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ABSTRACT Yellow fever virus (YFV) causes sporadic outbreaks of infection in South
America and sub-Saharan Africa. While live-attenuated yellow fever virus vaccines based
on three substrains of 17D are considered some of the most effective vaccines in use,
problems with production and distribution have created large populations of unvacci-
nated, vulnerable individuals in areas of endemicity. To date, specific antiviral therapeu-
tics have not been licensed for human use against YFV or any other related flavivirus.
Recent advances in monoclonal antibody (mAb) technology have allowed the identifi-
cation of numerous candidate therapeutics targeting highly pathogenic viruses, includ-
ing many flaviviruses. Here, we sought to identify a highly neutralizing antibody target-
ing the YFV envelope (E) protein as a therapeutic candidate. We used human B cell
hybridoma technology to isolate mAbs from circulating memory B cells from human
YFV vaccine recipients. These antibodies bound to recombinant YFV E protein and rec-
ognized at least five major antigenic sites on E. Two mAbs (designated YFV-136 and
YFV-121) recognized a shared antigenic site and neutralized the YFV-17D vaccine strain
in vitro. YFV-136 also potently inhibited infection by multiple wild-type YFV strains, in
part, at a postattachment step in the virus replication cycle. YFV-136 showed therapeu-
tic protection in two animal models of YFV challenge, including hamsters and immuno-
compromised mice engrafted with human hepatocytes. These studies define features
of the antigenic landscape of the YFV E protein recognized by the human B cell
response and identify a therapeutic antibody candidate that inhibits infection and dis-
ease caused by highly virulent strains of YFV.

IMPORTANCE Yellow fever virus (YFV) is a mosquito-borne virus that occasionally causes
outbreaks of severe infection and disease in South America and sub-Saharan Africa.
There are very effective live-attenuated (weakened) yellow fever virus vaccines, but
recent problems with their production and distribution have left many people in
affected areas vulnerable. Here, we sought to isolate an antibody targeting the surface
of the virus for possible use in the future as a biologic drug to prevent or treat YFV
infection. We isolated naturally occurring antibodies from individuals who had received
a YFV vaccine. We created antibodies and tested them. We found that the antibody
with the most powerful antiviral activity was a beneficial treatment in two different
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small-animal models of human infection. These studies identified features of the virus
that are recognized by the human immune system and generated a therapeutic anti-
body candidate that inhibits infection caused by highly virulent strains of YFV.

KEYWORDS monoclonal antibodies, mouse model, neutralization, vaccine, yellow
fever virus

Yellow fever virus (YFV), the prototype and namesake member of the family
Flaviviridae, is a historically important human pathogen. Yellow fever (YF) disease

has been described in the New World since the 1600s, and YFV was first identified in
1927 (1). The virus has caused numerous epidemics of human disease throughout the
world. According to the World Health Organization, 47 countries in Africa and Central
and South America currently have regions where yellow fever is endemic, and the bur-
den of yellow fever disease during 2019 was as high as 109,000 severe cases and 51,000
deaths (2). Approximately 30% of infected individuals develop severe disease that
includes hemorrhagic complications and multiorgan failure, half of whom succumb to
the infection (3). Nonhuman primates serve as the primary reservoir for YFV, with mos-
quitoes in the Haemagogus, Sabethes, and Aedes genera serving as the vectors responsi-
ble for reservoir maintenance and spillover into humans, typically when humans
encroach on primates’ natural ecosystems, in what is referred to as the “sylvatic cycle.”
Once within the human population, YFV is spread by a different vector, the anthropo-
philic Aedes aegypti mosquito, in an “urban cycle” (4). Beginning in 2018, YFV epidemics
began approaching coastal urban centers like Sao Paolo and Rio de Janeiro, Brazil, spark-
ing concerns that more severe YFV epidemics may occur in the future (5).

YFV is an enveloped virus with a positive-sense, single-stranded RNA genome. The
YFV genome is translated as a single polyprotein, which is posttranslationally cleaved
by a combination of host and viral proteins into 3 structural (pr/M, E, and C) and 7 non-
structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins (6). The envelope (E)
protein is the primary surface-exposed protein on mature particles and is the principal
target of the protective humoral immune system (7). The E protein is comprised of three
domains (domain I [DI], DII, and DIII). DII contains several immunodominant epitopes,
including the fusion loop (FL), which is a hydrophobic peptide that mediates the fusion
of viral and host membranes in the late endosome. Domain III on E contains the puta-
tive cellular attachment domain (8). While several attachment factors have been
postulated, specific entry receptors for YFV have not yet been identified. The virus
enters host cells by receptor-mediated endocytosis, as the low pH of late endosomes
triggers conformational changes in the E protein. These changes expose the FL,
which inserts into the endosomal membrane, allowing the penetration of the RNA
genome into the host cytoplasm for translation and replication. Although E protein is
the primary target of neutralizing antibodies (9–12), nonstructural 1 (NS1) proteins
can also elicit protective antibodies (13–15). Conversely, prM antibodies may confer
the risk of antibody-dependent enhancement of infection by otherwise poorly infec-
tious immature virions (16–18).

The YFV vaccine, based on a strain known as 17D, was created by serial passage
and attenuation in the 1930s by Max Theiler (19) and is considered one of the most
successful vaccines ever created. However, the production of 17D has changed little
since its inception, resulting in a system of manufacturing and distribution that has
been unable to keep pace with demand: ;400 million people in areas of endemicity
still require vaccination to achieve the herd-immunity threshold required to prevent
the urban spread of YFV (20). Fractional dosing has been explored in outbreak settings
when the vaccine supply is insufficient, but its consequences for the generation of
durable, long-lasting protection are unknown (21, 22). YFV vaccine shortages stem
principally from the limitations inherent in the legacy methods of vaccine strain propa-
gation still being used. When outbreaks do occur in the setting of vaccine insufficiency,
specific licensed antiviral treatments targeting YFV are not available.
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Recently, potent neutralizing monoclonal antibodies (mAbs) against many viral targets
have shown efficacy as potential treatments for highly pathogenic agents, including other
flaviviruses. Several such antibodies targeting YFV have been described. A mAb desig-
nated A5 was identified using phage display technology and showed efficacy in an immu-
nodeficient YFV-17D challenge model (23). A humanized mAb designated 2C9 showed
benefit in hamsters against the Jimenez strain (24) and in AG129 mice against YFV 17D-
204 challenge (25), supporting the proof of principle for antibodies as a medical counter-
measure for YFV. Fully human mAbs with native heavy and light chain pairing, however,
are preferred for use in human therapy. A human antibody designated TY014 has been
tested in a phase 1 trial (26), and recently, other groups have reported the isolation of
human anti-YFV mAbs (27, 28). Here, we isolated a panel of fully human mAbs targeting
the E protein to identify candidate therapeutic antibodies. Competition-binding studies
mapped these antibodies to several antigenic sites, one of which elicits antibodies that
neutralize YFV. In vitro studies of the most potent neutralizing mAb, designated YFV-136,
revealed that this antibody exerts its neutralizing activity at least partially at a postattach-
ment step via binding to DII on the YFV E protein. Hydrogen-deuterium exchange mass
spectrometry (HDX-MS) and neutralization escape virus selection established a key bind-
ing and functional epitope for YFV-136 in DII of the E protein. Passive transfer of YFV-136
mAb protected against lethal YFV challenge in a therapeutic setting in two small-animal
models, Syrian golden hamsters and immunocompromised mice engrafted with human
hepatocytes. These studies identify a potently neutralizing mAb targeting YFV and pave
the way for the further development of this human mAb, YFV-136, as a possible candi-
date therapeutic agent.

RESULTS
Isolation of mAbs from YFV vaccine recipients. Peripheral blood mononuclear

cells (PBMCs) from four subjects who received a YFV vaccine previously (varying from
months to years prior) were transformed in vitro with Epstein-Barr virus (EBV) to screen
for YFV-reactive antibodies secreted by transformed memory B cells. We screened cell
supernatants for binding to recombinant YFV E protein by an enzyme-linked immuno-
sorbent assay (ELISA) and/or binding to YFV-17D-infected cells by flow cytometry. Cells
secreting YFV-reactive antibodies were fused to a myeloma partner to generate hybrid-
oma lines, which were cloned by flow cytometric cell sorting. Antibody was purified
from serum-free hybridoma cell line supernatants by affinity chromatography. Using
these methods, we isolated 15 mAbs from four YFV-immune subjects. These antibodies
bound to recombinant E protein according to an ELISA with varying half-maximal
effective concentrations (EC50s) for binding ranging from 29 to 15,600 ng/mL (Fig. 1A).
Each of the antibodies isolated was tested for the ability to neutralize YFV-17D in a
focus reduction neutralization test (FRNT) in Vero cells. While most antibodies did not
neutralize YFV-17D infection, two mAbs showed inhibitory activity: YFV-121 was mod-
erately neutralizing, with a half-maximal inhibitory concentration (IC50) of 202 ng/mL,
and YFV-136 showed exceptional potency, with an IC50 below 10 ng/mL (Fig. 1B).

Competition binding reveals antibodies that target several antigenic sites on
the E protein. We used biolayer interferometry (BLI) to perform competition-binding
studies that enable the grouping of antibodies based on the major antigenic sites rec-
ognized (Fig. 2A). In this platform, antigen is loaded onto a biosensor tip, with two anti-
bodies being sequentially flowed over the tip. If mAbs recognize nonoverlapping anti-
genic sites, both bind to the coated sensors when applied in sequence. If the binding
of the first antibody applied to the antigen-coated sensor reduces or prevents the
binding of the second antibody, the pair of mAbs likely binds to the same or an over-
lapping antigenic site. We included the previously described pan-flavivirus-reactive
murine mAb 4G2 targeting the fusion loop (FL) for comparison (40). The human anti-
bodies recognized six antigenic sites. One group of mAbs, including YFV-39, -40, and
-146, competed for binding with 4G2, indicating that these mAbs target regions near
the FL epitope on YFV E. The neutralizing mAbs YFV-121 and -136 grouped together,
indicating that these mAbs target an overlapping antigenic site of neutralization
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vulnerability on YFV E. YFV-65 also competed for binding to E with YFV-121 and YFV-
136, even though it did not neutralize YFV-17D when tested at concentrations as high
as 10 mg/mL. These data suggest that there are multiple antigenic sites on YFV E, with
at least one site being a target of potently neutralizing antibodies.

Neutralization of wild-type YFV strains by mAbs targeting YFV E protein.We next
tested YFV-136 for its ability to neutralize wild-type (wt) YFV strains under biosafety
level 3 (BSL-3) conditions. YFV-136 neutralized the Asibi and Kouma YFV strains as well
as a different 17D vaccine strain with high potency (Fig. 2B to D). At lower antibody
concentrations, we observed a modest enhancement of infectivity in this assay, possi-
bly due to the aggregation of virions, as has been seen with other antiflavivirus anti-
bodies in cells lacking Fcg receptors (29).

Identification of the antigenic site for mAb YFV-136 using HDX-MS studies.
Using HDX-MS, a technique in which antibody binding reduces deuterium labeling of
surface-exposed viral protein residues, we identified peptides on the YFV E protein
that are occluded by the binding of YFV-136 Fab fragments (Fig. 3A). The start and end
residues and the amino acid sequences of the representative E protein peptides that
showed differential deuteration in the absence or presence of YFV-136 are shown in
Fig. 3B. The results are summarized in a Woods plot in which the peptides showing a
significant decrease in HDX are marked with green lines and the unaffected peptides
are marked with gray solid lines (Fig. 3C). The HDX protection profile is mapped onto a
cartoon representation of the YFV E dimer (Fig. 3D). E protein domain II (DII) near the
fusion loop showed the most protection following YFV-136 Fab binding. Some protec-
tion against deuteration was also observed in the dimer interface and DIII.

YFV-136 escape mutation studies identify a substitution at H67 that abrogates
neutralization capacity. To gain more insight into the epitope of YFV-136 in DII, we
selected neutralization escape variants to identify functionally important interaction
residues. To identify mutations in the YFV envelope protein that allow escape from
YFV-136 neutralization, we used real-time cell analysis (RTCA). This high-throughput
system monitors cell impedance and detects cytopathic effect (CPE) over time, allow-
ing the identification of escape viruses by the observation of decreased cell

FIG 1 ELISA binding and FRNT neutralization by human mAbs targeting YFV E protein. (A) Half-maximal effective
concentrations (EC50s) of antibody binding to YFV E as determined by ELISAs. Values were interpolated using a
nonlinear regression model in Prism software. Data from a single experiment are shown, representative of results
from three independent experiments. (B) Focus reduction neutralization test (FRNT) to assess the neutralization of
YFV-17D by YFV-121 and YFV-136. Neutralization values were fit to a nonlinear regression model. Data from a
single experiment are shown, representing results from at least two independent experiments.
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Full Competition Partial Competition No Competition

Group mAb YFV-83 YFV-132 YFV-59 YFV-39 4G2 YFV-40 YFV-146 YFV-121 YFV-136 YFV-65 YFV-142 YFV-147 YFV-108

YFV-83

5 1 6 177 151 147 175 117 49 93 116 100 105

YFV-132

10 4 9 139 138 128 153 111 51 -72 108 131 117

YFV-59

22 8 17 143 123 135 129 101 46 -145 114 91 94

YFV-39

131 37 129 12 14 11 17 99 47 84 111 98 96

4G2

119 30 108 8 0 4 18 88 41 1 108 90 85

YFV-40

124 36 135 28 19 14 24 115 48 157 125 125 105

YFV-146

136 36 132 23 16 14 18 95 42 96 123 93 93

YFV-121

124 38 124 123 101 102 118 6 14 -242 98 94 87

YFV-136

130 40 134 138 132 114 129 -2 6 -74 111 109 101

YFV-65

113 32 103 127 117 107 115 84 41 171 131 86 75

D YFV-142

95 27 98 98 93 85 111 69 37 -32 8 85 70

E YFV-147

103 32 107 123 101 99 107 86 42 -223 89 11 87

F YFV-108

129 37 143 145 128 128 151 100 49 173 121 101 1
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FIG 2 Competition binding and neutralization by human mAbs targeting YFV E protein. (A) Octet biolayer interferometry competition binding of human
mAbs against YFV E. Antibodies listed from top to bottom were associated with immobilized YFV E protein, with antibodies shown from left to right
tested for their ability to bind in the presence of the first antibody. Binding is expressed as a percentage of residual binding, with black boxes indicating
complete competition, gray boxes indicating partial competition, and white boxes indicating no competition. Antibodies were clustered based on their
competition profiles and labeled A to F. (B to D) Neutralization of diverse YFV strains assessed by a focus reduction neutralization test (FRNT). Values were
fit to a nonlinear regression model using Prism software. Three independent experiments were performed in technical triplicate, with data from a single
representative experiment shown.
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FIG 3 Epitope mapping for Fab YFV-136 by HDX-MS. (A) Representative kinetic plots for the 12 different peptides showing the effects of Fab binding by
HDX. Black or green lines are for YFV E protein in the absence or presence of the mAb YFV-136, respectively. At the top of each panel are the residue
numbers and charge states of the peptide. (B) Sequences and positions of each peptide. (C) Woods plots showing accumulated differences in percent
deuteration (bound state 2 unbound state) across all time points for each analyzed peptide. The propagated error for the cumulative difference was
calculated for each peptide, and 99% confidence intervals were calculated. Peptides whose differential exchange exceeds the 99% confidence interval are
considered to show significant differences between the bound and unbound states and to be involved in binding. Peptides that do not show any
significant differences between the bound and unbound states are in gray, whereas protected peptides are in green. The blue vertical line shows the
location of the H67Y escape mutation identified in the studies shown in Fig. 4. (D) Protected peptides are shown in green on a ribbon representation of
the YFV E dimer. The domains are indicated in red (DI), yellow (DII), and blue (DIII).
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impedance/CPE at late time points after incubating the virus with a neutralizing con-
centration of antibody. For these studies, YFV-17D was incubated with 5 mg/mL of
YFV-136 in 16 wells of a 96-well plate. In 13 of 16 wells, complete neutralization and
maintenance of cell monolayer integrity were observed throughout the study.
However, 3 of 16 wells showed a late-CPE phenotype, suggesting the selection of vari-
ant viruses that subvert YFV-136 neutralization (Fig. 4A). Supernatants from these wells
were harvested and again incubated with 5 mg/mL of YFV-136 on the RTCA instrument
to confirm escape. In this second round, CPE developed rapidly, similar to a virus-only
control, confirming the selection of a population of virus that is refractory to YFV-136
neutralization (data not shown).

The confirmation of viral escape using RTCA was followed by the outgrowth of virus
in the presence of 10 mg/mL YFV-136. Viral RNA was isolated, and the prM and E genes
were amplified and sequenced. In all three escape viruses, a single histidine-to-tyrosine
substitution at position 67 on DII of YFV E was identified (Fig. 4B). This residue in the b-
strand is conserved across all YFV genotypes, suggesting that this escape phenotype
would likely be recapitulated in wild-type YFV strains. Overall, escape mutation studies
identified a key residue in DII responsible for escape from YFV-136, suggesting that
this mAb functions by binding an epitope including H67 on DII, consistent with the
dominant region of protection from deuteration in the HDX studies.

mAb YFV-136 neutralizes YFV-17D at a postattachment step. Neutralizing anti-
bodies can target different steps in the viral replication cycle, including, but not limited

FIG 4 Critical residue for neutralization escape and mechanism-of-action studies for YFV-136. (A) Cell
impedance measurements during the first round of YFV-17D escape mutant virus selection. Each box
represents the cell impedance within a single well of a 96-well plate as a function of time. * indicates wells
that exhibit a drop in cell impedance at late time points, suggesting viral escape in the presence of 5 mg/mL
YFV-136. A single well marked with # was used as a control for cell culture adaptation. * and # wells were
propagated once more in culture on the device and finally in 6-well culture dishes in the presence of 10 mg/
mL YFV-136 (or no antibody for #) to allow viral outgrowth. Viral RNA was isolated, and the prM and E genes
were amplified by RT-PCR using primers flanking the prM and E genes. These same primers, and two other
primers targeting internal prM and/or E sequences, were used to sequence virus isolated from * and # wells by
Sanger sequencing. These sequences were aligned in Geneious software to identify point mutations. (B) Escape
mutant identified in panel A mapped onto the crystal structure of YFV E (PDB accession number 6IW5). Colors
denote domain I (red), domain II (yellow), and domain III (blue). (C) Focus reduction neutralization test of YFV-
136 before or after attachment of virus to host cells. Neutralization values were assessed using a nonlinear
regression model in Prism software. Two independent experiments were performed in technical triplicate, with
data from a single representative experiment shown.
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to, attachment, entry, or egress. To determine the mechanism of action for the most
potently neutralizing antibody, YFV-136, we performed pre- and postattachment neu-
tralization assays (Fig. 4C). In the preattachment inhibition assay, virus and antibody
were premixed prior to addition to Vero cell culture monolayers. In the postattachment
inhibition assay, virus was first incubated at 4°C with cells to allow attachment; after-
ward, the excess, unbound virus was washed away; and subsequently, antibody was
added. YFV-136 neutralized infection in both assays, suggesting that at least part of its
inhibitory activity occurs after viral attachment albeit with some diminished potency.

mAb YFV-136 protects hamsters from lethal YFV challenge. Because YFV-136 is
the most potently neutralizing antibody in our panel, we studied its activity in vivo. We
first assessed the activity of YFV-136 in a model of YFV disease in Syrian golden ham-
sters. This model recapitulates many aspects of human YFV infections, including viscer-
otropism and liver infection, and has been used to assess the therapeutic efficacy of
small molecules and antibody drugs (24, 30, 31). Prior to the in vivo study, we tested
whether YFV-136 neutralized the hamster-adapted YFV Jimenez strain. mAb YFV-136
exhibited a 50% PRNT (PRNT50) value of 0.5 mg/mL when tested in a PRNT assay in
Vero 76 cell monolayers using the hamster-adapted YFV Jimenez strain. Next, animals
were administered 6 LD50s (half-maximal lethal doses) of the hamster-adapted Jimenez
strain of YFV by an intraperitoneal (i.p.) route. At 3 days postinfection (dpi), 10 animals
were treated with 50 mg/kg of body weight of YFV-136, and 15 animals were treated
with 10 mg/kg of control dengue virus antibody 2D22 (DENV-2D22) (Table 1). Whereas
12 of 15 animals in the control group succumbed to infection, all animals in the YFV-
136 group survived the 21-day study (Fig. 5A). Animals treated with YFV-136 showed
transient weight loss after antibody treatment but quickly recovered and gained
weight throughout the remaining course of the study (Fig. 5B). Viremia was assessed in
all animals at day 6 after inoculation. While control mAb (DENV-2D22)-treated animals
showed substantial viremia at day 6, animals treated with YFV-136 showed a significant
reduction (Fig. 5C). Finally, we assessed the ability of YFV-136 to prevent YFV-induced
liver damage in hamsters by measuring serum alanine aminotransferase (ALT).
Whereas animals treated with an isotype control showed markedly increased serum
ALT, animals treated with YFV-136 had lower ALT levels (Fig. 5D), suggesting that YFV-
136 protects hamsters from hepatic damage induced by the hamster-adapted YFV
strain Jimenez.

YFV-136 protects humanized mice from lethal YFV challenge.We recently devel-
oped a YFV infection model in mice engrafted with human hepatocytes (hFRG mice)
(32). Immunodeficient hFRG mice have three genetic lesions (Fah2/2 [fumarylacetoace-
tate hydrolase knockout], Rag22/2, and Il2rg2/2 on a C57BL/6J background), which, to-
gether with specifically timed dietary modifications, facilitate the durable replacement
of murine hepatocytes with transplanted human hepatocytes (33). YFV-infected hFRG
mice developed disease that recapitulates many features of YF in humans, including
massive hepatic infection and injury (32). Here, we tested the therapeutic activity of
YFV-136 in this highly susceptible hepatotropic model. hFRG mice were administered a
single 10-mg/kg dose of YFV-136 or isotype control mAb (DENV-2D22) 8 h after inocu-
lation with 2 � 105 focus-forming units (FFU) of wt YFV-Dakar (DakH1279), a highly
pathogenic West African strain. By 4 dpi, all isotype mAb-treated hFRG mice displayed

TABLE 1 Effect of delayed treatment (3 dpi) with mAb YFV-136 in a Syrian golden hamster model of YFV Jimenez strain infection and diseasec

mAb treatment

Dose of mAb
given at 3 dpi
(mg/kg)

Virus given
i.p. at 0 dpi

No. of alive/total
no. of animals
at 21 dpi

Mean day of
death± SD

Mean body
wt changeb

(g)± SD

Mean serum virus
titer (CCID50/mL) at
4 dpi± SD

Mean serum ALT
level (IU/L) at
6 dpi± SD

YFV-136 50 YFVa 10/10 .216 0.0** 25.26 6.7 4.16 2.2 1146 26*
Isotype control (DENV-2D22) 10 YFVa 3/15 7.56 1.4 28.96 9.9 5.46 2.3 2146 120
Normal control — Sham 5/5 .21.06 0.0** 3.06 2.1** 1.76 0.0** 806 3*
aHamster-adapted YFV Jimenez strain (24).
bDifference between weights at 4 and 5 dpi, representing the maximal weight change in this study.
c**, P, 0.001; *, P, 0.01 (compared to the control treatment).
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substantial signs of disease: two were dead, the other three were moribund, and all
had lost 15 to 25% of their initial body weight (Fig. 6A and B). In contrast, hFRG mice
that were inoculated with YFV and treated with YFV-136 mAb appeared healthy and
exhibited minimal weight loss. The reduced disease observed in the YFV-136-treated
group corresponded to significant (;1,000-fold) reductions in YFV burdens in the se-
rum and liver (Fig. 6C and D) and normal levels of liver synthetic function (as measured
by the prothrombin time [PT]), hepatocyte damage (ALT), biliary function (bilirubin),
and detoxification capacity (ammonium) (Fig. 6E to H). Thus, YFV-136 therapy given at
8 h postinfection was highly protective in the susceptible hFRG mouse model of YFV
infection and liver disease.

DISCUSSION

Yellow fever virus is a reemerging arbovirus with epidemic potential. While a highly
effective live-attenuated vaccine is available for human use, safety and manufacturing
concerns warrant new countermeasure development. Here, we isolated a panel of nat-
urally occurring fully human mAbs that bind to the primary target of anti-YFV func-
tional humoral immunity, the E glycoprotein. Two mAbs, YFV-121 and YFV-136,
showed neutralization activity against YFV-17D, with YFV-136 showing exceptional po-
tency with an IC50 of ,10 ng/mL. The potency of YFV-136 represents one of the most
potent mAbs against YFV ever isolated (23, 26), prompting us to study this mAb in
detail. This mAb also neutralizes several wild-type strains of YFV. Both neutralizing

FIG 5 Syrian golden hamster challenge studies to assess YFV-136 therapeutic efficacy. (A) Kaplan-Meier survival
curves of animals (YFV-136, n = 10; DENV-2D22 control, n = 15; uninfected controls, n = 5) treated with 50 mg/kg
of YFV-136 or 20 mg/kg of the isotype control 3 days after inoculation with 200 50% cell culture infectious doses
(CCID50) of the hamster-adapted YFV Jimenez strain. Statistical analysis was performed using a Wilcoxon log rank
test. (B) Weights of YFV-infected animals treated with YFV-136 or isotype control mAb or uninoculated
animals throughout the course of the study. (C) Serum virus titers (CCID50) were assessed 6 days after virus
inoculation. One-way analysis of variance (ANOVA) with Dunnett’s multiple-comparison posttest was used to
assess statistical significance. (D) Serum alanine aminotransferase (ALT) levels 6 days after inoculation were
assessed as a proxy for liver damage. One-way ANOVA with Dunnett’s multiple-comparison posttest was
used to assess statistical significance; *** indicates p , 0.001, ** indicates. p , 0.01.
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mAbs YFV-121 and YFV-136 bind to overlapping antigenic sites as determined by com-
petition binding, suggesting the recognition of a shared site of neutralization vulner-
ability. Antibody escape mutant virus studies identified H67 on DII as a critical residue
for the function of YFV-136 within an epitope region in DII identified by HDX-MS stud-
ies. We show that YFV-136 functions to inhibit infection at least in part at a postattach-
ment step in the viral life cycle. Finally, this mAb was highly efficacious in two different
small-animal models of YFV infection even when administered after infection, suggest-
ing that YFV-136 warrants further development as a therapeutic mAb for use in
humans.

Previous studies support the concept that the administration of mAbs may be effec-
tive in reducing viral load and disease. The murine DII-specific mAb 2C9 and the mu-
rine-human chimeric mAb 2C9-cIgG exhibited therapeutic activity when administered
1 day after infection in interferon alpha/beta/gamma receptor-deficient strain AG129
mice challenged with the YF17D-204 vaccine (25) and against virulent YFV infection in
an immunocompetent hamster model (24). A second murine-human chimerized mAb,
designated 864-cIgG, recognizes DIII and neutralizes the YFV 17D-204 vaccine sub-
strain but did not protect AG129 mice against 17D-204 infection, probably due to its

FIG 6 hFRG challenge studies to assess YFV-136 therapeutic efficacy. FRG mice engrafted with human hepatocytes
(hFRG) were inoculated with 2 � 105 focus-forming units (FFU) of wt YFV-DakH1279. Eight hours later, mice were
administered a single 10-mg/kg dose of YFV-136 (n = 5) (blue points) or the isotype control (n = 5) (black points).
Note that two of the control mAb-treated YFV-infected mice succumbed to infection at 4 dpi (denoted by open
circles), and thus, some serum-based measurements were not available. (A and B) Weight loss showing mean
values (A) and individual animal profiles (B). (C and D) Viral burdens at 4 dpi in the liver (C) and serum (D) as
measured by RT-quantitative PCR (qPCR). (E to H) Serum biomarkers of hepatic injury at 4 dpi. Samples were tested
for prothrombin time (E) and alanine aminotransferase (ALT) (F), total bilirubin (G), and ammonia (H) levels. For
panels C to H, a Mann-Whitney test was performed (*, P , 0.05; **, P , 0.01). Bars denote median values. Dashed
lines in panels C and D indicate the (lower and/or upper) limit of detection of the assay. Gray boxes indicate the
reference range for each parameter in mice; for ALT, a dashed line is shown to denote the upper limit of “normal”
for healthy hFRG mice at baseline. CI, confidence interval.
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low potency (reported as 10 mg/mL in a 90% plaque reduction neutralization test) (34).
Other investigators have isolated fully human mAbs with similar ultrapotent (IC50 of
,10 ng/mL) neutralizing activities (28), although animal protection studies have not
been reported for these mAbs. One human antibody has been tested in a phase 1 clini-
cal trial in which the mAb designated TY014 prevented viremia in 5/5 recipients,
whereas only 1/5 placebo recipients lacked viremia 48 or 72 h following the adminis-
tration of a live yellow fever vaccine (strain YF17D-204 [Stamaril]) (26); neutralizing po-
tency and protection in animal studies for this mAb were not reported.

The antigenic site recognized by YFV-136, which lies proximal to the fusion loop
(FL) on E protein domain II, has been previously implicated as being important for hu-
moral immunity induced by YFV-17D vaccination (28). This recognition pattern is not
restricted to human immune responses, as Ryman et al. also showed that some mAbs
isolated from mice bind to a site proximal to H67, suggesting the broad immunodomi-
nance of this site (9). mAbs characterized previously by Wec et al. display a propensity
for pairings of heavy and light chain genes encoded by the antibody variable genes
IGHV4-4 and IGLV1-51, suggesting that a public clonotype is elicited by YFV-17D vacci-
nation (28). Our data complement these findings, as YFV-136 also uses this pairing. The
neutralizing activity of YFV-136 is comparable to that of the most potent YFV antibod-
ies reported (28). It is possible that the efficacy of YFV-17D hinges on its ability to elicit
antibodies to this site since both neutralizing mAbs that we isolated from these donors
are members of this public clonotype. However, the number of mAbs isolated here is
not sufficient to make definitive conclusions in this regard. To date, few studies prob-
ing the humoral immune response to YFV have studied the circulating B cells of survi-
vors of natural infection.

The epitope-mapping studies using HDX-MS and neutralization escape studies used
here suggest most likely that the critical contacts of YFV-136 are focused on H67 and
the region surrounding it on DII. This antigenic site is known in flaviviruses to be a site
of vulnerability for potently neutralizing antibodies. For instance, we have observed a
similar pattern of binding for the DII-reactive human mAb ZIKV-117 that potently neu-
tralizes the related flavivirus Zika virus (35); ZIKV-117 also binds detectably to mono-
meric E protein, but it recognizes a quaternary epitope involving two protomers in the
virus particle. Higher-resolution structural studies are needed to understand the inter-
action of YFV-136 with virus particles better and to identify a more complete binding
footprint for YFV-136.

It is important to note that the antibodies highlighted here bind to monomeric YFV
E protein. While we attempted to identify antibodies targeting quaternary structural
epitopes present only on virions using a flow cytometric approach detecting antibod-
ies binding to E protein expressed in YFV-infected cells, these efforts did not identify
neutralizing mAbs, and the approach was not explored further. It is likely that func-
tional mAbs targeting sites spanning one or more E protein dimers exist against YFV,
as has been observed for many flaviviruses. In future work, a multipronged approach
that employs screens for binding to protein and whole virions, as well as front-end neu-
tralization screens, might help to reveal if immune humans possess some of this rare class
of antibodies that exclusively recognize quaternary epitopes on virus particles.

MATERIALS ANDMETHODS
Generation of human mAbs. Blood samples were obtained after written informed consent from

four human subjects aged 20 to 47 years who were previously vaccinated with a YFV vaccine prior to
travel. The studies were reviewed and approved by the Institutional Review Board of Vanderbilt
University Medical Center. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood
and transformed using Epstein-Barr virus (EBV), as previously described (36). Briefly, transformed B cells
were expanded and cocultured with irradiated human PBMCs in 96-well plates. Cell supernatants were
screened by an ELISA using recombinant YFV E protein (Meridian Life Sciences). Wells with positive reac-
tivity were fused to a human-mouse myeloma cell line (HMMA 2.5) and plated by limiting dilution in
384-well plates. The resulting hybridomas were cloned by fluorescence-activated cell sorting (FACS) to
produce clonal hybridoma cell lines. These clonal hybridoma cells were cultured in T-225 flasks contain-
ing serum-free medium, and mAb was purified from spent medium by affinity chromatography on an
Äkta pure fast protein liquid chromatography (FPLC) instrument (Cytiva).
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Recombinant antibody expression and purification. For animal studies, large-scale recombinant
antibody production of YFV-136 was performed. RNA was isolated from the YFV-136 hybridoma line,
and heavy and light chain genes were amplified using 59 RACE (rapid amplification of cDNA ends) and
sequenced using a Pacific Biosciences Sequel instrument. Variable regions of YFV-136 were cloned into a
monocistronic full-length, human IgG1 expression vector (Twist Biosciences) for recombinant produc-
tion. This expression vector was then transfected transiently into ExpiCHO cells for 7 to 8 days. Cell
supernatants were harvested and filtered through 0.45-mm filters prior to purification. Purification was
performed on an Äkta pure FPLC instrument (Cytiva) using HiTrap MabSelect SuRe columns (Cytiva) as
described above for hybridoma-derived mAbs.

ELISA binding of mAbs to YFV E protein. Three-hundred-eighty-four-well plates were coated with
2 mg/mL of YFV E protein (Meridian Life Science) at 25 mL/well and incubated overnight at 4°C. Plates
then were washed and blocked using Dulbecco’s phosphate-buffered saline (PBS) with Tween 20 (DPBS-
T) containing 2% milk and 1% goat serum for 1 h at room temperature. Following a wash step, serial
dilutions of antibody in DPBS were added to plates and incubated for 1 h at room temperature. To
detect bound antibodies, alkaline phosphatase (AP)-conjugated goat anti-human IgG diluted 1:4,000 in
DPBS-T containing 1% milk and 1% goat serum was added to plates for 1 h at room temperature and
developed using AP substrate tablets diluted in 1 M Tris–0.3 mM magnesium chloride. Plates were devel-
oped in the dark for 1 h and read on a BioTek plate reader at 405 nm. Binding curves were interpolated
in Prism software (GraphPad) using nonlinear regression analysis.

YFV-17D focus reduction neutralization test. A focus reduction neutralization test (FRNT) was per-
formed as previously described, with minor amendments. Briefly, 96-well plates were seeded with Vero
cells at 2.5 � 104 cells/well and incubated overnight (41). The following day, serial dilutions of antibody
were mixed with 102 FFU YFV-17D and incubated at 37°C for 1 h. A total of 30 mL/well of the virus-anti-
body mixture was then added to Vero cell culture monolayers, and the mixture was incubated at 37°C
for 1 h. Without washing, 110 mL per well of an overlay containing a 1:1 mixture of 2.4% methylcellulose
and 2� Dulbecco’s modified Eagle medium (DMEM) with 4% fetal bovine serum (FBS) was added to
plates, which were then incubated for 72 h at 37°C in 5% CO2. To stain foci of virus infection, cells were
fixed with 1% paraformaldehyde for 1 h at room temperature, washed, and permeabilized using perme-
abilization buffer (0.1% saponin and 0.1% bovine serum albumin [BSA] in DPBS) for 10 min. Cells were
then stained with 1 mg/mL of pan-flavivirus murine mAb 4G2 in permeabilization buffer for 1 h at room
temperature. After two washes, goat anti-mouse IgG-horseradish peroxidase (Southern Biotech) diluted
1:1,000 in permeabilization buffer was added to cells, and the mixture was incubated for 1 h at room
temperature. Foci were developed using TrueBlue peroxidase and counted using a spot counter instru-
ment (ImmunoSpot; CTL). Focus counts were normalized to that of a virus-only control, and neutraliza-
tion curves were interpolated in Prism software using nonlinear regression analysis.

Wild-type and 17D YFV strain FRNT. An FRNT was performed as described above, with the follow-
ing exceptions. One hundred microliters containing 200 FFU of virus was mixed with 100 mL of serially
diluted mAb and incubated at 37°C for 1 h. One hundred microliters of the virus-mAb mixture was then
added to Vero cells in a 96-well plate format and incubated at 37°C for 1 h, followed by the addition of
an overlay and incubation at 37°C for 2 days. Cells were then fixed with 4% paraformaldehyde (final con-
centration) for 30 min, permeabilized, stained, and analyzed as described above.

Pre- and postattachment neutralization of YFV-17D. Pre- and postattachment neutralization
assays were performed as previously described (37). For preattachment studies, 600 FFU YFV-17D was
mixed with serial dilutions of antibody for 1 h at 37°C. Cells and virus-mAb mixtures were then prechilled
for 15 min prior to the addition of mixtures to cell monolayers for 1 h at 4°C. Cells were then washed
three times and incubated with prewarmed DMEM for 15 min prior to the addition of a methylcellulose
overlay containing DMEM. For postattachment studies, cell monolayers were first incubated with virus
for 1 h at 4°C. Cells were then washed and incubated with serial dilutions of antibody for 1 h at 4°C.
Excess antibody was then washed off, and cells were incubated for 15 min at 37°C with DMEM prior to
the addition of the overlay. Foci were enumerated as described above for the focus reduction neutraliza-
tion test.

Biolayer interferometry competition-binding assay. Competition-binding studies were performed
using a biolayer interferometry instrument (FortéBio Octet HTX). HIS1K sensortips were preincubated in
kinetic buffer (Pall) for 10 min. After a 60-s baseline step, His-tagged YFV E protein (Meridian Life
Science) was associated with the tips at 5 mg/mL for 60 s. Readings were again set to the baseline for
60 s, followed by the association of the first antibody at 25 mg/mL for 600 s to achieve complete satura-
tion. Tip readings were again set to the baseline, and the tips were then dipped into wells containing a
second antibody at 25 mg/mL for 180 s. Data were analyzed using FortéBio data analysis software. Data
from all steps were normalized to a buffer-only control, and antibodies were grouped using Pearson cor-
relation statistical analysis.

Hydrogen-deuterium exchange mass spectrometry. (i) Soluble recombinant E protein used for
HDX studies. A synthetic DNA fragment encoding residues 123 to 680 (TLV. . .EGSS) of yellow fever virus
strain 17DD-Brazil (GenBank accession number AAZ07885.1) E protein was inserted downstream of a
modified human interleukin-2 (IL-2) signal peptide (MARMQLLSCIALSLALVTNSV). The construct was also
modified at the C terminus of the envelope region to contain a small linker, a tobacco etch virus (TEV)
protease site, and a 6-His tag (GSTGGSENLYFQGHHHHHH). The fusion construct was inserted into an
AgeI-NotI-cut pFM1.2R vector (38) by Gibson assembly to lie downstream of the cytomegalovirus (CMV)
promoter. Recombinant E protein was produced by transient transfection of Expi293F cells using an
ExpiFectamine 293 transfection kit (Thermo Fisher Scientific). Cell supernatants were harvested 4 days
after transfection and then concentrated before exchange into 2� PBS at pH 6.5 and finally into 2� PBS
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at pH 8.0. The soluble recombinant E protein was recovered by 6-His affinity chromatography on Ni-nitri-
lotriacetic acid (NTA) agarose (G-Biosciences) and purified by size exclusion chromatography on a
Superdex S200 Increase column (Cytiva).

(ii) Peptide mapping. To prepare for the acquisition and analysis of hydrogen-deuterium exchange
(HDX) data, the YFV E protein was digested with two acid proteases (immobilized pepsin followed by im-
mobilized acid protease from fungal type XIII) to achieve better sequence coverage. To effectively
reduce the protein and denature it, a quench solution containing Tris(2-carboxyethyl)phosphine hydro-
chloride (TCEP) and guanidine hydrochloride (GdnHCl) was added. The quenching conditions were 1:1
dilution of the HDX reaction mixture volume (100 mL) with quench buffer containing 500 mM TCEP and
4 M GdnHCl (pH 2.4) (resulting in 250 mM TCEP and 2 M GdnHCl at pH 2.6), with a 3-min incubation at
25°C. A peptide map (in triplicate) of the digest was generated by liquid chromatography-tandem mass
spectrometry (LC-MS/MS) using a Maxis-II-HM mass spectrometer (Bruker Daltonics, Billerica, MA). YFV E
protein (100 pmol) was injected into the LC-MS system where the protein was digested, and the result-
ing peptides were captured and desalted by a C8 trap column (2.1 by 20 mm, Zorbax Eclipse XDB-C8

trap; Agilent), followed by loading onto a C18 column (2.1- by 50-mm, 2.5-mm Xselect-CSH; Waters,
Milford, MA) and elution into the mass spectrometer. The mass spectrometer was operated in a data-de-
pendent fragmentation mode with monitoring of the high-abundance peptides. Data were analyzed by
Byonic (Protein Metrics, Santa Carlos, CA, USA) for sequencing and accurate precursor mass (65 ppm),
and the peptides were also curated manually.

(iii) HDX experiment. YFV E was equilibrated without or with antibody (1:2 antibody) in PBS (pH 7.4)
in H2O overnight at 4°C and reequilibrated at 25°C for 30 min before starting the HDX experiment. The
exchange-in with D2O (PBS prepared in D2O) in the absence (10 mM YFV E) or presence (20 mM antibody
[1:2 antigen-to-antibody ratio]) of antibody was initiated by diluting the protein solutions (10 mL) 10-
fold with D2O in PBS at 25°C (90 mL; pH 7.4). HDX was measured at 0 s (undeuterated control), 10 s, 60 s,
300 s, and 2,700 s at 25°C. For the undeuterated control, the conditions were the same except that the
added buffer solution was H2O instead of D2O. The HDX was quenched by adding an equal volume (100
mL) of quench buffer equilibrated at 25°C, followed by mixing and incubation at 25°C for 3 min. The
quenched sample was digested by passing it through a custom-packed column (2 mm by 20 mm) of im-
mobilized pepsin beads followed by a column of immobilized fungal XIII beads (2 mm by 20 mm) at a
200-mL/min flow rate. The resulting peptides thus generated were captured and desalted on a C8 col-
umn by washing with 0.1% formic acid in water for 4.7 min. Desalted peptides were loaded onto a C18

analytical column where peptides were separated using a gradient of acetonitrile (ACN) in 0.1% formic
acid (most peptides eluted during the linear part of the gradient from 5 min [4% ACN] to 15 min [40%
ACN]). To minimize back exchange, the trap and analytical columns were kept in an ice slush, while pro-
tease columns were kept at room temperature. The isotope distributions of the exchanged peptides
were measured with a Maxis-II-HM mass spectrometer (MS-only mode) for duplicate samples.

(iv) HDX data analysis. LC-MS HDX data acquisition (retention time, isotopic distribution, and
observed m/z) was directed by the peptide map, and data were analyzed by HDExaminer (v2.5.0, 64-bit;
Sierra Analytics). The maximum deuterium level was set to 90%, and the data were displayed as kinetic
plots for each peptide for HDX. Only those peptides that provided a good signal-to-noise ratio at all
time points and for both states were included in the analysis. Ultimately, 107 unique peptides covering
95% of the sequence of the YFV E protein were analyzed. The average peptide length was 14 amino
acids, and the average residue level redundancy was 4. To elucidate those regions where HDX changed
with statistical significance upon antibody binding, the mean cumulative difference (bound 2 unbound)
across all time points for each peptide was calculated and plotted as a Woods plot. To identify significant
differences upon binding, the propagated error for the cumulative percent deuteration difference for
each peptide was calculated using the standard error of the mean, and a 99% confidence interval was
determined (2 degrees of freedom; two-tailed distribution). Peptides that showed no change are marked
in gray, and peptides that showed significant differences between the bound and unbound states are
highlighted based on protection (green) or exposure (red).

Generation and analysis of YFV-17D escape mutations. In a U-bottom 96-well plate, 25 mL mAb
YFV-136 IgG protein at 5 mg/mL was premixed with 25 mL YFV-17D (39) diluted 1:10 (;5,000 FFU) in
DMEM without FBS and incubated for 1 h at 37°C. This procedure was done in 16 separate wells within
the 96-well plate. Virus also was mixed with DMEM alone and passaged throughout the study to control
for substitutions that arise from cell culture adaptation. Fifty microliters of the virus-antibody mixture
and controls were added to Huh7.5 cell culture monolayers in 96-well ePlates (Agilent) and incubated
for 1 h at 37°C. One hundred microliters of DMEM containing 5% FBS was then added to each well,
plates were placed back onto an xCELLigence instrument (Agilent), and cell monolayers were monitored
for delayed CPE. Cell supernatants in wells with a delayed-CPE phenotype, as well as a virus-only control,
were subjected to a repeat of this assay to confirm viral escape. Once escape was confirmed, 6-well
plates containing confluent Huh7.5 cell monolayers were inoculated with 100 mL/well of escape virus or
a virus control in the presence of 10 mg/mL of YFV-136 for the outgrowth of escape virus. Virus was har-
vested from 6-well plates, and RNA was isolated using the Qiagen virus RNA isolation kit. E and prM
genes from isolated RNA were reverse transcribed to cDNA and PCR amplified using primers flanking
the prM and E genes (one-step reverse transcription-PCR [RT-PCR] kit). Genes were then sequenced by
Genewiz using overlapping primers that give coverage across prM and E. The control virus sequence
was aligned to the 17D reference genome sequence to confirm that mutations did not result from adap-
tation to cell culture.

Syrian golden hamster challenge studies. The Syrian golden hamster model used for these studies
has been described previously (24). Thirty female Syrian golden hamsters (LVG/Lak strain) supplied by
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Charles River were used. Hamsters were randomized by weight to experimental groups and individually
marked with ear tags. For challenge studies, hamsters were challenged at day 0 with 200 50% cell cul-
ture infectious doses (CCID50) of the hamster-adapted YFV Jimenez strain by bilateral intraperitoneal
injections in a total of 0.2 mL. Three days after virus inoculation, hamsters were dosed with 50 mg/kg of
recombinant YFV-136 (rYFV-136) (1-mL total volume) or 10 mg/kg of the rDENV-2D22 control and moni-
tored for weight loss and clinical manifestations for 21 days. Blood samples were taken at days 4 and 6
to assess viremia and ALT. Any surviving animals were humanely euthanized at the experimental
endpoint.

Measurement of hamster serum aminotransferase. ALT (serum glutamic pyruvic transaminase
[SGPT]) reagent (Teco Diagnostics, Anaheim, CA) was used, and the protocol was altered for use in 96-
well plates. Briefly, 50 mL of the aminotransferase substrate was placed into each well of a 96-well plate,
and 15 mL of the sample was added at timed intervals. The samples were incubated at 37°C, after which
50 mL of color reagent was added to each sample, and the mixture was incubated for 10 min as
described above. A volume of 200 mL of a color developer was next added to each well, and the mixture
was incubated for 5 min. The plate was then read on a spectrophotometer, and aminotransferase con-
centrations were determined according to the manufacturer’s instructions.

CCID50 assays to assess hamster viral burdens. The virus titer was quantified using an infectious
cell culture assay in which a volume of either the tissue homogenate or serum was added to the first
tube of a series of dilution tubes. Serial dilutions were made and added to Vero cell monolayer cultures.
Ten days later, CPE was used to identify the endpoint of infection. Four replicates were used to calculate
the CCID50 of virus per milliliter of plasma or gram of tissue.

Mouse studies. All mouse experiments were conducted under a Washington University School of
Medicine Institutional Animal Care and Use Committee-approved protocol in compliance with the Animal
Welfare Act. Female hFRG mice were generated by Yecuris Corporation and maintained according to their
specific care and use guidelines (see reference 32 for additional details). Only mice with human albumin lev-
els of $5.0 mg/mL in plasma (indicative of $70% engraftment) were used for this study. hFRG mice were
continued on their regular diet of PicoLab high-energy mouse diet 5LJ5 chow (LabDiet) and 3.25% (wt/vol)
dextrose–water during infection experiments. Mice were inoculated via retro-orbital injection of 50mL con-
taining 2 � 105 FFU of wt YFV-DakH1279, obtained from the World Reference Center for Emerging Viruses
and Arboviruses, and passaged once in Vero-CCL81 cells. Antibodies were given as a single treatment of
10 mg/kg dose, diluted in PBS in a 100-mL total volume, and given by the i.p. route at 8 h postinfection.
The DENV-2D22 mAb was used as a control. Euthanasia was performed via ketamine overdose and thora-
cotomy. Blood was collected via aspiration from the cardiac chambers, and PT was measured on a
Coagucheck meter (Roche). Perfusion of the entire vascular tree was then performed with saline prior to
liver collection. After centrifugation, serum was mixed 1:9 with 10% Triton X-100 in Hanks’ balanced salt so-
lution (HBSS) (1% final volume of Triton X-100) and then incubated at room temperature for 1 h to inacti-
vate infectious virus (32). ALT, bilirubin, and ammonia were analyzed using the Catalyst Dx chemistry ana-
lyzer (Idexx Laboratories). Some specimens required dilutions to achieve an ALT value within the analytical
measurement range; in these instances, dilution was performed in HBSS, and the value was corrected by
the final dilution factor. RNA extraction and viral load analyses were performed as described previously (32)
using the KingFisher Flex instrument (Thermo Fisher) and the TaqMan RNA-to-CT 1-step kit (Thermo Fisher)
on the QuantStudio 6 Flex real-time PCR system with the following primers: forward (F) primer 59-
AGGTGCATTGGTCTGCAAAT-39, reverse (R) primer 59-TCTCTGCTAATCGCTCAAIG-39, and probe (P) 59-/56-
FAM/GTTGCTAGGCAATAAACACATTTGGA/3BHQ_1/-39; FAM indicates fluorescein amidite dye; BHQ indi-
cates Black Hole Quencher (BHQTM) dye.
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