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Abstract

Background

A major feature of acute lung injury (ALI) is excessive inflammation in the lung. Vitexin is an

active component from medicinal plants which has antioxidant and anti-inflammatory activi-

ties. Oxidative stress and inflammation play important roles in the pathophysiological pro-

cesses in ALI. In the current study, we investigate the effect and potential mechanisms of

Vitexin on lipopolysaccharide (LPS)-induced ALI.

Methods

ALI was induced by LPS intratracheal instillation in C57BL/6 wild-type mice and Nrf2 gene

knocked down (Nrf2-/-) mice. One hour before LPS challenge, Vitexin or vehicle intraperito-

neal injection was performed. Bronchoalveolar lavage fluid and lung tissues were examined

for lung inflammation and injury at 24 h after LPS challenge.

Results

Our animal study’s results showed that LPS-induced recruitment of neutrophils and eleva-

tion of proinflammatory cytokine levels were attenuated by Vitexin treatment. Vitexin

decreased lung edema and alveolar protein content. Moreover, Vitexin activated nuclear

factor erythroid-2-related factor 2 (Nrf2), and increased the activity of its target gene heme

oxygenase (HO)-1. The LPS-induced reactive oxygen species were inhibited by Vitexin. In

addition, the activation of the nucleotide-binding domain and leucine-rich repeat PYD-con-

taining protein 3 (NLRP3) inflammasome was suppressed by Vitexin. However, these

effects of Vitexin were abolished in the Nrf2-/- mice. Our cell studies showed that Vitexin

enhanced the expression of Nrf2 and HO-1 activity. Moreover, reactive oxygen species

(ROS) and IL-1β productions were reduced in Vitexin-treated cells. However, knockdown of

Nrf2 by siRNA in RAW cells reversed the benefit of Vitexin.
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Conclusions

Vitexin suppresses LPS-induced ALI by controlling Nrf2 pathway.

Introduction

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by dif-

fuse lung inflammation[1, 2]. Controlling inflammation is a promising strategy for ALI/

ARDS[1–4].

The nucleotide binding domain and leucine-rich repeat pyrin domain containing 3

(NLRP3) inflammasome has been demonstrated to associate with ALI[5–7]. NLRP3 inflam-

masome plays an important effect in the regulation of interleukin (IL)-1β[8]. IL-1β is one of

the most important inflammatory mediators in the development of ALI[9]. Reactive oxygen

species (ROS) which were generated in ALI have been identified as an important activator of

NLRP3 inflammasome[10]. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a redox-sensi-

tive transcription factor. Nrf2 has been shown to regulate expression of antioxidants such as

heme oxygenase (HO)-1 which is critical in protecting the lung against oxidative stress[11].

Various investigators have demonstrated the importance of Nrf2 activation and up-regulation

of HO-1 in ALI[11].

Vitexin is an active component from medicinal plants such as the leaf of hawthorn which is

a widely used conventional Chinese medicine[12]. Modern pharmacological studies show that

Vitexin exerts a variety of pharmacological activities, including antioxidant and anti-inflam-

matory functions[13–18]. Vitexin reduced hypoxia-ischemia neonatal brain damage[19],

acute myocardial ischemia/reperfusion injury[18], lipopolysaccharide (LPS)-induced islet cell

injury[14]. The antioxidant and anti-inflammatory features of Vitexin may contribute to the

reduction of ALI. The objective of the present study was to examine the effects of Vitexin in

ALI. We hypothesized that Vitexin prevents ALI via controlling Nrf2 pathway.

Materials and methods

Animal experimental protocol

All animal experiments of the present study were performed in accordance with the National

Institutes of Health guidelines for the use of experimental animals. The present project was

approved by the Institutional Animal Care and Use Committee of Jilin University. To mini-

mize the suffering of animals, various intervals were performed under anesthesia.

Male wild-type (WT) C57BL/6 mice (18–20 g, the laboratory animal center of Jilin Univer-

sity) and Nrf2 gene knock out (Nrf2-/-) mice (18–20 g, the Jackson Laboratory, Bar Harbor,

ME, USA) were anesthetized (n = 10 each group). The ALI model was induced by intratracheal

administration of LPS (Escherichia coli 0111:B4; Sigma-Aldrich, St. Louis, MO, USA) at a dose

of 10 mg/mL which was dissolved in 50 μL sterile phosphate-buffered saline (PBS) as described

previously[20]. For control group, 50 μL PBS was administrated. One hour before LPS or PBS

challenge, Vitexin (10 mg/kg, Haoxuan Biotechnology Co. Ltd., Xi’an, China) or vehicle

(20 μL dimethylsulphoxide in a total of 200 μL saline) intraperitoneal injection (i.p.) was per-

formed. Twenty-four hours after LPS or PBS challenge, mice were sacrificed after anesthesia

by pentobarbitone (50 mg/kg i.p.).
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Bronchoalveolar lavage fluid (BALF)

We collected BALF by lavage the lung for three times with PBS (pH 7.2, 500 μL each time).

The fluid recovery rate was more than 90%. Lavage samples from mice were kept on ice. BALF

was centrifuged at 700× g for 5 min at 4 ˚C. The BALF supernatant was collected and stored at

−80 ˚C.

Measurement of cytokine concentration and protein content in BALF

Tumor necrosis factor (TNF)-α, IL-1β, and IL-6 in BALF were measured by an enzyme-linked

immunosorbent assay (ELISA) (R&D Systems, Minneapolis, MN, USA) according to the man-

ufacturers’ manual. The measurement of total protein content in BALF was performed by

using Pierce BCA protein assay kit (Thermo Fisher Scientific, Asheville, NC, USA) as previ-

ously described[21].

Pulmonary wet to dry (W/D) weight ratio

The left upper lung lobe was harvested for lung W/D weight ratio. The lung was weighed,

placed in an oven at 80˚C for 48 h, and then dried and re-weighed. The W/D ratio was then

calculated[22].

Histopathological analysis

The lung tissues were fixed with 10% buffered formalin, embedded in paraffin, and then, sec-

tioned into 5 μm slices. The lung tissue slices were stained with haematoxylin-eosin, and ana-

lyzed by light microscopy. A scoring system to grade the degree of lung injury was employed

in the present study. Briefly, the lung tissue sections were graded on a scale of 0 to 4 (0, absent

and appears normal; 1, light; 2, moderate; 3, strong; 4, intense) for congestion, edema, infiltra-

tion of inflammatory cells, and hemorrhaging[23].

Measurement of maleic dialdehyde (MDA) production

The pulmonary homogenate (0.1 ml) was mixed with 0.2 ml of 8.1% sodium dodecyl sulfate,

1.5 ml of 20% acetic acid, and 1.5 ml of 0.8% aqueous solution of thio-barbituric acid. The mix-

ture pH was adjusted to 3.5, and the final volume was made up to 4.0 ml with distilled water;

5.0 ml of the mixture of n-butanol and pyridine (15:1, v/v) was then added. The mixture was

shaken vigorously. After centrifugation at 4,000 rpm for 10 min, the absorbance of the organic

layer was measured at 532 nm. MDA was expressed as nmol/mg protein[24].

Cell viability

RAW 264.7 cells (the China Cell Line Bank, Beijing, China) were cultured in Dulbecco’s modi-

fied Eagle’s medium supplemented with 10% fetal bovine serum, 100 U/ml of penicillin, and

100 U/ml of streptomycin in a 5% CO2 humidified atmosphere at 37˚C prior to experiments.

Cell viability was determined using the (4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-

liumbromide (MTT) assay. The cells were treated with various concentrations of Vitexin for 1

hour and then exposed to LPS (10 μg/mL) for 12 hours. Subsequently, 100 μL of MTT solution

(0.5 mg/ml) was added and further incubated for 4 h. The result was measured using a micro-

plate reader (Biotek, Winooski, VT, USA) at an absorbance of 570 nm.
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Small interfering RNA (siRNA) transfection

RAW 264.7 cells were transfected with Nrf2 siRNA and Non-Correlated siRNA according to

the manufacturers’ manual (Santa Cruz Biotechnology, Santa Cruz, CA, USA). In brief, cells

(2×105 cells/well) were seeded in 6-well plates. The transfection of siRNAs was carried out by

using the siRNA transfection reagent Lipofectamine™ 2000 following the manufacturer’s pro-

tocol. After 6 h, cells were split into 6-well plates to perform further analysis. We detected the

effects of siRNA on Nrf2 expression by western blot analysis. The transfected cells were stimu-

lated with LPS for 12 h in the presence and absence of Vitexin.

ROS measurement

The RAW 264.7 cells were incubated with DCFH-DA (20 μM) for 30 min. The fluorescence

intensity was scanned by a fluorometer (Molecular Devices Gemini XS, Sunnyvale, CA, USA)

at excitation and emission wavelength of 485 nm and 538 nm, respectively.

HO-1 activity assay

HO-1 activity was detected by measuring the amount of bilirubin. Briefly, the lung tissue

homogenate (600 μL) was mixed with 0.8 mmol/L nicotinamide adenine dinucleotide phos-

phate, 1 mmol/L glucose-6-phosphate, 0.2 U glucose 6-phosphate dehydrogenase, and 2.5

mmol/L protohemin. The reaction was incubated for 1 h at 37˚C in a water bath with shaking

in the dark. The reaction was terminated by adding chloroform. The amounts of generated bil-

irubin were determined by absorbance at 464 and 530 nm.

Nrf2 activity analysis

The nuclear extractions from lung tissues were used for measuring Nrf2 binding activity to

immobilized antioxidant response elements (ARE) using a TransAM™ Nrf2 kit according to

the manufacturer’s instructions (Active Motif, Carlsbad, CA, USA).

Western blotting analysis

Protein concentration was determined using a Bio-Rad protein assay (Bio-Rad Laboratories,

Hercules, CA). Equal concentrations of proteins were mixed with SDS sample buffer and

denatured at 95 ˚C for 5 min. The samples were resolved with 8% SDS–page gels which were

then transferred onto nitrocellulose membranes. The membranes were blocked with 5% fat-

free milk in 0.1% Tris-buffered saline with Tween (TTBS) for 2 hours and then probed with

primary antibodies: anti-Nrf2 antibody (1:500 dilution; Santa Cruz Biotechnology, Santa Cruz,

CA), anti-NLRP3 antibody (Cell Signaling Technology, Beverley, CA) at 4 ˚C overnight. After

being washed for three times with TTBS, the membranes were incubated with secondary anti-

bodies (Santa Cruz Biotechnology) in TTBS at room temperature for 2 hours. Membranes

were washed again with TTBS three times and then visualized on X-ray films using a chemo-

luminescence detection system (ECL, GE Healthcare). β-actin (Santa Cruz Biotechnology) and

TATA box binding protein (TBP) (Abcam, Cambridge, UK) were used as protein loading con-

trol for cytoplasmic and nuclear proteins, respectively. The relative band intensities were mea-

sured by image analysis software Gel-Pro Analyser.

Statistical analysis

All data are presented as means ± SEM. All data were analyzed by using the SPSS 17.0 software

(Chicago, IL, USA). The two-tailed Student’s t-test for comparison between two groups. The
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one-way analysis of variance (ANOVA) followed by Bonferroni’s post hoc test for multiple

comparisons was used to compare more than two groups. The Student-Newman-Keuls

method was used for statistical evaluation of the histopathological analysis. No statistical

method was used to estimate sample size, but it was consistent with previous publications.

Three replicates per condition were performed for in vitro studies. A value of P< 0.05 was

taken to indicate statistical significance.

Results

Effect of Vitexin on pulmonary histological alteration in LPS-treated mice

There was no histological alteration in the control group (Fig 1A and 1B). However, the pul-

monary inflammation and injury were observed at 24 h after LPS challenge in WT mice (Fig

1A and 1B). These LPS-induced histological changes were ameliorated by Vitexin treatment

(Fig 1A and 1B). However, the benefit of Vitexin on pulmonary histological alteration was

abolished in Nrf2-/- mice (Fig 1A and 1B).

Fig 1. Effects of Vitexin on pulmonary histopathological analysis, lung injury score, lung permeability, and lung water content in

lipopolysaccharide (LPS)-treated mice. Representative haematoxylin-eosin staining images of pulmonary section (A): a, control group (wild type

(WT) mice treated with sterile phosphate-buffered saline (PBS)+vehicle); b, WT mice treated with PBS+Vitexin; c, nuclear factor erythroid-2-related

factor 2 (Nrf2) gene knockout (Nrf2-/-) mice treated with LPS+vehicle; d, WT mice treated with LPS+vehicle; e, WT mice treated with LPS+Vitexin; f,

Nrf2-/- mice treated with LPS+Vitexin. All photographs were taken at 100×magnification. Lung injury score (B). Protein concentrations in

bronchoalveolar lavage fluid (BALF) (C). Pulmonary wet to dry (W/D) weight ratio (D). Data was expressed as means ± SEM (n = 6–10 per group). �

p< 0.05, versus control group; #p< 0.05, versus LPS+vehicle group; �� p< 0.05, versus LPS+Vitexin treated WT mice.

https://doi.org/10.1371/journal.pone.0196405.g001
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Effect of Vitexin on lung water content and permeability in LPS-treated

mice

LPS challenge induced a significant increase in BALF protein concentrations and pulmonary

wet to dry ratio in WT mice (Fig 1C and 1D). Vitexin treatment inhibited the LPS-induced ele-

vation of protein concentrations in BALF and pulmonary wet to dry ratio by 48% (232.88

+43.43 (LPS+Vitexin) vs. 451.66+38.85 (LPS+vehicle)) and 26% (5.48+0.83 (LPS+Vitexin) vs.

7.51+0.90 (LPS+vehicle)), respectively (Fig 1C and 1D). However, the benefit of Vitexin was

markedly inhibited in the Nrf2-/- mice (Fig 1C and 1D).

Effect of Vitexin on cytokine concentration in LPS-treated mice

24 hours after intratracheal injection of LPS, TNF-α, IL-1β, and IL-6 levels in BALF were deter-

mined using ELISA. The concentrations of TNF-α, IL-1β, and IL-6 in the vehicle treated group

were higher than Vitexin treated group (Fig 2A, 2B and 2C). However, the LPS-induced the

elevation of TNF-α, IL-1β, and IL-6 in Vitexin treated Nrf2-/- mice was higher than Vitexin

treated WT mice (Fig 2A, 2B and 2C).

Effect of Vitexin on Nrf2/HO-1 pathway and ROS production in LPS-

treated mice

ROS levels in lung tissue samples were expressed in MDA. LPS challenge increased ROS gener-

ation by 5.2-fold compared with control (Fig 2D). Vitexin treatment reduced the LPS-induced

Fig 2. Effects of Vitexin on tumor necrosis factor (TNF)-α (A), interleukin (IL)-1β (B), IL-6 (C), and maleic dialdehyde (MDA) production

(D) in lipopolysaccharide (LPS)-treated mice. Data was expressed as means ± SEM (n = 6–10 per group). � p< 0.05, versus control group (wild

type (WT) mice treated with PBS+vehicle); #p< 0.05, versus LPS+vehicle group; �� p< 0.05, versus LPS+Vitexin treated WT mice. Nrf2-/-, nuclear

factor erythroid-2-related factor 2 gene knockout mice.

https://doi.org/10.1371/journal.pone.0196405.g002
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ROS levels by 44% compared with vehicle-treated mice (Fig 2D). However, the benefit of

Vitexin on ROS production was abolished in Nrf2-/- mice (Fig 2D). Nrf2 and HO-1 activity

were determined 24 h after LPS challenge. Compared with vehicle-treated group, Vitexin treat-

ment markedly upregulated the activity of Nrf2 and HO-1 (Fig 3A and 3B).

Effect of Vitexin on NLRP3 inflammasome in LPS-treated mice

Western blotting analysis revealed that the NLRP3 inflammasome was upregulated in the mice

with ALI compared with that in the control (Fig 3C). Vitexin treatment inhibited the NLRP3

inflammasome compared with vehicle-treated animals observed at 24 h after LPS challenge

(Fig 3C). The inhibiting effect of Vitexin on the NLRP3 inflammasome was markedly damp-

ened in Nrf2-/- mice (Fig 3C).

Effect of Vitexin on LPS-activated RAW cells

The MTT assay showed that Vitexin did not exhibit any toxicity to RAW 264.7 cells at concen-

trations ranging from 10 to 50 μM (Fig 4A). Our cell study showed that Vitexin elevated Nrf2

expression in RAW 264.7 cells (Fig 4B). Meanwhile, the HO-1 activity was enhanced in

Fig 3. Effects of Vitexin on nuclear factor erythroid-2-related factor 2 (Nrf2) activity (A), heme oxygenase (HO)-1 activity (B), and the

nucleotide-binding domain and leucine-rich repeat PYD-containing protein 3 (NLRP3) inflammasome (C) in lipopolysaccharide (LPS)-treated

mice. Data was expressed as means ± SEM (n = 6–10 per group). � p< 0.05, versus control group (wild type (WT) mice treated with PBS+vehicle);
#p< 0.05, versus LPS+vehicle group; �� p< 0.05, versus LPS+Vitexin treated WT mice. Nrf2-/-, Nrf2 gene knockout mice.

https://doi.org/10.1371/journal.pone.0196405.g003
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Fig 4. Effects of Vitexin on cell viability (A), the expressions of nuclear factor erythroid-2-related factor 2 (Nrf2) (B), heme oxygenase

(HO)-1 activity (C), reactive oxygen species (ROS) levels (D), and interleukin (IL)-1β levels (E) in lipopolysaccharide (LPS)-activated RAW

cells. TBP, TATA box binding protein. Data was expressed as means ± SEM of three independent experiments. � p< 0.05.

https://doi.org/10.1371/journal.pone.0196405.g004
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Vitexin-treated group (Fig 4C). The ROS levels in RAW 264.7 cells were determined using

DCFH-DA. Vitexin treatment inhibited ROS and IL-1β production (Fig 4D and 4E). However,

these effects of Vitexin were abolished when the Nrf2 gene was knocked down (Fig 4C, 4D and

4E).

Discussion

In the current study, pulmonary edema and inflammation was observed in vehicle-treated WT

mice at 24 hours after LPS challenge. These changes were dampened by Vitexin treatment.

Moreover, Vitexin treatment elevated Nrf2 expression, and inhibited NLRP3 inflammasome

activation. However, the benefit of Vitexin on elevation of HO-1 and reduction of ROS as well

as cytokine production were abolished in the Nrf2-/- mice. Our results suggest that the benefit

of Vitexin on LPS-induced ALI is mediated through controlling Nrf2 pathway.

In this study, our data suggest that Vitexin may have antioxidative effects via the upregula-

tion of Nrf2. Oxidative stress plays a vital role in ALI[25]. Excessive ROS during the pathogen-

esis of ALI is a hallmark feature of oxidative stress[25]. ROS causes cell swelling and cell

membrane breakdown[26]. ROS accumulation aggravates inflammatory responses via pro-

moting the expression of proinflammatory cytokines and infiltration of inflammatory cells

[27]. The important role of Nrf2 in ALI has been demonstrated by previous studies[28]. Nrf2

regulates the expression of antioxidant enzymes which counteracts ROS generation[27]. HO-1

is an important target gene of Nrf2 which plays a crucial role in host defense against inflamma-

tion and oxidative stress[29–31]. Evidences have shown that Vitexin has antioxidant features

[18, 19]. However, its potential mechanism is unclear. In the present study, the Nrf2/HO-1

pathway was activated by Vitexin treatment in animal study. Meanwhile, the LPS-induced

ROS production was inhibited by Vitexin treatment. However, the benefit of Vitexin was abol-

ished in Nrf2-/- mice. Our in vitro data are consistent with animal studies. Knockdown of

Nrf2 by siRNA in RAW cells reversed the benefit of Vitexin. Our results showed that the bene-

fit of Vitexin is associated with regulating the Nrf2 pathway.

The NLRP3 inflammasome is a pivotal signaling platform that is activated by a variety of

signals, such as ROS[32]. Activation of NLRP3 inflammasome has been shown to be involved

in ALI[7, 33–35]. Evidence has shown that activation of NLRP3 inflammasome is associated

with releasing of cytokines[36]. Recent study suggests that NLRP3 inflammasome causes mat-

uration of the proinflammatory cytokines IL-1β[37]. IL-1β is an important proinflammatory

cytokine in ALI. IL-1β causes alveolar epithelial and vascular endothelial permeability[9, 38].

In the current study, the LPS-induced activation of NLRP3 inflammasome was inhibited in

Vitexin-treated mice. The IL-1β levels were reduced in Vitexin-treated groups. It appears that

the beneficial effect of Vitexin on LPS-induced ALI is associated with inhibition of NLRP3

inflammasome. The inhibiting role of Vitexin on NLRP3 inflammasome may via Nrf2-me-

diated reduction of ROS production.

There are limitations in the present study. First, our results showed that Vitexin upregulated

Nrf2 expression in LPS-induced ALI. However, the underlying signaling pathway involved in

the effect of Vitexin on Nrf2 warrants further investigation. Second, only one time point was

investigated in the present study. The effect of Vitexin on ALI beyond than 24 hours is unclear.

Last, other mechanisms responsible for the effect of Vitexin on ALI were not elucidated.

Conclusions

Vitexin suppresses LPS-induced ALI by controlling Nrf2 pathway. Vitexin may represent a

promising therapeutic strategy for ameliorating development of ALI.
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