet fuzzy neural
network (WFNN) will help to obtain more rapid global convergence and enrich the mapping
relationship in a smaller number of iterations when dealing with the nonlinear and uncertain
systems (Abiyev and Kaynak, 2008; Lu, 2011; Davanipoor et al., 2012; Liu et al., 2013).
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Nevertheless, in the above neural networks the emotion factor
is always ignored. In 1992, Le Doux found that the connection
between a stimulus and its emotional consequences occurs in
the amygdala of the brain (Le Doux, 1992). The brain has
an amygdala and an orbital prefrontal cortex (Balkenius and
MorÉn Jan, 2001).The amygdala system appears to be involved
in excitatory emotional regulation, while the prefrontal system
controls the response to changes in emotional emergencies
(Rolls, 1986, 1995).Therefore, a mathematical model, brain
emotional learning controller (BELC), has been established to
describe the brain emotional learning (Sharbafi et al., 2010). The
main structure of this model is divided into two parts. One
is a sensory neural network that roughly corresponds to the
amygdala, the other is an emotional neural network that roughly
corresponds to the orbital prefrontal cortex. Self-learning and
adjusting parameters are themain functions of the sensory neural
network, and the functions of responding to external factors
and establishing sensory-emotional correlation belong to the
emotional neural network which has an indirect influence on
the sensory neural network (Schultz et al., 1995). Moreover, they
affect each other. In recent years, BELC has been widely applied
for various different fields (Roshanaei et al., 2010; Dehkordi et al.,
2011; Zarchi et al., 2011; Chung and Lin, 2015; Hsu et al., 2016;
Zhou et al., 2017).

It is important to note that the conditioned reflexes occurring
in the amygdala differ from those well-known in the cerebellum
(Thompson, 1998; Yeo and Hesslow, 1998). It appears that
conditioned reflex in the amygdala appears to establish emotional
connections, while the cerebellum is involved in learning stimuli
(Schultz et al., 1995). The emotional representation of a stimulus
is independent of any response (Rolls, 1995). As for the same
learning system, the amygdala and the cerebellum are different
components (Gray, 1975). Therefore, the mathematical models
and learning algorithms of the BELC differ from those of the
cerebellum proposed by Albus (1975).

In this paper, we reconstruct a conventional BELC combined
with a wavelet function and a fuzzy neural network. This
novel model can be named as a wavelet fuzzy brain emotional
learning controller (WFBELC). It takes advantages of a BELC,
a wavelet function and a FNN to improve the learning ability
over a conventional BELC. Finally, the effectiveness of the
presented WFBELC is verified by some uncertain chaotic
systems. The simulation and comparison results with the fuzzy
Cerebellar Model Articulation Controller (FCMAC) and the
BELC have shown that the proposed WFBELC can achieve
much more favorable tracking performance. It can prevail
over the forementioned control schemes when dealing with
the influence of the uncertainty of the MIMO nonlinear
systems.

As for the control of nonlinear systems, there are many
control strategies (Zhong and Zhu, 2017; Chen et al., 2018; Fu
et al., 2018; Zhong et al., 2018a,b; Zhu et al., 2018). Recently,
sliding mode control (SMC) has attracted the interest of many
researchers due to its powerful approach for nonlinear systems
and incompletely modeled systems (Su et al., 2017). SMC also
shows its high robustness by the capacity to cope with external
disturbances (Wen et al., 2017). Based on these advantages,
SMC has been applied in many applications. However, the main

drawback of SMC is the chattering phenomenon, which has
great influence on the trajectory tracking smoothness (Cui et al.,
2017). To overcome this problem, a lot of studies have proposed
some approaches (Joe et al., 2014; Zheng et al., 2014; Yu et al.,
2017). The study in Joe et al. (2014) addressed that higher order
sliding mode is an efficient approach to deal with the chattering.
Therefore, in this study, the higher order sliding surface is used
to enhance the control performance of the proposed algorithm,
and also the robust compensator controller is used to cope the
chattering and the residual error.

The remained of this paper is organized as follows. The
modeling of wavelet fuzzy brain emotional learning controller
is presented in section Modeling of Wavelet Fuzzy Brain
Emotional Learning Controller. The updating algorithm and
convergence analysis of WFBELC are presented in section
Updating Algorithm and Convergence Analysis of WFBLC. The
simulation results are provided in section Simulation Results.
Finally, the conclusion is given in section Conclusions.

MODELING OF WAVELET FUZZY BRAIN
EMOTIONAL LEARNING CONTROLLER

Fuzzy Inference Rules of WFBELC
As mentioned above, the brain has two parts: one is the amygdala
responsible for the emotional judgment, and the other is the
orbital prefrontal cortex responsible for the emotional control.
So the fuzzy inference of the proposed WFBELC also consists of
two type-1 fuzzy systems, i.e., the amygdala fuzzy system and the
prefrontal fuzzy system.

The amygdala fuzzy system is defined as

If I1 is s1 and I2 is s2, . . . , In i is sn i , then u a o = vi o (1)

for i = 1, 2, . . . , n i, o = 1, 2, . . . , n o

The prefrontal fuzzy system is defined as

If I1 is s1 and I2 is s2, . . . , In i is sn i , then u p o = wi o (2)

for i = 1, 2, . . . , n i, o = 1, 2, . . . , n o

where ni is the input dimension, no is the output dimension, si is
the i-th input of the type-1 fuzzy set, vio is the amygdala weight
for the o-th output in the consequent part, uao is the o-th output
of amygdala, wio is the prefrontal weight for the o-th output in
the consequent part, and upo is the o-th output of prefrontal. The
structure of this WFBELC is shown in Figure 1.

Structure of WFBELC
The emotional system and sensory system receive inputs
from sensory cortex. Both of them have 5 layers. The signal
transmission and the main function of these layers are presented
as follows.

1) Layer 1

The layer 1 is the input space I. For a given,
I = [I1, ..., Ii, ..., Ini]T ∈ℜni Ii is an input state variable
equaling to an actual input signal.

2) Layer 2

The layer 2 is the sensory cortex space S which performs
the fuzzification operation of WFBELC. In this space, wavelet
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FIGURE 1 | Structure of WFBELC.

functions are adopted as the basis function with the uniformly
distributed translations and the same dilations in order to
describe the linguistic terms.

It has been proved that the integration of a Gaussian
function is bounded and convergent. Therefore, all the
derivatives of Gaussian function satisfy the admissibility
condition of wavelet, and the n-order derivative of Gaussian
function has the n-order vanishing moment. Thus, it is
beneficial to compress data and eliminate noise, and possesses
the better time-frequency localization properties (Zhao and
Lin, in press). Therefore, in this paper, a type-1 Gaussian
membership function is used as the mother wavelet. This
Gaussian-type mother wavelet function can be expressed as:

s i(Fi) = −Fi × exp

(

−F2i
2

)

(3)

Where si is the input from sensory cortex, which is the
intensity of the individual stimulus components, Fi = (Ii –
αi)/βi, where αi and βi are the i-th translation and the i-th
dilation for the Gaussian-type wavelet of the i-th input Ii,
respectively.

Because of the use of wavelet functions, the approximation
ability for complex nonlinear functions is more effective than
other basis functions, like the triangle basis function, the
Gaussian basis function. Therefore, the learning speed is also
increased.

3) Layer 3

The layer 3 is the weight spaceW. In this space, each block
is a fuzzy output, which indicates the inference part of the
fuzzy rules.

For the amygdala system, this space is known as the sensory
weight space V, expressed in a vector form:

vo = [v1o, v2o, · · · , vi o, · · · , vn i o
]T ∈ ℜ

n i ,

for o = 1, 2, · · · , n0 (4)

For the prefrontal system, this space is known as the emotional
weight spaceW, expressed in a vector form:

wo = [w1o, w2o, · · · , wi o, · · · , wn i o
]T ∈ ℜ

n i ,

for o = 1, 2, · · · , n0 (5)

where vio and wio represent the o-th weight value of the i-th
input for the prefrontal system and the amygdala system,
respectively.

4) Layer 4

The layer 4 is the weighted sum of the sensory input
si, which can be solved by the method of center of gravity
defuzzification.

For the amygdala system, the defuzzification operator is
defined as:

ao =

n i
∑

i
si × vi o

n i
∑

i
si

= ϕ vo (6)
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For the prefrontal system, the defuzzification operator is
defined as:

po =

n i
∑

i
si × wi o

n i
∑

i
si

= ϕwo (7)

where ϕ is in a vector form, and ϕi is the constant values of the
i-th fuzzy rule. They can be defined as

ϕ = [ϕ1,ϕ2, ....,ϕni]
T ∈ ℜ

ni (8)

ϕi =
si

n i
∑

i=1
si

(9)

when
n i
∑

i
si = 1, (6 and 7) can be redefined as:

ao =

n i
∑

i

si × vi o (10)

po =

n i
∑

i

si × wi o (11)

5) Layer 5

The layer 5 is the output of the WFBELC. It is the result of
interaction between the amygdala system and the prefrontal
system. Thus, the o-th output of WFBELC is obtained as the
following:

y o = a o − p o , for o = 1, 2, · · · , no (12)

UPDATING ALGORITHM AND
CONVERGENCE ANALYSIS OF WFBELC

Updating Algorithm for the Brain Emotional
Learning Controller
The emotional learning of the brain is achieved by updating
the weights vio and wio. According to the neurophysiological
prototype, the main function of the amygdala is to predict and
respond to specific emotional hints. By adjusting the orbital
frontal cortex, the difference between amygdala output and
emotional implication tends to minimized (Lucas et al., 2004).
Therefore, in view of the emotional learning approach of the
brain, the parameters adaptation laws of the amygdala system and
prefrontal system are respectively applied as

1vi o = ηv
[

s i ×max (0 , θo − ao)
]

(13)

1wi o = ηw
[

s i × (yo − θo)
]

(14)

where ηv is a learning-rate in the amygdale cortex and ηw is a
learning rate in the prefrontal cortex.

The parameter θo is an adjustment denoting the emotional
signal or reinforcing signal for the o-th output ofWFBELC, which

is a function of several parameters. In this paper, θo is represented
as

θ o = (
n i

∑

i=1

λi × Ii)+ (γo × yo) (15)

where λi and γo are the signal constant gains.
In order to represent the capability of forgetting the previous

emotion signals, a maximum term is also added to Equation
(13) as suggested in Fatourechi et al. (2001). Thus, the weight of
amygdala cannot be decreased because the max function adjusts
the weight monotonically. However, the prefrontal’s learning rule
is essentially different from the amygdala’s. The orbitofrontal
connection weight, seen from Equation (14), can resize the value
to achieve the required output.

The updating laws for the weights of the amygdala system and
the prefrontal system are written as:

vi o(k+ 1) = vi o(k)+ 1vi o(k) (16)

wi o(k+ 1) = wi o(k)+ 1wi o(k) (17)

Gradient Descent Algorithm for the
Sensory Cortex Space
To update the translation parameter mi and the dilation
parameter σi for a wavelet function, which are used in the
sensory cortex space S, the normalized iterative gradient decent
algorithm is applied. The back propagation is designed to deduce
the parameter adaptation laws.

Firstly, an energy function E is defined as

E(k) =
1

2

no
∑

o=1

(To(k)− yo(k))
2 =

1

2

no
∑

o=1

e2o(k) (18)

where eo(k) = To(k) –yo(k) denotes the o-th error, To(k) is the
o-th target output, yo(k) is the o-th output of WFBELC.

Thus, the parameter updating learning law can be derived
according to

α(k+ 1) = α(k)+ 1α(k) = α(k)− ηα

∂ E

∂ yo

∂ yo

∂α
(19)

β(k+ 1) = β(k)+ 1β(k) = β(k)− ηβ

∂ E

∂ yo

∂ yo

∂ β
(20)

where ηα is the learning rate of translation, ηβ is the learning
rate of dilation, and α = [α1,α2, ...,αi, ...,αni]T , β =

[β1,β2, ...,βi, ...,βni]T

The gradient operation factors ∂ yo
∂α

and ∂ yo
∂ β

are defined as

∂ yo

∂α
=

[

∂ yo

∂ α 1
,

∂ yo

∂ α 2
, · · ·

∂ yo

∂ α i
, . . . ,

∂ yo

∂ α n i

]T

(21)

∂ yo

∂ β
=

[

∂ yo

∂ β 1
,

∂ yo

∂ β 2
, · · · ,

∂ yo

∂ β i
, . . . ,

∂ yo

∂ β n i

]T

(22)
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Then, by using the chain rule, the updating regulations of these
two parameters can be expressed

1αi = −ηα

no
∑

o=1

∂E(k)

∂αi

= −ηα

no
∑

o=1

∂

∂yo

1

2
(To − yo)

2 ∂

∂αi
(ao − po) (23)

= ηα

n0
∑

o=1

eo (wi o − vi o) βi
−1(Fi

2 − 1) exp

(

−F2i
2

)

1βi = −ηβ

no
∑

o=1

∂E(k)

∂βi

= −ηβ

no
∑

o=1

∂

∂yo

1

2
(To − yo)

2 ∂

∂βi
(ao − po) (24)

= ηβ

n0
∑

o=1

eo (wi o − vi o) βi
−1F(Fi

2 − 1) exp

(

−F2i
2

)

Convergence Analysis
The following form is used to describe a class of uncertain
nonlinear systems:























x(n)(t) = f (x(t))+ G (x(t)) u(t)+ d(x(t))
= (f0 (x(t))+ 1f (x(t))+ (G0 (x(t)) + 1G (x(t))u(t)
+ d(x(t))
= f0 (x(t))+ G0 (x(t)) + L(x(t)) (25)

ys(t) = x(t)

where x(t), u(t), d(t) and ys are the system state, the
control signal, the external disturbance and the system
output, respectively. The x(t) and u(t) can be defined as
[x1(t),x2(t), · · · , xn o (t)]

T and[u1(t),u2(t), · · · , un o (t)]
T , belonging

to ℜ
n o . The term x(t) is thought to be obtainable, defined as

[xT(t), ẋT(t), · · · , x(n-1) T(t)]
T
. Moreover, f (x(t))∈ ℜ

n o is the
system nonlinear vector, expressed as f0 (x(t)) + 1f (x(t)) and
G(x(t))∈ ℜn o × n o is the matrix-valued function, expressed as
G0 (x(t)) + 1G(x(t)). Here, the second parts of them are the
uncertain functions of the system whose boundaries are assumed
to be obtainable, and the inverse ofG0 (x(t)) exists. Consequently,

the unknown uncertainty of the system is described by these
unknown items in Equation (25), i.e.1f (x(t)),1G (x(t))u(t), and
d(t), represented as L(x(t))∈ ℜ

n o . Its boundary is also thought to
be obtainable.

Here, we define a tracking error as e (t) = yd(t) − ys(t), its
vector form is

e(t) =
[

e (t) T , e′ (t) T , ... , e (t) (n−1)T
] T

∈ ℜn i n o (26)

A sliding hyper-plane is used to express the integrated error
function

s(e, t) ≡ e(n-1) + K1e
(n-2) + ...+ Kn

∫ t

0
e(τ )dτ (27)

where Ki ∈ ℜ
n o ×n o , i = 1, 2, . . . , ni, are matrices with positive

constant and define K=[K1
T , . . . , Kn

T]T∈ ℜ
n i n o ×n o ,s(e, t) =

[s1(t), s2(t), · · · , sn o (t)]
T ∈ ℜ

n o is a sliding surface vector.
When the uncertainty and the nominal functions, such as L(x(t)),
f0(x(t)) and G0(x(t)), are really known, we can design an ideal

FIGURE 3 | Adaptive WFBELC control for uncertain chaotic system.

FIGURE 2 | Phase plane of uncontrolled chaotic system (A) q= 0.1, (B) q= 1, and (C) q= 8.
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controller as

u∗(t) = G0
−1 (x(t))

[

yd(t)
(n) − f0 (x(t))− L(t)+ KTe

]

(28)

A dynamic equation of the tracking error can be given after
replacing (Equation 25) with the ideal controller shown in
Equation (28)

ṡ(e, t) = e(n) + KTe (29)

By selecting the value of K in Equation (29), the roots of
the polynomial can locate in the left half of the complex plane.
It means that with the time goes by, the tracking error will
become smaller and smaller until it converges to zero. In practice,
however, this uncertainty L(x(t)) is usually not obtained, so the
ideal controller u∗(t) in Equation (28) can not be implemented.

Therefore, a WFBELC controller and a robust controller are
needed to be combined into a WFBELC control system to deal
with this problem.

u = u WFBELC + u r (30)

Thus, in this proposedWFBELC control system, there are a main
controller uWFBELC and a robust compensator controller ur. The
uWFBELC is utilized to approach the ideal controller u∗(t), while
the function of the compensator controller is to compensate the
approximation error ε between u∗(t) and uWFBELC.

Then, a LWFBELC would be appeared to approximate the
L(x(t)) according to the universal approximation theorem
(Wang, 1994).

L(x(t)) = LWFBELC(I,wi o, vi o,mi, σi) + ε (31)

Take the derivative of Equation (27) and use (Equation 25), then

ṡ(e, t) = e(n) + KTe

= −f0 (x(t))− G0 (x(t)) u(t)+ yd(t)
(n)

− LWFBELC(x(t))+ KTe (32)

Substituting (Equation 30) into (Equation 32), multiplying each
side by sT gives

sT ṡ = −sTf0 (x(t))− sTG0 (x(t)) (u WFBELC(t)+ u r(t))

+ sT(yd(t)
(n) − LWFBELC(x(t))+ KTe) (33)

where

uWFBELC(t) = G0
−1 (x(t))

[

yd(t)
(n) − f0 (x(t))− LWFBELC(x(t))

+ KTe
]

(34)

In the course of observation, the approximation error ε in
Equation (31) is assumed to be bounded and the boundary is
difficult to obtain. Therefore, we define an estimated value to
estimate the boundary of this error.

Ñ = N − N̂ (35)

where N is the boundary, whose estimated value is N̂. Then, it
can be assumed to bound ε ∈ [0, N].
Hence, the compensator in Equation (30) can be selected as

ur = −G−1
0 (x)N̂sgn (s) (36)

FIGURE 5 | Response tracking curves of state x1 (q = 0.3) (A) FCMAC, (B)

BELC, and (C) WFBELC.

FIGURE 4 | Periodic orbit phase plane plots (q = 0.3) (A) FCAMC, (B) BELC, and (C) WFBELC.
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And (Equation 32) is also rewritten as

ṡ(e, t) = e(n) + KTe = G0(x) ur(t)+ ε (37)

FIGURE 6 | Response tracking curves of state x2 (q = 0.3) (A) FCMAC, (B)

BELC, and (C) WFBELC.

FIGURE 7 | Change trend chart of the control signal u (q = 0.3) (A) FCMAC,

(B) BELC, and (C) WFBELC.

In this paper, a Lyapunov function is given as

Ŵ(s , Ñ) =
sT s

2
+

Ñ2

2 ηN
(38)

where ηN is the learning rate of Ñ, whose adaptive learning law is
selected as

˙̂N = −ηN | s | (39)

Because of the constant value, ˙̃N = −
˙̂N.

Taking the derivative of Equation (38), and using (Equations
36, 37), then

Ŵ̇(s , Ñ) = sT ṡ+
Ñ ˙̃N

ηN
= sT(ε − N̂sgn(s))+

Ñ ˙̃N

ηN
= sTε − N̂ | s |

+
Ñ ˙̃N

ηN
(40)

Substituting (Equations 35, 40) into (Equation 38), Ŵ̇(s , Ñ)
becomes

Ŵ̇(s , D̃) = sTε − N̂ | s | − (N − N̂) | s | = sTε − N | s |

≤ | ε | | s | − N | s | = −(N − | ε | ) | s | ≤ 0

(41)

FIGURE 8 | Performance Index P (q = 0.3) (A) FCMAC, (B) BELC, and (C)

WFBELC.
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Since Ŵ̇(s , Ñ) is negative semidefinite function, i.e.,
Ŵ̇(s(t) , Ñ(t)) ≤ Ŵ̇(s(0) , Ñ(0)), it indicates s and Ñ are bounded.

(N − | ε | ) s ≤ (N − | ε | ) | s | ≤ −Ŵ̇(s , Ñ) (42)

Let function 4 = (N − | ε | ) s, and integrate 4(t), obtains

∫ t

0
4 (τ ) dτ ≤ Ŵ(s(0) , Ñ(0))− Ŵ(s(t) , Ñ(t)) (43)

Because Ŵ(s(0) , Ñ(0)) is bounded, and Ŵ(s(t) , Ñ(t)) is non-
increasing and bounded, we derive:

lim
t→∞

∫ t

0
4 (τ ) dτ ≤ ∞ , ( t → ∞, s (t) → 0 ) (44)

In addition, according to Barbalat’s lemma (Slotine and Li,
1991), since 4̇ (t) possesses the boundary, 4(t) → 0 when
t→ ∞. Hence, the WFBELC system possesses the asymptotic
stability and satisfactory convergence. The tracking error will
approximate to zero in virtue of t→ ∞. A favorable robust
tracking performance can be achieved consequently.

Moreover, the actual system and mathematical model are
not exactly matched. To solve this problem, the uncertainty of
these mathematical functions can be used to include these mis-
matches. As a result, this WFBELC control system can be used
for nonlinear systems with uncertainties to enhance their robust
control characteristics.

SIMULATION RESULTS

Two chaotic systems are used as the cases to verify the
effectiveness of the presented WFBELC mode applied for
uncertain nonlinear systems. For comparison, some othermodels
are also applied.

Duffing-Holmes Chaotic System
Chaotic system is a kind of uncertain nonlinear systems, which
is complex and unpredictable. Its disorder randomness is derived
from the nonlinear term in the internal dynamics equation. One
of the characteristics of chaotic systems is their high sensitivity
to initial conditions, such that even very tiny differences in

initial conditions may have a great impact on the behavior
of these systems (Chang and Yan, 2005). The Duffing-Holmes
chaotic system is considered. It is a second-order chaotic system
expressed as Yan et al. (2005):







ẋ1(t) = x2(t)
ẋ2(t) = −p1 x1(t)− p2 x1(t) 3 − p3 x2(t)+ q cos(ω t)
ys(y) = x1(t)

(45)

where p1 is the damping coefficient, qcos(ωt) is the periodic
driving signal and q is the amplitude.

For different q values, the trajectories of the chaotic system are
different, just as seen in Figures 2A–Cwith the real constants [p1,

FIGURE 10 | Response tracking curves of state x1 (q = 8) (A) FCMAC, (B)

BELC, and (C) WFBELC.

FIGURE 9 | Periodic orbit phase plane plots (q = 8) (A) FCAMC (B) BELC (C) WFBELC.
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p2, p3]= [−1, 1, 0.25]. When q = 0.1, the trajectory is centered
around a point (1, 0). When q = 1, the chaotic phenomenon
appears, and the trajectory is periodically run around two points,
(−1, 0) and (1, 0). When q= 8, besides the above characteristics,
the trajectory is sunken toward the interior of orbit and cross state
is emerged.

When we take into account the unknown factors, the external
interference signals, and the system control signals, a dynamic
Equation (46) is given:















ẋ1(t) = x2(t)
ẋ2(t) = −p1 x1(t)− p2 x1(t) 3 − p3 x2(t)+ q cos(ω t)

+1f (X, t)+ d(t)+ u(t)
ys(t) = x1(t)

(46)

where the uncertainty term 1 f (X, t) and the disturbance d(t)
are selected as 0.1 × sqrt(x12 + x2

2)× sin(t) and 0.1×sin(t).
Then, an adaptive WFBELC control for uncertain chaotic

system is built in Figure 3.
For the example, the initial values of a sliding hyper-plane are

selected as K1 =

[

k11 0
0 k12

]

, k11 = 0.6, k12 = 0.02, which are

based on the stable integrated error function in Equation (27).
The dilation parameter for a wavelet function is set as β i = 3, and
the translation parameter for a wavelet function is distributed in
the interval [-2, 2].

Choosing an appropriate learning rate for the parameter
updating law is one of the most important aspects of network

FIGURE 11 | Response tracking curves of state x2 (q = 8) (A) FCMAC, (B)

BELC, and (C) WFBELC.

design. Here, the learning rates in the amygdala and in the
prefrontal cortex, ηv and ηw, are both equal to 0.01 according
to Zhao and Lin (2017). The constant gains in Equation (15)
are selected as λi = 60, (i= 1, 2), γo = 1.2, (o= 1).The
compensator parameter ηN = 0.1, N̂ = 1. These parameters are
selected based on some trial-error method to ensure the required
transient performance of this control system. Other parameters
are random.

For the sake of verifying the effectiveness of WFBELC, an
FCMAC (El-Sousy and Abuhasel, 2016) and a BELC (Chung and
Lin, 2014) are also applied with different q value in Equation

(46). A performance index P is defined as P =
√

e2 + e′2.
The trajectory signal is set as yd (t) = x1 (t) = sin (1.1 t).
Simulation results with q = 0.3 of FCMAC, BELC and WFBELC
are respectively depicted in Figures 4–8, namely: the periodic
orbit phase plane plots, the response tracking curves of state x1
and state x2, the change trend chart of the control signal u and
performance Index P. For the case of q = 8, there are also the
set of such diagrams depicted in Figures 9–13. The values of
root mean square error (RMSE) and the computation cost of this
chaotic system using different models are listed in Table 1.

According to the above compared results, for different chaotic
trajectories, much more satisfactory control performance can be
obtained by using the presented WFBELC than by using the
FCMAC or by using the BELC. The more serious the chaos
is, the better the tracking performances of the WFBELC are.
The control system with WFBELC model structure has smaller
tracking error than the control system with other two model
structures. Moreover, the convergence speed of the WFBELC
model is also the fastest compared with the other two models.

FIGURE 12 | Change trend chart of the control signal u (q = 8) (A) FCMAC,

(B) BELC, and (C) WFBELC.
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From Table 1, it can be seen that there are more parameters to
upgrade the effectiveness of WFBELC control system than those
of the other two control systems, so it costs a little more time in
computation. This increased computation time is still acceptable.

Chua’s Chaotic Circuit
A typical kind of the Chua’s chaotic circuit structure is shown in
Figure 14.

Then the dynamic equations for this circuit are given as Chang
and Robust (2004).

v̇C1 =
1

C1

(

1

R

(

vC2 − vC1

)

− g
(

vC1

)

+ u1 (t)

)

+ d1 (t) (47)

v̇C2 =
1

C2

(

1

R

(

vC1 − vC2

)

+ iL + u2 (t)

)

+ d2 (t) (48)

i̇L =
1

L

(

−vC2 + u3 (t)
)

+ d3 (t) (49)

where R, g, C1, C2, and L are the physical parameters, i.e.,
the linear resistor, the nonlinear resistor, the capacitor and

FIGURE 13 | Performance Index P (q = 8) (A) FCMAC, (B) BELC, and (C)

WFBELC.

TABLE 1 | Results for Duffing-Holmes chaotic system.

FCMAC BELC WFBELC

RMSE q = 0.3 0.062193 0.05008 0.047998

q = 8 0.077768 0.067314 0.050479

Computation time (s) q = 0.3 1.3715 1.2643 1.1806

q = 8 1.4021 1.3286 1.2968

the inductor. The d (t) =
[

d1 (t) , d2 (t) , d3 (t)
]T

expresses the

disturbance signal and u (t) = [u1 (t) , u2 (t) , u3 (t)]T expresses
the control signal. The vC1(t), vC2(t) and the iL(t) are the state
variables of the voltages and the current for this chaotic circuit.
Thus, the input state vector of this circuit can be given as

x (t) = [x1 (t) , x2 (t) , x3 (t)]T =
[

vC1 (t) , vC2 (t) , iL (t)
]T
. These

aforementioned dynamic equations are re-given as

x(n)(t) = f (x(t))+ G (x(t)) u(t)+ d(x(t)) (50)

Here, f
(

x
)

=





1
C1

( 1
R

(

vC2 − vC1

)

− g
(

vC1

))

1
C2

( 1
R

(

vC1 − vC2

)

+ iL
)

1
L

(

−vC2

)





and

G
(

x
)

= diag





1
C1

0 0

0 1
C2

0

0 0 1
L





The external disturbance is given as

d (t) =





d1 (t)
d2 (t)
d3 (t)



 =





exp (−t/5) sin (2t) + 0.3
exp (−t/5) cos (2t) − 0.5
exp (−t/5) sin (3t) + 0.2



 (51)

The parameters of the resistance, inductance, and capacitance
are formed as R= R0 + 1R, g(vC1)= g0(vC1)+1g(vC1),L= L0
+1L,C1 = C10 + 1C1,C2 = C20 + 1C2, where R0, g0(vC1),
L0, C10, and C20 are the nominal values and 1R, 1g(vC1),
1L, 1C1, and 1C2 represent the unknown nonlinear time-
varying perturbations. The nominal values are set as R0 =5,
g0

(

vC1

)

= −vC1 + 0.02v3C1
, L0 = 1, C10 = 1, and C20 = 0.5.

The time-varying perturbations are 1R= sin(0.5t), 1g(vC1)=
0.2 vC1×sin(t), 1L= 0.15, 1C1 = 0.1cos(0.5 t) +0.1 and 1C2

= 0.1. The required trajectories are xr= [xr1, xr2, xr3] T=

[1/5×sin(3t)+sin(t), 1/5×cos(3t)+cos(t), sin(t)+1] T (Joe et al.,
2014). The initial values of state parameters, like the system states
and the reference model states, are set as x1(0) = 0, x2(0) = −1,
x3(0) = 0; xr1(t) = 0, xr2(t) = 1, xr3(t) = −1. A sliding hyper
plane, s(e, t)=e(t), is proposed as for the proposed control case.

For the proposed WFBELC control system, the input signals
of WFBELC are e1(t), e2(t), and e3(t), the initial parameters of

FIGURE 14 | Chua’s chaotic circuit.
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sliding mode are set asK1 = diag(0.1, 0.1, 0.1) based on Equation
(27). The dilation parameter for a wavelet function is set as
β i = 1.6 and the translation parameter for a wavelet function

FIGURE 15 | Trajectory responses (A) FCMAC, (B) BELC, and (C) WFBELC.

is distributed in the interval [−2, 2].The learning rates in the
sensory cortex space are selected as ηv = ηw = 0.15. The other
parameters are set as same as in Example 1.

FIGURE 16 | Enlarged responses (A) FCMAC, (B) BELC, and (C) WFBELC.
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For comparison, a FCMAC and a BELC are also applied.
The simulation results of this chaotic example are plotted as
follows: the trajectory responses [vC1(t), vC2(t), iL(t)] are plotted
in Figure 15; the enlarged responses are plotted in Figure 16,

FIGURE 17 | Corresponding control inputs (A) FCMAC, (B) BELC, and (C)

WFBELC.

the dotted lines represent the reference signals and the red lines
represent the responses; the corresponding control inputs [u1(t),
u2(t), u3 (t)] are plotted in Figure 17; and the values of tracking

FIGURE 18 | Values of tracking error (A) FCMAC, (B) BELC, and (C)WFBELC.
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TABLE 2 | Results for Chua’s chaotic circuit.

FCMAC BELC WFBELC

RMSE e1 0.051962 0.047958 0.043589

e2 0.143875 0.098489 0.042426

e3 0.05099 0.046904 0.042426

Computation time (s) 1.0279 1.0071 1.1371

error [e1(t), e2(t), e3 (t)] are plotted in Figure 18. The RMSE
and the computation cost of these systems are tabulated in
Table 2.

In these simulations, from the Figures 15–18 and Table 2, the
WFBELC control system can achieve faster errors convergence
and reduce tracking error to get smaller tracking errors than
the FCMAC control system and the traditional BELC control
system. The tracking error convergence speed of the WFBELC
is also faster than that of these two other systems. Moreover,
it obtains obviously from Table 2 that for the same chaotic
circuit, the RMSE of the WFBELC control system is smaller
than the other two control systems. Similar to the previous
example, compared with other models, the computation time
has increased slightly by using the WFBELC model to improve
the effectiveness of WFBELC control system. It is acceptable,
as well.

CONCLUSIONS

The main contribution of this paper is to design the WFBELC
model, which can be applied to much more effectively solve
the uncertainty of the MIMO nonlinear systems. It consists of
the wavelet theory, the type −1 fuzzy inference and the BEL
algorithm. Thus, theWFBELCmodel has the advantages of them
such that it can mimic the expression of the brain’s sensations
and emotions in one, and can describe the complex uncertain
nonstationary signals more detailed. When the WFBELC is
used as the main tracking controller for a MIMO uncertain
nonlinear system and the robust compensation controller is used

as a compensator, the control performances can be improved.
Simulation results of two chaotic systems confirm that this
proposed WFBELC model can effectively obtain satisfactory
control capability with better transient responses and smaller
error values comparing to the FCMAC control scheme and
the BELC control scheme. Finally, the satisfactory control
performance can be obtained much more quickly and effectively
than other schemes. These comparisons also show that the
proposed model can be more capable to handle the influence
of the uncertainty. Moreover, the proposed control method can
also be suitable for a large class of unknown nonlinear systems,
because it does not need to know the accurate mathematical
model of a nonlinear system. Applying the proposed model and
the control scheme to real systems will be our future work. The
favorable performance of the WFBELC can be further verified
through the test results of the hardware platform.
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