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Abstract
Recent developments in pre-clinical screening tools, that more reliably predict the clinical effects and adverse events of candidate
therapeutic agents, has ushered in a new era of drug development and screening. However, given the rapid pace with which these
models have emerged, the individual merits of these translational research tools warrant careful evaluation in order to furnish
clinical researchers with appropriate information to conduct pre-clinical screening in an accelerated and rational manner. This
review assesses the predictive utility of both well-established and emerging pre-clinical methods in terms of their suitability as a
screening platform for treatment response, ability to represent pharmacodynamic and pharmacokinetic drug properties, and lastly
debates the translational limitations and benefits of these models. To this end, we will describe the current literature on cell
culture, organoids, in vivomouse models, and in silico computational approaches. Particular focus will be devoted to discussing
gaps and unmet needs in the literature as well as current advancements and innovations achieved in the field, such as co-clinical
trials and future avenues for refinement.
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1 Introduction

Extensive efforts directed towards mapping the cancer ge-
nome have yielded remarkable insight into the genomic
changes that occur during tumorigenesis. Analysis of 2658
whole-cancer genomes from 38 tumor types by the Pan-
Cancer Analysis of Whole Genomes (PCAWG), Consortium
of the International Cancer Genome Consortium (ICGC), and
The Cancer Genome Atlas (TCGA) demonstrated that on av-
erage, cancer genomes contain 4–5 driver mutations from
coding and non-coding genome elements [1]. They also found
that approximately 5% of tumors had no identifiable driver,
suggesting that additional unidentified driver genes exist [1].

In one of several companion articles published by the
ICGC/TCGA/PCAWG, an evolutionary history of the cancers
based on the aforementioned sequence data was identified [2].
Based on these data, it is not far-fetched to conceive that
rational deployment of therapeutics or interventions could
shift the evolutionary trajectory of the malignant phenotype.

When taken together, the voluminous amount of cancer
genome sequencing data that has been generated provides a
high-fidelity roadmap of tumorigenesis that can be experi-
mentally exploited to develop a predictive, formulaic method
of treating cancer based on mutational changes. But under-
standing the biological processes of cancer progression is only
part of the equation. Knowledge of how the tumor genome
changes and adapts upon exposure to therapeutic agents and
environmental carcinogens is equally important, as is
deciphering the role of epigenetics and protein modifications
in oncogenesis. Thus, it will be the role of translational re-
search tools to unravel the complexities of treatment response
and resistance, and how this alters the trajectory of tumor
development and progression, in the face of genomic changes.

There is an imperative to develop a multi-faceted approach
towards modeling cancers in the laboratory that are eminently
translatable into the clinical environment. However, experi-
mentally modelling tumor development so that it provides
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accurate, clinically meaningful, and actionable data to screen
patients for risk, treatment selection, and prediction of treat-
ment adverse effects is challenging, in part because tumors are
heterogeneous entities.

Tumor heterogeneity and clonal evolution pose formidable
barriers to studying cancer biology, immune-tumor interac-
tions, and the response of cancers to therapeutic agents
[3–6]. Variations exist between different cancer types in terms
of their genetic and epigenetic heterogeneity and, furthermore,
clonal evolution can be altered by exposure to chemothera-
peutics [6–8]. Tumor heterogeneity is not restricted to the
tumor and can extend into the tumor microenvironment, in-
cluding non-tumor fibroblasts, immune cells, endothelial
cells, and matrix components, that can influence propagation
of a tumor and its response to therapy [9].

Therefore, translational models for studying cancer should,
ideally, provide an environment for cancers to progress along
their natural course of evolution so that tumor heterogeneity
can be studied in the presence and absence of therapeutics.

Here, we will explore the current literature covering in vitro
tools such as traditional cell line based tissue culture and
newer in vitromethods such as 3D organoid models that more
accurately simulate the in vivo tumor environment. In vivo
modalities such as xenografts and syngeneic mice, genetically
engineered mice, and patient-derived xenografts will also be
discussed. Lastly, in silico methods will be reviewed with a
focus on bioinformatics and computational tools that can be
used to model tumor evolution and drug sensitivity. As will be
discussed, some of these tools are more aptly suited for ex-
ploring tumor evolution and heterogeneity, whereas others are
more relevant for studying metastasis, drug discovery, or
screening novel compounds.

2 Cell culture

Cell culture has long been a platform to discover gene alter-
ations in cancer, identify aberrant signaling pathways, and
screen new chemical entities as potential chemotherapeutic
agents (Fig. 1). While there are many drawbacks and well-
known shortcomings of traditional cell culture such as a lack
of three dimensional architecture, changes in drug responsive-
ness, and growth changes with repeated passage, as well as
limitations in studying drug metabolism and metastasis; the
majority of current knowledge about the biology of cancer cells
has been discovered using cell culture. Numerous studies have
shown that cell culture systems can model genomic and
transcriptomic changes seen in primary tumors [10, 11]. For
example, Barrentina et al. used DNA copy number and gene
expression patterns to determine equivalency between a human
cell line library, with 947 cell lines, and primary tumors from
corresponding tissues [11]. They reported positive correlations
for DNA copy number (r = 0.77), gene expression patterns (r =

0.60), and point mutation frequency (r = 0.71) for all but a
small number of the cell lines examined [11]. On the basis of
the gene expression profiles, subsequent pharmacological inter-
rogation of this cell line library revealed several previously
unrecognized genes and cell features that correlate with drug
response. For example, expression of the aryl hydrocarbon re-
ceptor (AHR) was found to correlate with enhanced response to
MEK inhibitors in NRAS mutant cell lines [11].

However, a central issue with cell culture systems is that,
although driver mutations are generally preserved, prolonged
culturing can lead to secondary genomic changes including
copy number variations and transcriptomic drifts [12, 13].
Indeed, these types of culture-condition-induced alterations
can lead to changes in multi-drug resistance genes that differ
from clinical samples. This observation was first made while
evaluating over 80 samples of untreated primary ovarian carci-
noma in comparison with additional cancer types from the NCI-
60 panel and evaluating the expression profile of over 380
MDR-related genes [7]. These authors expanded their analysis
to include several other cancer types including colorectal cancer,
breast cancer, metastatic melanoma, and glioblastoma, which
similarly demonstrated that cultured cell pairs from a primary
tumor bore more resemblance to each other than pairs from
different primary tumors of the same origin [7]. This indicates
that cultured cells can retain genomic signatures from the pri-
mary tumor despite the influence of in vitro culture conditions.

In addition to the effects of prolonged culture conditions,
there are also other drawbacks of traditional 2D cell systems.
For example, the absence of extracellular architecture, includ-
ing stromal cells and matrix components, can alter innate bi-
ological processes of cultured cancer cells and modify their
response to therapeutics [14]. It has been shown that inclusion
of tumor stromal cells and extracellular matrix mediators can
drive tumor growth, stimulate angiogenesis, favor an inflam-
matory environment, and promote drug resistance [10,
14–16]. For these and other reasons, 3D tissue culture and
organoid systems were developed.

There are a number of studies that have demonstrated the
impact that incorporating stromal cells and matrix components
can have on the response of cancer cells to therapeutics [17–19].
In some cases, this involved developing novel culture systems.
For example, a recently published study described the develop-
ment of a 3D tumor invasion model that utilizes traditional cell
culture together with a customized system that incorporates ex-
tracellular matrix (ECM) [20]. In this study, the authors used
highly metastatic pancreatic ductal adenocarcinoma (PDAC)
cells as their model. Briefly, a fabricated platformwas developed
with posts coated in ECMand arranged in a 96-well format upon
which tumor cells suspended in type I collagen oligomer were
seeded. Following initial polymerization of the oligomer, a plug-
like tumor compartment at the bottom of the 96-well plate
formed onto which media, drugs, and cancer-associated fibro-
blasts (CAFs) could be overlaid. They noted that the addition of
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the CAFs resulted in dramatic changes in the phenotype of both
PDAC cells and CAFs together with matrix remodeling and,
importantly, pronounced invasion into the surrounding matrix
[20]. Markers of epithelial to mesenchymal transition (EMT)
were also examined and suggested an EMT-independent inva-
sion phenotype [20]. A proof-of-concept drug screening treat-
ment regimen with 10 different doses of gemcitabine was per-
formed using Hoechst 33342, Click-iT EdU, and Mito Tracker
Red (to assess nuclear changes/condensation, proliferation, and
mitochondrial metabolism, respectively). Their results revealed
effects of gemcitabine on cell proliferation, although with only
moderate effects on invasion. Based on these data, the authors
were able to establish initial validation of this system as a poten-
tially viable drug screening platform. They also noted that this
system has distinct advantages over other established models of
migration/invasion/metastasis such as scratch assays, transwell
(Boyden chambers), and 3D spheroid invasion assays in terms of
standardization of spheroid and matrix components for high
throughput/high content screening [20].

Another drawback of using cell culture as a clinically pre-
dictive model is the minimal degree of drug metabolism that
occurs in a single-cell lineage context. Drug metabolism, par-
ticularly cytochrome P450–mediated drug metabolism, may
yield a mixture of active and inactive metabolites that ultimate-
ly contributes to the pharmacological efficacy of

chemotherapeutic agents under investigation [21]. This com-
plexity of metabolism is lost in cell culture systems.
Furthermore, the lack of a normal control for tissue culture is
an important factor [22].

Although isogenic cell lines can be generated using homol-
ogous recombination to provide a comparator cell line when
analyzing single gene differences, this technique is still ham-
pered by cell culture effects [21]. Studies have demonstrated
that there can be notable differences in cell expansion and
drug sensitivity between identical isogenic cell lines as a result
of 2D or 3D conditions [23]. For example, the isogenic DLD1
KRAS+/−, KRASG13D/−, PIK3CA+/−, and PIK3CAE545K/− colo-
rectal cancer cell lines exhibited substantially different growth
kinetics and sensitivity to the MEK inhibitor PD 0325901
depending on whether cells were cultured in 2D or 3D condi-
tions despite their identical, isogenic status [23]. Due to these
limitations, other methods of tissue culture have emerged that
more closely recapitulate clinical heterogeneity while limiting
artificial cell culture effects [22].

3 Organoids

Organoids are an advancement of traditional tissue culture that
is meant to more closely mimic the 3D architecture of primary

Fig. 1 Comparison of strengths and weaknesses of current models for
translational cancer research. For each model, the number of clocks and
dollar signs correspond to the preparation time and relative cost of
establishing and maintaining the model. Likewise, color coding

indicates the degree to which the model is suited for a particular type of
translational research (dark red denoting poorly suited to dark green
denoting well suited)
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tumors. Hans Clevers defined an organoid as “a 3D structure
grown from stem cells and consisting of organ-specific cell
types that self-organize through cell sorting and spatially re-
stricted lineage commitment” [24]. As noted in this conven-
tional definition, organoids can be derived from embryonic,
adult, or pluripotent stem cells [25]. However, somatic cells
can also be conditionally reprogrammed and cultured as
organoids using feeder cells and Ras homolog (RHO) kinase
inhibitors [25]. This method is not to be confusedwith somatic
cell reprogramming which involves generation of induced
pluripotent stem cell (iPSCs) from somatic cells using tech-
niques such as somatic cell nuclear transfer (SCNT), cell-cell
fusion, exposure to extracts of pluripotent cells, or iPSC tech-
nology [26]. It has been previously shown that organoids may
be established from a variety of tumor types, such as colon,
pancreas, esophageal, liver, endometrial, breast, and prostate
cancers all requiring different composition of cultural media
[27]. Previous studies have shown that organoids canmaintain
similar histopathological features derived from the primary
tumor not only in the in vitro setting but also after being
injected into immunocompromised mice permitting their use
as an efficient tool to validate drug responses obtained in vitro
and also in more complex in vivo systems [27]. In fact, their
ability to better recapitulate tumor structure may have a greater
impact on predicting responses to novel and conventional
anti-cancer therapeutics with respect to 2D cell lines, opening
an avenue towards drug development and personalized med-
icine [27]. Organoids are not without downsides, however. As
will be discussed, they are slightly more technically and time
intensive than traditional cell culture, can be subject to over-
growth and passage effects, and have limitations similar to cell
culture relating to drug metabolism.

In general, organoids have a number of important features
that set them apart from traditional cell culture and animal
models [22, 28]. They self-organize and mimic the general
architecture of the tissue of origin, and, importantly, maintain
these characteristics over successive passages. This more rel-
evant in vitro model offers advantages for studying tumor
progression, treatment responsiveness, and interactions with
the immune system and the tumor microenvironment (Fig. 1).
Moreover, the morphological stability of organoids allows
them to be coupled with other powerful techniques such as
CRISPR/Cas9 and single-cell analysis [28]. As will be
discussed below, organoids are also genetically stable models
[24, 29].

The most common method of generating organoids from
normal and tumor tissue is with adult stems cells isolated from
resected tissue or biopsies using conditioned media supple-
mented with growth and selection factors [24, 25]. Most
organoid media is supplemented with R-spondin, Wnt, epi-
dermal growth factor (EGF), and Noggin, together with the
ALK (anaplastic lymphoma kinase) inhibitor A83-01, p38
inhibitor SB202190, and nicotinamide [28]. Lgr5 is a G

protein–coupled receptor that is found on stem cells and binds
R-spondin, whereasWnt (i.e.,Wnt-3A) is a ligand for Frizzled
receptors found on Lgr5+ stem cells [28]. Noggin is included
because it is a bone morphogenic protein (BMP) receptor
inhibitor. BMP receptor engagement on Lgr5+ stem cells neg-
atively regulates stemness, whereas EGF binding to EGF re-
ceptors on Lgr5+ stem cells increase stemness [28]. A83-01
and SB202190 both appear to increase the number of passages
of organoids and their long-term culture [29]. This method of
culturing adult stem cells has been validated in a variety of
tissue and tumor types although important differences exist
between tissues in terms of specific composition of the growth
media [24]. In addition to distinct culture requirements,
organoid culture success rates can vary significantly between
different cancer types [30].

As noted, adult stem cell–derived organoids are more fre-
quently employed and appear to have a number of advantages
over pluripotent stem cell organoids in terms of retention of
phenotypic tissue features, biobanking, genetic modification,
generation of matched normal controls, and incorporation of
an immune system, among others [22].

However, a central question to consider with organoids,
given the dynamic and heterogeneous nature of the cancer
genome, is how well do organoids reflect the genetic and
mutational profile of the parent tumor and how stable are the
genetics over the study/treatment period? In other words, do
the conditioned and semi-artificial culture conditions of
organoid growth environments result in deviation of tumors
from their inherent genetic mutational evolution?

3.1 Modeling tumorigenesis and tumor evolution

As noted, intensified focus on the evolution and development
of tumors has created a need to craft systems capable of
modeling these processes [28]. Organoids appear to be a flex-
ible system in terms of genetic manipulation and therefore can
be used as a platform for discovery of novel genes involved in
tumorigenesis [31]. Building on a previous study that used a
Sleeping Beauty transposon–based mutagenesis screening
system, Takeda et al. used a CRISPR-Cas9 gene-editing strat-
egy to knockout genes in intestinal organoids derived from
both mice and from human colorectal tumors [32, 33]. This
system has significant advantages over knockout mouse
models in terms of assessing cancer driver gene function, par-
ticularly in terms of cost and time. From a pool of genes they
identified, they selected 29 candidate tumor suppressor genes
(including Trp53, Smad4, and Pten) for loss-of-function stud-
ies. Using organoids sourced from mouse intestinal tumors
with a mutated APC and mutated Kras background
(APCΔ716, Kras +/G12D) (both commonly mutated genes in
colorectal cancer), they transduced the organoids with
lentiviral vectors containing Cas9 and GFP, followed by len-
tivirus transduction with viral particles containing pools of
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tumor suppressor candidate gene gRNAs. Once these pooled,
loss-of-function, organoid models were established, they were
transplanted into NOD/SCID/γ-chain (NSG) mice for subse-
quent studies. When taken together, they revealed that loss of
function of one or more genes leads to liver metastasis in mice
orthotopically implanted with these organoids [33].
Importantly, the system they developed for colorectal cancer
is an innovative strategy for manipulating driver genes using
organoids that can be leveraged for discovery of other critical
driver genes and assessment of therapeutics.

Organoids have also been established from multiple single
cells isolated from both normal intestinal crypts and colorectal
cancers [34]. In this study, pieces of tumors were isolated from
distinct locations of colorectal tumors from three previously
untreated patients, grown as organoids, and sorted via flow
cytometry to yield single cells for subsequent organoid culture.
Phylogenetic trees were constructed using mutational data de-
rived from whole genome sequencing or targeted gene panel
sequencing, comprising 360 known cancer genes. Methylation
patterns, epigenetic analysis, and drug sensitivity were also ex-
amined for the single cell–derived organoids. Interestingly, sin-
gle cell–derived organoids exhibited extensive genetic hetero-
geneity. Key putative driver mutations identified as being in the
trunk of the phylogenetic tree of one patient included PIK3A
(E81K) and BRAF (V600E) together with microsatellite insta-
bility and hypermethylation of the MLH1 gene. The second
patient had two protein truncating mutations in APC together
with a mutated TP53 containing a homozygous splice site mu-
tation [34]. The third patient, on the other hand, had a mutated
KRAS (A146T) and two truncating APC mutations. Based on
the mutational load and the somatic mutations observed, muta-
tional signatures were identified and applied to each segment of
the phylogenetic tree for each of the single cell–derived
organoids [34]. Thus, these findings provide additional support
for the concept that as cancers develop and evolve, they acquire
more somatic mutations compared to normal cells. The process-
es that permit successive mutation in these colorectal cancer
cells likely become more permissive over time; however, the
timing remains unclear. Interestingly, as noted above, two of the
patient-derived organoids were mismatch-repair proficient [34].

The aforementioned study demonstrates that organoid
based systems can be used to construct complex phylogenetic
and mutational signature profiles of single cells that appear to
recapitulate the mutational dynamics of the tumor. Thus,
organoids may be used map mutational processes that could
predict tumor responsiveness to the environment or therapeu-
tics over time.

3.2 Platform for drug screening and drug discovery

In addition to their utility in dissecting tumorigenesis and can-
cer evolution, organoid models can be used to study a tumors
response to cancer chemotherapeutic agents.

This generally entails constructing a library or biobank of
organoids established from numerous tumor samples or biop-
sies and performing gene expression profiling prior to drug
screening, which is technically complex. The goal is to estab-
lish a protocol for creating a patient-derived organoid (PDO)
tumor model that faithfully reproduces the genotype, pheno-
type, and therapeutic response of the patient’s tumor such that
it can be used to study new and existing agents, as well as drug
resistance.

The combination of gene expression analysis and therapeu-
tic profiling is now more readily being employed to charac-
terize and validate organoids in order to match their biological
progression response to treatment with that of the tumor [35].
Studies differ in several important terms that need to be con-
sidered: the size of the biobank or library, the outgrowth effi-
ciency from the primary tumor sample, culture conditions,
methods used to characterize organoid gene expression, sim-
ilarity to the primary tumor, the number and types of agents
screened, and the therapeutic outcomes.

In general, the size of biobanks or libraries is limited by the
availability of tumor samples. Additionally, the method of
tumor tissue procurement (i.e., biopsy, surgical resection)
can alter the size of the biobank or library due to differences
in efficiency of organoid outgrowth and isolation techniques
[36]. For example, a recent study constructed a biobank from
83 tumor samples isolated via a combination of surgical re-
section and biopsy [37]. The overall outgrowth efficiency of
the organoids was 62% [38]. The majority of the organoids
sequenced were obtained via surgical resection, whereas the
outgrowth efficiency of biopsy sourced organoids was low
(31%) [37].

Studies on refining the method of establishing organoids
from biopsy samples have led to improved outgrowth efficien-
cy [36]. Starting with 159 pancreatic tumor samples from 138
patients, Tiriac et al. ultimately constructed a library of 114
PDOs from 101 of these patients [28]. Slight variations in
efficiency depending on the route by which the tumor sample
was obtained (fine needle biopsy or tumor resection, 72%
versus 78%, respectively) were observed. In addition to the
patient-derived tumor samples, the authors developed 11 hu-
man normal pancreatic ductal organoids from pancreatic islet
transplant samples [35].

Biobanks of organoids can also be used to perform co-
clinical trials (a side by side study matching patient drug
responses to the drug responses of pre-clinical, translational
laboratory models) [37]. In this study, metastatic colorectal
cancer (n = 16), gastroesophageal cancer (n = 4), and cholan-
giocarcinoma (n = 1) were procured via biopsy and grown as
organoids, with a 70% efficiency [32]. This biobank then
served as a platform for drug screening, discussed more be-
low. In a similar study, Ooft et al. examined the predictive
potential of organoids derived from metastatic colorectal can-
cer biopsies (n = 67) from patients (n = 61) prior to receiving
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chemotherapy and compared the patient’s response to drug
with that of the organoid’s response to drug [39]. Due to a
variety of circumstances (i.e., retrieval of tissue and cells,
quality control, and bacterial infection), the authors report that
they achieved a 63% PDO culture rate for tumors isolated
from patients via biopsy.

In concert with the route of procurement, culture conditions
can also have a profound influence on outgrowth efficiency.
Serum-free culture conditions can be used for organoid prop-
agation to ensure that nonepithelial cells do not survive culture
and propagation efficiency is maximized [35, 40, 41]. Others
have looked at how different types of organoid media can be
formulated to select for organoids harboring certain oncogenic
mutations while eliminating overgrowth of non-tumor cells
[37]. For example, conditioned organoid media created selec-
tive pressure for outgrowth of KRAS G12R mutant tumor
cells from normal pancreatic tissue from an unidentified pre-
cancerous lesion in a patient sample [37]. Others have report-
ed growing their PDOs on Matrigel using standard PDO cul-
ture media to select LGR5+ stem cells from their biopsies with
a high rate of efficiency (70%) in line with previously pub-
lished data [42]. Histological and immunohistochemical as-
sessment is often used to confirm that the organoids retain
parental tumor characteristics [32].

Studies are increasingly using combinations of high-
throughput methods to document the landscape of gene ex-
pression and genetic mutations in organoids as a prelude to
interrogating them with drugs. For example, single nucleotide
variants (SNVs) and copy number alterations (CNAs), char-
acterized using Sanger sequencing and whole exome sequenc-
ing (WES), have been used to establish the genetic and muta-
tional landscape of the organoids PDAC organoids [28]. In
this study, whole genome sequencing (WGS) was employed
with a subset of the PDAC-confirmed PDOs to determine the
degree of similarity between the organoids and matched tu-
mors [28]. Similarly, transcriptomic profiling using RNA se-
quencing (RNA-seq) has been used to compare the gene ex-
pression of the PDOs with classic and basal signatures identi-
fied from virtually microdissected PDAC [35, 43]. WGS and
next-generation sequencing (NGS) are also used to look at
panels of oncogene or tumor suppressors commonly found
in a tumor type to validate the organoid model and to guide
selection of therapeutics for experimentation [32, 37].

Ultimately, the end goal of these efforts to characterize
organoids is to understand the parameters governing sensitiv-
ity or resistance to conventionally used drugs and to discover
new agents. Indeed, transcriptomic gene expression profiling
is facilitating screening of difficult to treat cancers such as
PDAC [28]. Pharmacotyping PDAC PDOs using commonly
employed conventional chemotherapeutic agents such as
gemcitabine, nab-paclitaxel, irinotecan, 5-fluoruracil, and
oxaliplatin revealed interpatient variability to these agents
[28]. This, in turn, allowed further classification of the PDOs

according to degree of chemosensitivity (i.e., most responsive,
intermediately responsive, and least responsive). Comparison
of these results with retrospective treatment data for patients,
from which these PDOs were derived, revealed that the treat-
ment responses as assessed by progression-free survival were
similar [35]. Subsequently, the effectiveness of a range of
targeted agents was assessed, with several demonstrating ef-
ficacy towards chemoresistant PDOs, including selumetinib
(MEK 1/2 inhibitor), afatinib (EGFR tyrosine kinase inhibi-
tor), everolimus (mTOR inhibitor), and LY2874455 (FGFR
inhibitor) [35]. Thus, incorporating transcriptomic data with
drug sensitivity pharmacotyping data provides further stratifi-
cation of the PDOs and may enable development of novel
therapeutic strategies.

Biobanks of organoids can also be used to screen large sets
of conventional and targeted agents in tandem with gene ex-
pression profiling. Following gene expression profiling of
hundreds of genes known to be involved in PDAC oncogen-
esis, the viability of a bank of PDAC derived organoids was
assessed following treatment with a range of agents [37]. In
this case, twenty-four PDOs in this bank were used to screen a
panel of 76 therapeutic agents revealing a wide range of indi-
vidual responses to targeted therapeutics and, in the case of a
small subset of 4 patients, the PDO responses correlated with
clinical responses [37]. Importantly, they queried their PDO
system with a novel therapeutic, protein arginine methyltrans-
ferase 5 (PRMT5) inhibitor EZP01556 that exploits a synthet-
ic lethal vulnerability of the 80–90% of PDACs that are defi-
cient for the gene MTAP (methyladenosine phosphorylase)
[44]. Indeed, MTAP organoid lines exhibited greater sensitiv-
ity to PRMT5 inhibitors, although some subsets of MTAP+

organoids also responded [37]. This both reinforces the poten-
tial of organoid systems for testing novel agents and under-
scores the need for further study.

Finally, screens of drugs can be done in organoids using
treatment protocols that mimic phased clinical trials or use a
co-clinical trial design to explore combination therapy [32,
35]. Using a library of 55 drugs in phase I–III clinical trials
or currently in clinical use, Vlachogiannis et al. demonstrated
the ability of their PDO system to recapitulate drug responses
by correlating drug responses of the PDO to that of the patient
and tumor genotype [37]. While they found that the PDOs
with amplifications in some genes responded to agents
targeting the products of those genes, they did note that not
all mutations profiled were predictive of response. For exam-
ple, PI3Kmutations did not predict response to the dual PI3K/
mTOR inhibitor GDC-0980 [37]. As part of the co-clinical
trial, they established orthotopic xenograft mice using
organoids and assessed the response to regorafenib, a multi-
angiogenic kinase inhibitor [37, 45]. Using MRI imaging in
tandem with CD31 immunostaining, they observed a similar
response in patients (resistance vs prolonged disease stability)
compared with PDOs derived from these patients. They report
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that their PDO system exhibited 100% sensitivity, 93% spec-
ificity, a positive predictive value of 88%, and negative pre-
dictive value of 100% to targeted agents or chemotherapy,
suggesting the potential utility of such pre-clinical systems
for drug screening and activity prediction [37].

In another recent example, CRC PDOs were randomized
into treatment arms: 16 PDOs to standard first-line therapy
with 5-FU and oxaliplatin; 12 PDOs to second-line therapy
with 5-FU and irinotecan; 10 PDOs to single-agent irinotecan.
Following this, they created a classification model to predict
non-responders to monotherapy with irinotecan. Analysis of
growth rate inhibition metrics and dose response curves for
PDOs (representing both progressive disease and stable dis-
ease) after treatment with irinotecan provided them with a
training data set they could query using a model prediction
method called leave-one-out-cross validation (LOOCV) [39].
This allowed them to classify 80% of non-responders from
organoid drug sensitivity data compared with the correspond-
ing patient source. They note that this assay only required
5000 cells to perform. Similar classification of combination
therapy with 5-FU and irinotecan also suggested that PDOs
have predictive value for combination therapy. In this case, to
generate the complementary dose response curves for the 5-
FU and irinotecan analysis only required 10,000 cells and
could be generated in 21 days, a vast improvement over tra-
ditional cell culture systems [39]. Interestingly, they showed
that their organoid system failed to predict response to the
combination of 5-FU and oxaliplatin. This is an important
result because, as they note, it reveals the limitations in model-
ing combination therapy responses in organoids [35]. This
may be a result of incomplete understanding into the nature
of the synergism between agents or could also be due to a lack
of certain biological components in the organoid system such
as metabolizing enzymes (i.e., cytochrome P50s) or the
microbiome.

As discussed, many studies have focused on validating the
organoid models, building biobanks, or libraries, and screen-
ing them with a small cadre of predominately known thera-
peutic agents [28]. However, what remains to be determined is
whether organoid-based systems can actually facilitate the
discovery of novel (and active) therapeutic agents. Creation
of novel systems or strategies to propagate and curate
organoids for drug screening may provide an avenue to suc-
cessful identification of novel cancer drugs. Indeed, a novel
miniaturized organoid culture method that incorporates mini-
rings for 3D culture that can be rapidly screened for drug
sensitivity (within 1 week from surgical resection) was recent-
ly described [46]. This system uses fewer cells, smaller
amounts of Matrigel, and entails seeding cells around the
rim of a 96-well plate in a ring shape using a single well or
multi-channel pipette. Additional advantages of this system
are that adding and removing media and drugs can be done
with minimal disruption to the cells and the organoids appear

to resemble the tumor from which they were derived. Small-
scale proof-of-concept experiments using doxorubicin,
staurosporine, and a novel peptide inhibitor of p53,
ReACp53, revealed that the Matrigel layer allowed both small
molecules and peptides to penetrate and reach the organoids.
A larger screen with 240 protein kinases, at two different
concentrations, was performed using organoids derived from
4 patients with ovarian and peritoneal tumors. These included
inhibitors of CDK, MEK, EGFR, PI3K/mTOR, IKK, HDAC,
and Flt [46]. In general, they reported tumor-specific, non-
redundant responses for the inhibitors they assayed with the
exception of BGT226 (an PI3K/mTOR inhibitor) which elic-
ited responses from all of the organoids screened. Thus, in
accordance with the other studies discussed so far, organoids
appear to be a reproducible platform for personalized drug
screening that appropriately recapitulates the challenges of
inter-and intra-tumor heterogeneity observed in patients.
This system, which does appear cheaper and faster, could
potentially be deployed at a scale which could yield more
statistically robust and clinically translatable results.

The recently reported use of single-cell techniques to es-
tablish organoid cultures is another promising approach to
determine if the intra-tumor heterogeneity seen in individual
cancer cells translates into differential treatment responsive-
ness [34]. This is supported by the observation that organoids
can stably retain the genetic and epigenetic during propagation
[29]. As a consequence, derivation of organoids from single-
cells can shed light on how drug resistance develops in tu-
mors, which may occur late in tumorigenesis at geographical-
ly distinct sites in the tumor [27].

The advent of organoids-on-a-chip, which seek to replicate
in vivo conditions in vitro, using organoids is particularly ex-
citing [47]. This technology offers the opportunity to assess
cancer cell interaction with normal tissue, the immune system,
and response to therapeutics. Amodel to study the interactions
of T cells with tumor organoids established from mismatch-
repair deficient CRC or non-small-cell lung cancer (NSCLC)
was recently reported [48]. In this system, co-culture of pe-
ripheral blood lymphocytes with tumor organoids led to en-
hanced T cell tumor reactivity and cell killing [48].
Furthermore, T cell reactivity was exclusive to the organoids
that had been previously co-cultured, indicating and that this
systemmay be utilized to assess the extent of immune-specific
cytolytic T cell–mediated tumor destruction [48]. Other stud-
ies also lend support to the use of organoids in elucidating
immune-tumor interactions further suggesting that organoid
models could be adapted to an organoid-on-a-chip format to-
gether with stromal cells and microvasculature [42].

Another application of organoids-on-a-chip technology
could be in assessing drug-induced target and non-target or-
gan toxicity, a frequent cause for clinical drug failure [47, 49].
For example, Skardal et al. created a triple-tissue organ-on-a-
chip platform in which they integrated heart, liver, and lung
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organoid systems through perfusion-driven microreactors
constructed on poly-dimethyl siloxane that was connected se-
rially under fluid flow [47, 49]. In the “liver-on-a-chip” com-
ponent of this integrated system, they show stable and repro-
ducible activity of stellate cells, Kupffer cells, and hepatocytes
with measurable ATP production. Remarkably, this system
can also be used to measure output of products such as albu-
min and urea, harbors metabolically active cytochrome P450
enzymes (CYP3A4 and CYP2C19), and it can be used to
assess liver damage following exposure to acetaminophen
with lactate dehydrogenase levels and liver cell protein release
as outputs of drug-induced related liver toxicity [47, 49]. This
last point is crucial, as this team demonstrated superior advan-
tages of this system compared with 2D hepatocyte culture, and
highlights the clinical relevance of this novel approach in
predicting liver metabolism and toxicity which are critical
components of the drug development process [47, 49].

Finally, an area of need that could be addressed with
organoids-on-a-chip is modeling the effect that biochemical
and metabolic intermediates have on tumors and their extra-
cellular environment. In other words, can the non-cellular
conditions in which a tumor resides and proliferates be reca-
pitulated? Some promising work along these lines has ap-
peared in the literature in regard to tumor microenvironment
metabolites but more progress is needed [50, 51].
Advancements in microfluidics and perfusable blood vessels
permit incorporation of soluble factors and nutrients, normally
present in the extracellular milieu, into these models that more
accurately mimic in vivo culture conditions and tumor micro-
environments [47, 52].

In summary, organoids, like the human patients they are
derived from, exhibit genotypic and phenotypic heterogene-
ity, in some cases, organoids recapitulate clinical responses.
Establishment of organoid biobanks and libraries allows high-
throughput compound screening that can be readily translated
into animal models.

4 Mouse models

Tumor development is, in general, a progressive process
fueled by mutations in driver genes such as oncogenes or
tumor suppressor genes that ultimately provide an evolution-
ary advantage for tumor survival [53, 54]. Considering the
number of driver genes that can bemutated, it is not surprising
that tumors are heterogeneous, containing many sub-clones
that take different paths during clonal evolution in a self-
selecting, self-propagating manner. In addition to genetic
changes, the tumor microenvironment, the immune system,
exogenous toxins and environmental xenobiotics, cancer che-
motherapy, and the microbiota can all influence the mutation-
al course a tumor traverses as it grows and evolves. Therefore,
having a model system whereby biological consequences of

step-wise mutational changes can be mapped, and future mu-
tations predicted, is of great importance. Gaining insight into
this process could aid in drug discovery and tailored treatment
of patients. In the sections that follow, we will review the
different mouse models currently used in cancer research
and discuss representative studies, advantages, and disadvan-
tages of each system. For each of the models, we will consider
its suitability for studying: tumor evolution and heterogeneity,
metastasis, immune-tumor interactions, and suitability as a
platform for drug discovery and screening (Fig. 1).

4.1 Xenograft and syngeneic mouse models

For decades, the most basic and frequently employed mouse
models used to assess tumor growth and screen conventional
chemotherapy or candidate drugs have been simple
xenografted or syngeneic mice. Typically, these mouse
models involve subcutaneous administration of human
(xenograft) and mouse (syngeneic) tumor cells without regard
to the organ of tumor origin (heterotopic) or via implantation
of tumor tissue or cells into the tissue corresponding to the site
of the tumors origin (orthotopic) [55]. Cell culture–derived
xenograft mice and syngeneic mice require less technical skill
and time to establish but they are less predictive of a patient’s
response to therapeutics compared with genetically
engineered mouse models (GEMMs) or patient-derived
xenograft (PDX) mice, which are discussed in subse-
quent sections [56].

4.1.1 Tumor evolution and heterogeneity

For a variety of reasons, simple subcutaneous xenograft
mouse models, where human tumor cells grown on a plate
are injected into a mouse, are not robust tools in investigating
tumor evolution [55, 57]. This is, in part, due to the source
material. As discussed, cancer cells grown on plates are unre-
liable predictors of mutational progression in tumors due to
numerous additional mutations cell lines acquire from repeat-
ed propagation on artificial tissue culture plates [12, 58].
Indeed, cancer cell lines tend to lose their heterogeneity and
become more homogeneous with continued selection on cell
culture media in the absence of tumor microenvironment and
immune influences [57, 59]. Orthotopically implanting human
or mouse cancer cells into a mouse yields a more representa-
tive model of tumor development because the implanted tu-
mor is placed in the organ environment similar to that from
which it originally arose [55, 57]. In the case of some tumor
types, such as breast cancer, the orthotopically implanted tu-
mor fragments are more representative models of tumor de-
velopment and tumor microenvironment [55, 57].

Syngeneic mouse models represent an improvement on
heterotopic subcutaneous or orthotopic xenograft models
using human cancer cells to study tumor evolution and tumor
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heterogeneity because murine tumor cells can be inoculated or
implanted into immunocompetent mice [60]. Syngeneic mice
were among the first in vivo oncologic models created, with
the discovery of the mouse leukemia model L1210 in 1960
followed closely by establishment of solid tumor syngeneic
models [58]. This leukemia model, studied extensively by
Howard Skipper for drug and pharmacokinetic screening,
demonstrated not only that combination chemotherapy could
be superior to single treatment experiments, but also that the
schedule of administration was important to the efficacy of a
given regimen. In 1964, Skipper would report the cure of
murine leukemia in L1210, a discovery that aided in the de-
velopment of a durable cure for acute lymphocytic leukemia
in a subset of human patients [61]. Although many years have
passed since this milestone, syngeneic mice continue to be
used as a pre-clinical models for drug screening, and more
recently as essential tools for predicting response to immuno-
therapy [58, 61–63].With their wide application potential, it is
important to consider specific molecular features when
selecting a model for drug screening, pharmacokinetic studies,
and translational potential.

Unfortunately, syngeneic mouse tumors have the disadvan-
tage of a lower mutational load than comparable human tu-
mors [57]. In general, mouse tumors are less heterogeneous
than human tumors because of inter-species differences [9,
64]. This ultimately translates into differences in gene expres-
sion profiles, baseline immune infiltrates, and response to
drug treatment including immune checkpoint blockade [58,
61]. Indeed, analyses of syngeneic tumors of colon, breast,
renal, and melanoma origin have revealed that there are pro-
found differences between models even of the same cancer
type, indicating that extensive profiling of syngeneic models
may be necessary for creation of more predictive pre-clinical
models [61]. In a study of 12 different syngeneic orthotopic
models of metastatic breast cancer, differences in gene expres-
sion profiles, histopathology, angiogenesis, and proliferation
rates have also been noted [65]. Despite this inter-model het-
erogeneity, these syngeneic mice recapitulated human sam-
ples and more than half of the most commonly mutated genes
in human breast cancer were represented within their panel
and could assist in predictive modeling for different forms of
breast cancer [65].

4.1.2 Metastasis

The suitability of mouse models for studying metastasis con-
tinues to be a challenging area. Unsurprisingly, heterotopic
mouse models where cancer cell lines are injected into a
mouse rarely result in metastasis [65–67]. This is, in part, a
product of poor mismatch between the cancer cells and the
tumor microenvironment of the mouse and the lack of an
immune system (i.e., nude mice and NSG mice) [55, 66,
67]. This is especially true for xenograft models, where human

cancer cells are injected into a mouse; however, similarly poor
rates of spontaneous metastasis are encountered with allograft
injection of mouse cancer cells into mice [66, 67].
Interestingly, in the case of intravenous injection, the site of
injection dictates to some degree the extent and site of metas-
tasis [66]. Injection of cancers cells in the tail vein of the
mouse results in metastasis to the lung, portal vein injection
leads to hepatic metastasis, intracardiac injection yields more
diffuse metastasis to brain and bone, and so on [66, 67]. Thus,
it stands to be questioned if this truly represents metastasis, as
the early steps in metastatic development and progression are
bypassed due to the route of administration [66, 67]. There
are, however, a handful of examples where injection of human
cancer cells leads to metastasis. These include metastatic
prone human cancer cells lines such as MCF-7 and MDA-
MB-231 breast cancer cells, KM12 colon cancer cells, A7
and B16 melanoma cells, PC-3 prostate cancer cells, and
SKOV3 ovarian cancer cells [66].

In contrast to heterotopic administration of cancer cells,
orthotopically implanting human cancer cells or mouse tu-
mors cells into mice more closely approximates the tumor
microenvironment and can, in certain syngeneic mouse
models, result inmetastasis [65]. There are a number ofmouse
cell lines that lead to tumor formation and metastasis
such as 4T1, B16, Lewis lung carcinoma cells, Met-1,
and RM1 [66]. It was recently reported using orthotopic
injection of 4T1 mouse mammary tumor cells (generat-
ed from CARMIL1-WT or CARMIL1-AA cells) into
BALB/c mice to study the role of macropinocytosis in
mediating treatment resistance [68]. They found that
macropinocytosis fuels tumor growth (possibly by gen-
erating intracellular cell nutrients such as amino acids,
sugars, fatty acids, and nucleotides via necrocytosis) and in-
creases resistance to 5-FU [68]. Despite these examples, it is
still not clear whether these models are more predictive when
utilized to assess anti-cancer therapy.

4.1.3 Immune-tumor interactions

Of all of the models discussed, xenografts are the least useful
for studying immune-tumor interactions [66]. Syngeneic
mouse models do have an intact immune system, although it
is a mouse immune system andmay not approximate the types
of interactions observed in human tumor environments (par-
ticularly in regards to evaluating biologics targeting human
proteins such as PD1) [69]. Nevertheless, there are advantages
to using parenterally or orthotopically derived syngeneic mice
including short latency periods, reproducibility, and genetic
tractability [55, 70]. There are many examples of syngeneic
mouse models that have been used to explore immune-tumor
interactions [71–74]. To address potential differences between
these models for immunotherapy, Mosley et al. meticulously
compared syngeneic mouse models through the lens of
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immunologically hot and immunologically cold tumors that
involved gene expression profiling of immune-related path-
ways and responses to immune checkpoint inhibitors [71].
The hot or cold phenotype correlates with the extent of T cell
infiltration into to the tumor microenvironment [75, 76]. They
began by assessing the effectiveness of inhibiting immune
checkpoints with anti-CTLA-4 antibodies or anti-PD-L1 anti-
bodies in six different syngeneic mouse tumor models (CT26,
RENCA, 4T1, B16F10 AP-3, LL/2, and MC38) and observed
that only twomodels responded to the anti-CTLA-4 treatment,
CT26 (a mouse colon carcinoma model), and RENCA (a
mouse renal cell carcinoma model), as measured by decreases
in tumor volume [64]. Only the CT26 mice responded to anti-
PD-L1 treatment. Based on this differential response, the au-
thors performed genomic analysis of the original cell lines
used for these mouse models by examining CNVs, whole-
exosome analysis, and transcriptomics to look for differences
in gene expression signatures and mutational profile between
the different models. They discovered that CNV levels in the
parent cell lines were not altered by their method of generation
and that, in the case of CT26, there was no difference in the
overall mutational burden [71]. Using a panel of 64 prominent
cancer genes, the authors then used WES to compare the mu-
tational profile of tumor cell lines with matched tumors. In the
case of CT26, they found that APC and Kras were mutated in
both CT26 cell lines and human colorectal tumors but that
CT26 did not have the Trp53 mutation found in human colo-
rectal tumors. Nevertheless, they found a high overall corre-
lation (r = 0.766) in mutant allele frequency between the mu-
rine cell lines and the corresponding syngeneic murine tumors
(in vitro versus in vivo) [71]. Transcriptomic profiling re-
vealed that differences in gene expression in innate immune-
related pathways could have accounted for the lack of respon-
siveness to checkpoint blockade and the cold phenotype of
B16 mouse tumors. Further support for differences in the im-
mune system microenvironment between these models came
from analysis of immune cell infiltration in tumors via flow
cytometry where they profiled nine nonoverlapping innate
and adaptive immune cell phenotypes [71]. This analysis
demonstrated that immune cell infiltration varied markedly
between the models perhaps accounting for the differential
responses. For example, 4T1, MC38, and LL/2 were enriched
for immunosuppressive granulocyte macrophage–derived
suppressor cells (gMDSCs) and monocytic macrophage-
derived suppressor cells (mMDSCs), whereas B16F10 and
AP-3 tumors were poorly infiltrated by immune cells overall
and therefore immunologically cold. Importantly, CT26 and
RENCA had the most balanced population of immune cells
including the highest CD4+ and CD8+ T cell populations of
all the models indicating a robust immune reaction even in
the absence of immunotherapy [71]. Lastly, they note that while
these models may not clearly translate to the clinic, they do
provide a platform to evaluate the ability of immunotherapeutic

approaches to achieve responses in tumors with a different
immunophenotypic background.

Finally, due to the abundance of well-established models
and the advantage of an immunocompetent system, syngeneic
models have been widely utilized as a pre-clinical tool for
immunotherapy screening and it is thus important to charac-
terize whether pharmacokinetic (PK) and pharmacodynamic
(PD) parameters can be accurately translated into human clin-
ical trials. Using the syngeneic MC38 tumor–bearing C57BL/
6 mice, it was demonstrated that this model was useful for
optimizing dose-range selection for the anti-PDL1 antibody
pembrolizumab in early clinical development. As a result,
they concluded that antibody distribution kinetics, drug asso-
ciation and dissociation, receptor occupancy, and dose re-
sponse to a wide range of tumor growth rates were all mea-
sures that could be allometrically scaled to human parameters
and accurately simulate findings in the clinical setting for se-
lection of the lowest effective dose [77].

4.1.4 Drug discovery and drug screening

Xenograft and syngeneic mouse models have been extensive-
ly used as a means to assess the ability of conventional ther-
apeutic agents to alter tumor growth or volume [56, 60,
78–86]. However, there appears to be divergence among xe-
nograft and syngeneic mouse models in terms of their respon-
siveness to conventional chemotherapeutic agents. A retro-
spective based literature search comparing the responses of
cell lines, xenograft, and syngeneic mice to thirty-one differ-
ent cytotoxic cancer drugs found markedly distinct outcomes
that differed across tumor types. For the four solid tumor types
examined, colon, breast, ovarian, and NSCLC, they correlated
the pre-clinical in vitro activity of each drug with phase II
response rates by tumor type [56]. They also calculated
whether the response in one tumor type could predict
response in the same tumor type, in the other three
tumor types combined, or in all four tumor types com-
bined. In this case, it was found that cell lines could
predict response in NSCLC, breast, and ovarian cancer,
whereas syngeneic mouse models were not predictive
and cell line–derived xenografts were predictive for NSCLC
and ovarian cancer, but not breast cancer and colon cancer. In
contrast, a screen of seven different syngeneic models of vary-
ing cancer types (two leukemia models and five solid tumors)
found that syngeneic in vivomodels can be used as a platform
for drug screening, particularly for lymphoma, melanoma, and
breast cancer [62].

Much like drug response, the predictive value of syngeneic
models for assessing drug pharmacokinetic and pharmacody-
namic parameters is dependent on the syngeneic model and
tumor type being studied. In lymphoma syngeneic models, for
example, the pharmacokinetic properties of rituximab plasma
concentration and overall efficacy are significantly influenced
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by tumor burden in mice similar to what is encountered in
human clinical studies [87].

However, when taken together, the predictive utility
of this cell-derived xenograft and syngeneic mouse
models for drug response differs significantly between
cancer types, with some positive results in melanoma
and lymphoma, and disappointing results in other cancer
types such as colon, breast, ovarian, and lung cancer
[62, 63]. Further, even within the same cancer type,
different syngeneic tumor cell lines have demonstrated
markedly different molecular features and immunologic pro-
files in breast cancer, as well as renal and colon cancer [71,
88]. An additional concern regarding this model system is the
lack of an accurate tumor microenvironment with stromal,
vascular, and immune components when using either flank
or orthotopic injection [89]. Insofar as these specific cancer
types are concerned, thorough interrogation of a particular
syngeneic model regarding gene expression pattern and im-
munologic profile within the context of the human target pop-
ulation is required.

To further enhance the mechanistic and clinical relevance
of pre-clinical in vivo models, GEMMs and PDXs models
were developed.

4.2 Genetically engineered mouse models

Genetically engineered mice, or transgenic mice, were first
described in the early 1980s following development of tech-
niques that allowed stable transmission of genes to successive
generations upon injection of cDNA into mice pronuclei [90].
This technique led to establishment of models of oncogenesis
whereby oncogenes were overexpressed, or tumor suppressor
genes silenced and this, in turn, yielded spontaneous tumor
formation. The earliest studies with genetically engineered
mouse models (GEMMs) demonstrated that inserting onco-
genes such as ERG, KRAS andMYC, for example, into trans-
genic mice led to the development of cancer [91, 92]. Thus,
tumor development in these models was driven by genetic
manipulation. As will be discussed, newer methods including
Cre/loxP gene silencing, viral vectors, or CRISPR/Cas9 gene
editing have emerged that dramatically alter the time scale of
producing GEMMs [70]. GEMMs can also be induced to
develop spontaneous tumors upon exposure to environmental
factors (i.e., carcinogens, radiation) which can induce single
nucleotide changes in genes and recapitulate a patient’s tumor
[57, 93, 94].

Some of the notable limitations of GEMMs are that gener-
ating and propagating them requires dedicated labor, is time
consuming, expensive, and as already discussed there is less
resemblance to human tumors. However, GEMMs can play
an important role in dissecting out specific molecular events in
oncogenesis and in determining the relationship between these
events and therapeutic responsiveness.

4.2.1 Tumor evolution and heterogeneity

GEMMs are, arguably, a very effective mouse model for
studying tumor heterogeneity and evolution, because they
are genetically tractable, allowing investigation of specific
mutations in a stable genetic background [57]. As noted,
GEMMs are classically generated by inserting inducible or
constitutively expressed cDNA, encoding tumor suppressor
genes or oncogenes, into mice via direct injection of mouse
oocytes or by means of viral vectors [57, 95]. More recently,
targeted disruption of genes using Cre/loxP recombinase has
been developed that allows conditional expression or deletion
of genes.

Niknarfs et al. used transgenic GEMMs to characterize
clonal evolution in pancreatic cancer [96]. The two
GEMMs, known as KPC (LSL-KrasG12D/+; LSL-
Trp53R172H/+; Pdx1-Cre) and KPTC (LSL-KRASG12D/+;
LSL-Trp53R172H/+; Tgfbr2flox/+; Ptf1aCre/+) are condition-
al mice that when bredwith cre-recombinase-expressingmice,
lead to expression of active mutant Kras, and loss of p53 (by
means of a dominant negative mutation) [96]. These mice
closely mimic the histopathology and clinical features of
PDAC and are more biologically relevant models for studying
clonal evolution and tumor heterogeneity [96]. Based on their
results, these authors concluded that KPC and KPTC mice
accumulate sub-clonal somatic mutations as measured by
copy number alterations in essential PDAC pathways includ-
ing chromosomes containing the Cdkn2a gene (chr4), Tgfbr2
gene (chr9), and Trp53 (chr11) [96]. Other modifications in
DNA damage response genes (Msh3), and genes involved in
cellular recovery to DNA damage (Mastl) were also noted
[96]. This group also discovered an unrecognized role for
the gene Nlrp1b (part of a family of immune pattern recogni-
tion receptors) that was found to have undergone focal homo-
zygous deletion in three mice (KPC8, KPC9, and KPTC26)
[96–98]. Nlrp1b is also somatically altered in human pancre-
atic cancers. Ultimately, by modeling the genomic mutations
observed in their models across different segments of the tu-
mors, they could also assess the spatial heterogeneity within
each of the mouse tumors allowing them to construct phylo-
genetic trees charting the evolutionary history of cells from
each segment [96]. However, a liability of this method is that
it can alter the germline. With more recent CRISPR/Cas9
techniques, researchers can move away from blunt germline
alterations of gene expression to more controlled, targeted
tissue-specific changes. Indeed, the use of CRISPR/Cas9 gene
editing is now enabling manipulation of numerous cancer
genes simultaneously [99].

As was discussed with organoids, single-cell analysis is an
emerging tool that can be used in tandem with mouse models
such as GEMMs to trace cell lineages with applications in
cancer [100, 101]. Also, the applications of these combina-
tions of technologies can be used to address tumor
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heterogeneity in non-cancer tumor cells, such as stromal cells.
For example, Bartoschek et al. used single-cell analysis to
identify spatially and functionally distinct classes of cancer-
associated fibroblasts from a MMTV-PyMT mouse breast
cancer model [102].

4.2.2 Metastasis

Compared with other mouse models, GEMMs are well suited
to investigating metastasis and there is a growing body of
literature demonstrating de novometastasis of breast and pan-
creatic cancer tumors [66, 103, 104]. This is highlighted in
studies using the KPC pancreatic adenocarcinoma transgenic
mouse model, which carries both inactivating p53 and activat-
ing KRas mutations [55, 105]. As a result, these mice develop
spontaneous tumors which metastasize to the liver at a high
rate of 50–75% ofmice [55]. In addition, in contrast to patient-
derived xenograft or syngeneic mouse models, these mice also
exhibit significant stromal and fibroblast infiltration, similar to
that observed in human pancreatic adenocarcinomas [105].
These features make the KPC GEMMs useful models for
studying the biology of metastasis, anti-metastatic agents,
and treatment resistance [55, 105, 106]. For example,
Morton et al. showed that the Src inhibitor could inhibit me-
tastasis in KPC GEMMs [92]. There are a number of other
GEMM models of PDAC with mutant p53 and Kras which
also have fibrous desmoplastic stroma (that interferes with
both drug penetration and immune infiltration), as well as
PDAC GEMM models with PanIN cells that undergo
epithelial-mesenchymal transition (EMT), further supporting
their clinical relevance [9, 107–109].

Finally, a number of recent studies have used GEMMs to
delineate mechanisms of metastasis in small-cell lung cancer
(SCLC) [110–112]. Building on the observations that p53 and
RB are mutated in more than 90% of SCLCs, mouse models
were established where these genes could be conditionally
silenced using the Cre/loxP recombination [113]. Deletion of
the cell cycle inhibitor, p130, in this model leads to enhanced
tumor development [113]. Denny et al. used loxP-flanked
Trp53f/f, Rb1f/f, p130f/f mice crossed with R26mT/mG mice to
establish conditional knock-down transgenic mice that, when
administered adenovirus containing the cre-recombinase via
inhalation, were deficient for p53, Rb1, and p130 [110, 114].
These mice, in turn, develop tumors that are tomato (mT)
negative and GFP positive owing to the cre-mediated excision
of mT in p53/Rb1/p130-deficient tumor cells, but not in nor-
mal cells [110, 114]. In this way, it was possible to track and
visualize GFP-positive tumor cells that metastasized. Using
this system, the authors were able to identify a putative driver
of metastasis, the transcription factor Nfib, which is involved
in chromatin remodeling [110]. This same study also
employed NSG mice to verify the metastatic potential of high
and low Nfib levels via subcutaneous administration or

transplantation of SCLC cells deficient in or overexpressing
Nfib [110]. Other groups discovered a similar relationship
between Nfib and SCLC metastasis using Trp53, Rb1 condi-
tional knock-down GEMM mouse models [111, 112]. These
are just a few specific examples demonstrating that GEMMs
may be a useful for studying metastasis.

GEMMsmay also be utilized to study epigenetic regulation
of metastasis. Recent studies show that epigenetic modifica-
tion of immune cells can serve as a precondition for
premetastatic microenvironment establishment and metastasis
initiation [115]. These studies highlight how different mouse
models can work in tandem to overcome limitations of any
one model. For example, a combination of GEMMs, xeno-
graft mice, and NSG mice were used to assess the effective-
ness of epigenetic modifying drugs on myeloid-derived sup-
pressor cells (MDSCs) in mediating metastasis [116]. First,
syngeneic C57/BL/6 mice or BALB/c mice were either sub-
cutaneously or orthotopically implanted with different cell
lines known to aggressively metastasize to the lungs: Lewis
lung carcinoma cells (LLC) (Sub-Q into C57/BL/6 mice),
HNM007 esophageal squamous cell carcinoma cells (Sub-Q
into C57/BL/6 mice), or 4T1 mammary cancer cells
(orthotopic injection into mammary fat pads of BALB/c mice)
[116]. Tumors were resected and metastasis was assessed by
immunofluorescence and histology. Next, CD45.1 MDSCs
were isolated from the LLC or HNM007 tumor–bearing mice
and transplanted into mice congenic at the CD45 Ly5 locus
(B.6SJL-Ptprca Pepcb/BoyJ Ly5.1) [116]. The NSG mice
transplanted with LLC tumor tissue were used as a model to
guide dosing with the epigenetic modifying drugs azacitidine
and entinostat. Host MDSCs derived from CD45.1 mice-
bearing LLC tumors were then adoptively transferred into
CD45.2 congenically marked mice via tail vein injection in
order to track the primed tumor–derived MDSCs [116].
Treating these mice with low dose epigenetic modifying drugs
led to a reduction in trafficking of MDSCs to premetastatic
sites together with enhanced disease-free survival [116]. This
was confirmed using B6.129S4-Ccr2tm1Ifc/J mice, a knockout
mouse lacking expression of the Ccr-2 gene, an important
regulator of monocyte migration from the bone marrow to
the tumor microenvironment [116]. Therefore, by leveraging
the advantages of each of these mouse models, they demon-
strated that epigenetic changes in MDSCs prime them to de-
velop premetastatic niches for tumor cells even after tumor
removal.

Another recent example focuses on the role of the epige-
netic modifier polycomb repressor complex 2 (PRC1) in me-
diating stemeness, metastasis initiation, and local tumor im-
munosuppression in double negative prostate cancer (DNPC)
[115]. A combination of mouse models was utilized including
nude mice, NSG mice, PtenPC−/−FVB/NJ mice and
PtenPC−/−Smad4PC−/−FVB/NJ mice [115]. The nude mice
were used as the model for metastasis due to the lack of an
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immune system. Nude mice were injected intracardially with
luciferase-labeled androgen receptor (AR)–negative PC3M
cells in the presence or absence of RNF2 (ring finger 2)
shRNA (small hairpin RNA), a catalytic component of
PRC1, thereby knocking down PRC1. Silencing RNF2 sup-
pressed metastasis. The PtenPC−/− mice develop prostate
cancer but have little to no metastasis, whereas the genetically
modified PtenPC−/−Smad4PC−/− develops metastatic pros-
tate cancer [117, 118]. This provides a model for studying
how PRC1/RNF2 alters prostate cancer cells to influence me-
tastasis. Briefly, shRNA-silenced prostate cancer cells from
PtenPC−/−Smad4PC−/− lacking functional PRC1 were
injected into nude mice and metastasis to the bone and liver
was reduced. Through a combination of RNA-seq and chro-
matin immunoprecipitation (CHIP) sequencing, they identi-
fied CCL2 as the target of PRC1 that mediates metastasis
initiation and immunosuppression. CCL2 promotes recruit-
ment of MDSCs and tumor-associated macrophages (TAMs)
that create an immunosuppressed tumor microenvironment
and favor bone colonization in prostate cancer [115].
Finally, FVB/NJ mice were inoculated with cells from their
prostate cancer model (PtenPC−/−Smad4PC−/−) and treated
with a small-molecule inhibitor of RNF2, identified in a
screen of a compound library–inhibited metastasis.
Combination of the RNF2 inhibitor (GW-516) with anti-
CTLA-4 and anti-PD-1 antibodies completely suppressed me-
tastasis. Therefore, again, multiple mouse models can be used
in tandem to study epigenetics, metastasis, and test novel
compounds.

Lastly, an important caveat for congenic GEMM mouse
strains that should be mentioned is that they appear to harbor
significant amounts of passenger mutations as a consequence
of genetic variation from embryonic stem cells (ESCs) used to
establish the mouse lines [119]. While this likely poses less of
an issue for the vast majority of translational cancer mouse
studies, this could have the potential to interfere with interpre-
tation of results in studies using congenic mice particularly as
it relates to studies focused on tumor heterogeneity and iden-
tification of driver genes.

4.2.3 Immune-tumor interactions

Like syngeneic mouse models, GEMMs have an intact im-
mune system (albeit a mouse immune system) so they can
more accurately model the interaction of tumors and the im-
mune system in terms of tumor development and response to
therapeutics [69]. This is in part due to the native development
of the tumors in a microenvironment that adapts and changes
with the tumor [89]. This microenvironment contains stromal
elements, vasculature, and immune cells that influence the
tumor’s relationship with the immune system [89] However,
there are a number of limitations of using GEMMs in
immune-tumor interaction studies that need to be considered

[89]. Due to the fact that these mice are genetically modified,
there can be substantial variability in the tumor genotype-
phenotype penetrance and latency of tumor development
[89]. Also, tumor monitoring and therapeutic response in
GEMMs are, in large part, assessed by non-invasive imaging
[89]. Consideration also needs to be paid to the consistency of
immune targeting between the GEMM murine tumor model
and the corresponding human tumor targets, which could af-
fect clinical translation particularly for the development of
immunotherapeutic vaccines [89]. However, there is a grow-
ing body of literature using GEMMs to study immune-tumor
interactions ranging from T cell function, immunogenicity of
tumors, and B cell contributions to tumor development and
treatment response [70, 120].

Single-cell analysis is also being used along with GEMMs
to study immune-tumor interactions. Single-cell analysis has
been used to explore the relationship between immune cell
infiltration and tumor progression in prostate adenocarcinoma
GEMMs deficient for Pten and Smad4 [121]. Loss of PTEN
has been shown, in certain cancer models, to be associated
with an immunosuppressive tumor microenvironment [89].
In their study, Wang et al. identified MDSCs as the major
infiltrating immune cell in tumors from these mice, whose
recruitment to tumors is driven by tumor production of the
chemokine CXCL5. Single-cell analysis was performed on
cells isolated from Ptenpc−/−Smad4pc−/− mouse blood,
lymph, spleen, and primary tumors. The single cells were then
immunophenotyped and a tree of cell types isolated from the
aforementioned sources was established revealing a striking
increase in MDSCs. They went on to identify the underlying
signaling pathways mediated by Hippo-Yap1 in the altered
expression of CXCL5 in these tumors. Inhibition of the
CXCL5 receptor on MDSC or inhibition of YAP1 led to re-
duced migration of MDSCs to the site of the tumor [121].
Along these lines, there are a number of other recently pub-
lished studies that have used single-cell techniques in tandem
with GEMMS in detailing immune-tumor interactions in
breast cancer and lung cancer [102, 122].

4.2.4 Drug discovery and drug screening

GEMMs may serve as a useful platform for drug discovery,
assessment of drug efficacy, and as a tool to assess multi-
organ system adverse effects [55, 70]. GEMMs can also be
used to assess how existing and emerging drugs can alter the
mutational profile of tumors and lead to treatment resistance
[55, 70]. For example, Mitrofanova et al. conducted a study
using GEMMs to correlate expression levels of prostate can-
cer driver mutations such as FOXM1 and CENPF to those in
human prostate cancer databases to predict drug response by
targeting these specific mutational drivers [123]. They dem-
onstrated that treatment-responsive genes modelled utilizing
GEMMs can be used to identify patients that are likely to
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benefit from treatment with drugs that co-target specific path-
ways such as the MAP-kinase or mTOR signaling pathways
[123]. In addition to targeting a specific signaling pathway,
these models can also be used more widely to predict drug
response to a number of different inhibitors from various clas-
ses. Chesi et al. performed a study in which they used
Vk*MYC multiple myeloma transgenic mice to predict re-
sponses to six different classes of inhibitors, and demonstrated
that drug response was indicative of clinical activity, with a
positive predictive value of 67% in associated clinical trials
[124]. The study also reported a negative predictive value of
86% for clinical inactivity, indicating that this model may also
have translational value for prediction of both drug response
and resistance [124].

To overcome some of the limitations of GEMMs, validate
mutational changes and results of drug screens, GEMM
models can be used in tandem with other mouse model sys-
tems such as PDX (discussed below). For example, Liu et al.
recently described the development of a triple negative breast
cancer (TNBC) GEMM [125]. They generated two cohorts of
mice: a Brca1-deficient line (K14cre, Trp53flox/flox, Brac1flox/
flox) and a Brca-proficient wild-type line (K14cre, Trp53flox/
flox, Brac1fwt/wt) [125]. WES and RNAseq together with copy
number alteration analysis of the TNBC tumors revealed sev-
eral focal amplifications on chromosomes 6 and 9 involving
theMet and Yap1 loci which corresponded to elevated mRNA
levels for both [125]. They also found that several of the
tumors expressed Fgfr2 and Raf1 fusion genes, both apparent-
ly products of chromosomal translocations. These genetic
changes favored oncogenesis via corresponding changes in
signal transduction pathways such as MAPK and PI3K, thus
revealing therapeutic opportunities [125]. To test the response
of these tumors to therapeutic agents, they transplanted the
TNBC tumors into nude mice and assessed their response to
several targeted drugs. In the case of tumors which spontane-
ously acquired the Fgfr2 or Raf1 fusion proteins, they tested
an FGFR inhibitor NVP-BGJ398, the MEK inhibitor
trametinib, or the MET inhibitor crizotinib [125]. They dem-
onstrated that tumors with acquiredFgfr2 fusion proteins were
initially responsive to single-agent FGFR inhibition with
NVP-BGJ398 but developed resistance in three of six models
with an average return to initial tumor volume of 43 days.
They further went on to show that the combination of NVP-
BGJ398 with Olaparib (a PARP inhibitor) resulted in com-
plete responses with no relapse in all six of the models [125].
This study exemplifies how multiple models (cell culture,
GEMM, and orthotopic nude mice) can be used in tandem
to explore specific facets of tumor biology and response to
treatment.

Beyond utilization as a simple screening platform for phar-
macologic response, GEMMs have shown value for model-
ling drug pharmacokinetic and pharmacodynamic properties,
and in some cancer sub-types may be superior to other in vivo

models. Combest et al. assessed the pharmacokinetic proper-
ties of carboplatin in mouse melanoma models and compared
results between PDX mice and GEMMs with those observed
in the clinical setting [126]. Their findings demonstrate that
although the carboplatin plasma PKs of each model were sim-
ilar, the carboplatin concentration in tumors of the GEMMs
more closely resembled those of melanoma patients as com-
pared with the xenograft (A375) model to a significant degree,
with a murine-to-human tumor extracellular fluid (ECF) drug
concentration ratio of 0.13 and 0.86 for the xenograft or trans-
genic model, respectively. [126]. This example highlights the
need for more studies than model pharmacokinetic drug prop-
erties in mouse tumor models.

4.3 Patient-derived xenograft mouse models

Patient-derived xenograft models were first created and pub-
lished in 1969, when Rygaard and Polvsen first minced, and
then injected a colonic adenocarcinoma sample from a 74-
year-old patient into athymic nude mice [127]. This model,
established for the first time more than five decades ago, has
several distinct features when compared with cell line–derived
xenografts and syngeneic or transgenic mouse models.
Established as a useful tool for translational research, PDX
models have the advantage of maintaining the cellular and
histopathologic structure of the original tumor thus recapitu-
lating the heterogeneity observed in patients [56, 78, 128,
129]. This characteristic makes them a better tool compared
with cells lines for studying drug efficacy and development: in
fact, substantial limitations have been observed with conven-
tional cell line–derived xenograft models for drug screening
and evaluation of pre-clinical efficacy of drugs due to the loss
of hallmarks, such as genetic and epigenetic alterations,
resulting in minimal resemblance to the parental tumors
[128, 130].

PDX mice are created via subcutaneous or orthotopic im-
plantation into an immunodeficient mouse, and in contrast to
cell line–derived xenografts, they are not propagated on plas-
tic. There is wide variation in engraftment rates and time-to-
engraftment among different cancers that may be impacted by
the method used to implant the tumor (i.e., subcutaneous,
orthotopic, or kidney capsule) and mouse strains [78, 128,
131, 132].

PDX are commonly used worldwide in pre-clinical trials
for the development of anti-cancer drugs to support and vali-
date the translation into clinical trials. In fact, many global
PDX repositories have been generated and are currently avail-
able for pre-clinical research (https://www.europdx.eu/;
https://www.pdxfinder.org/; https://www.crownbio.com/;
https://championsoncology.com/; https://www.jax.org/;
http://www.pdx.dnalink.com/index) [133].

The most recent application of these fine pre-clinical
models have been “co-clinical trials”, where PDX, also known
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as “avatar” or “mirror”models, are generated using specimens
derived from patients participating in the clinical trials and
pre-clinical studies which are run in parallel, in real time, to
the human trials. This approach has been effectively used in
the past few years as a model for personalized medicine be-
cause they are able to longitudinally predict, with high accu-
racy, drug response, or resistance before these events can be
observed in the donor patient [134–140].

4.3.1 Challenges and limitations of PDX models

The PDX mouse model is frequently cited as being highly
representative of human tumors in terms of heterogeneity,
clonal evolution, and response to treatment [81, 131,
141–145]. Recently, groups with wide expertise in the model
have sought to assess the validity of PDX models in recapit-
ulating different types of cancers and have highlighted many
of the limitations and challenges of PDX models [128, 131,
146]. All groups working with PDX models argue that more
studies should incorporate standardized validation tools to im-
prove the reproducibility and to increase success rates of trans-
lational studies [72, 78, 79, 131, 132, 146].

Among some of the main challenges is the gradual replace-
ment of human stroma with mouse stroma. In fact, after few
passages, tumor-associated stroma gets replaced with murine-
derived ECM (extracellular matrix) and fibroblasts, causing
changes in the paracrine regulation of the tumor that might
interfere with drug distribution and effectiveness [147].

Another challenge is the route of implantation. There are
open questions surrounding the most favorable route of ad-
ministration indicating the need for validation studies to ad-
dress the optimal implantation site. Although orthotopic
models seem to better mimic metastatic cancer models, sub-
cutaneous administration is more commonly used because it is
easier to assess drug efficacy [138].

The time course of engraftment is also a formidable chal-
lenge and is a limiting factor in the use of PDXmodels for co-
clinical trials. Some models take 4–8 months to establish and
this is more than what patients can wait to start treatment. In
order to overcome this issue, some groups are switching to the
use of organoids models to evaluate potential treatment sensi-
tivity [24, 25].

Lastly, in order to establish standard PDX models, a key
requirement is that the mice cannot have an intact immune
system. This has impeded the use of PDX mice in studies
assessing immune checkpoint–blocking agents [148, 149].
This is also driven, in part, by gradual replacement of
engrafted stromal cells (and immune cells found in the tumor)
with mouse cells leading to a more murine-like tumor micro-
environment [131]. For these reasons, the development of
humanized PDX models where the immune system is
reconstituted in the PDX-implanted mouse represents a poten-
tial advancement for researchers [149, 150].

Nevertheless, despite these challenges, PDX models are
considered among the most robust and clinically relevant
models for drug screening and drug discovery. In fact, since
2016, the National Cancer Institute (NCI) has stopped using
the NCI-60 panel (containing 60 human cancer cell lines) and
switched to PDX models for anti-cancer drug screening [56,
78, 79, 82, 128, 133, 137, 138, 141, 151].

4.3.2 Metastasis

As previously mentioned, PDX models present limitations for
studying metastasis, particularly if subcutaneous transplanta-
tion is used [55, 66, 131, 152]. The combination of the ab-
sence of an intact immune system and mouse stromal environ-
ment can influence disease progression and metastasis [66,
153]. Recently, Sprouffske et al. assessed this issue and used
a bioinformatics approach to investigate the genetic heteroge-
neity during breast cancer metastasis [152]. Using WGS, they
discovered that the mouse stromal environment can confound
interpretation of intra-tumor heterogeneity and that the meth-
od of developing the PDX metastasis models can influence
genetic changes in occurring during metastasis [152]. For ex-
ample, tail vein injection of breast cancer PDX metastasis
models exhibits a loss of heterozygosity compared to PDX
mice with orthotopically transplanted breast cancer tumors
that develop metastasis [152]. Thus, although a liver
metastasis–derived PDX will better recapitulate human tu-
mors, both cell line–derived and PDX in vivo subcutaneous
models are limited in their ability to simulate metastasis, and
more studies are required to address this unmet need.

4.3.3 Immune-tumor interactions

As noted several times, in addition to limitations in modeling
metastasis, PDXmodels are immunocompromised as they are
propagated in mice that lack a fully adaptive immune system.
Thus, the influence of immune cells on tumor growth and
response to treatment is poorly assessable in this model.
However, there are several groups currently working to create
mouse models with partial immune systems, primarily human
T cells, to evaluate therapeutics used in the clinic, each which
comes with challenges that will be discussed [149].

Several strains of mice can be used to generate PDX
models. Traditional PDX models use athymic nude mice or
severe combined immunodeficiency (SCID) mice [89].
Athymic nude mice lack T cells but still retain B cells as well
as many elements of their innate immune response including
NK cells and neutrophils [89]. Athymic mice are suitable
hosts for human cancer cell lines, but NSG are more suitable
for hosting human primary tumors [89, 154]. SCID mice, on
the other hand, have genetically impaired VDJ recombination
leading to disruption in T and B cell development with com-
mensurate deficiency in these critical adaptive immune system

21Cancer Metastasis Rev (2021) 40:7–30



cells and therefore cannot be used to evaluate anti-PD1 or anti-
CTLA4 immunotherapy agents [89, 90]. In response to this,
several groups are developing humanized PDX models
reconstituted with human immune systems using novel ap-
proaches. These include reconstituting immunodeficient mice
with mature immune cells (i.e., PBMCs or tumor-infiltrating
lymphocytes) prior to transplanting patient tumor tissue con-
taining human stromal cells along with any tumor-infiltrating
human immune cells, while other groups have begun devel-
oping “humanized mice” reconstituted with human CD34+

hematopoietic stems cells (HSCs) following sub-lethal irradi-
ation in immunodeficient mice, thereby repopulating them
with a largely human immune system that includes B and T
lymphocytes as well as myeloid cells [55, 149, 150, 155–159].

The benefit of the PMBCmethod is the ability to transplant
patient-matched immune cells from the blood into mice prior
to tumor challenge thereby limiting antitumor immune effects
derived from allogeneic responses due to HLA mismatching
[131]. Furthermore, it was recently demonstrated that tumor-
specific T cells can be found in the circulation of cancer pa-
tients and may be important for responses to PD1 blockade
[160]. Previous studies have demonstrated improved overall
engraftment that results in high chimerism of human lympho-
cytes using mice with deficiencies in both their adaptive and
innate immune systems as recipients [161].

Yet, there are drawbacks. First, not all immune cells engraft
equally as many murine-derived cytokines do not cross-react
with human receptors. This is particularly true for myeloid
cells and is currently being addressed by various methods that
include exogenous injection of growth factors and expression
of human FLT3L [162]. Furthermore, the cells that do engraft
undergo important phenotypic changes following repopula-
tion of lymphogenic hosts that also further skew immune
composition and activation. Most importantly, this xenograft
system is limited by the narrow window of time for therapeu-
tic studies as mice invariably succumb as a result of elicitation
of profound xenograft-versus-host disease (xeno-GVHD)
[131]. Ongoing studies are currently working to overcome this
by using MHC-null NOG mice as recipients that have suc-
cessfully been used for immunotherapy studies [163].

Another approach to overcoming severe xenograft versus
host responses is transferring human CD34+ HSCs into irra-
diated, immunodeficient mice. As opposed to models with
PBMCs containing mature T cells, the lymphocytes in the
HSC transplant model develop in the murine host and there-
fore do not attack the host as a result of negative selection of
thymocytes against murineMHC-peptide complexes [164]. In
this system, human-derived thymocytes develop in the hosts’
thymus that are dominated by murine MHC-peptide com-
plexes on thymic epithelial cells (TECs), which are important
for both positive and negative selection [165]. Although hu-
man MHC-peptide complexes derived from donor immune
cells are also present in the thymus, it is currently unknown

what fraction of mature T cells are restricted to human versus
mouse MHC peptides. Thus, counterintuitively, this model
may initiate xenograft responses against human tumors upon
challenge due to the absence of human MHC and peptides
during negative selection. One way groups are attempting to
overcome this issue is by introducing HLA genes in MHC-
null mice that result in HLA-restricted T cells, albeit primarily
HLA presenting murine rather than human peptides [166,
167]. Currently, this approach is limited to a specific HLA
gene and cannot match the complete HLA haplotype of the
patients’ tumor. Lastly, other groups have also demonstrated
that implanting human thymuses in HSC-reconstituted mice
helps select for HLA-restricted T cells and ensure proper neg-
ative selection against human peptides [168]. In summary,
there are well-designed experiments ongoing to develop and
refine PDX models for use in testing immunotherapy, but it is
unlikely that any of them will be feasible for large scale use or
high throughput screening.

Greater emphasis has recently been devoted to the estab-
lishment of humanized PDXmodels in order to investigate the
tumor and immune compartment effects of treatment as well
as the interplay between these two systems. Indeed, PDX
models show convincing evidence for their ability to model
drug response inmultiple human cancer types including breast
cancer, ovarian cancer, SCLC, adrenal, and CRC [56, 149,
150, 169]. There are a number of humanized mouse models
with human-derived xenograft tumors as well as human im-
mune systems that are currently in development and in use for
drug screening and modeling of various oncologic diseases
[170]. Thesemodels include bladder cancer humanizedmouse
models using NSG mice injected with CD34+ hematopoietic
cells, breast cancer models created with NSG mice
intrahepatically engrafted with breast carcinoma cell lines
and engrafted with functional human immune systems, and
CRC models via Rag2−/−yc−/− mice injected with human
PBMC’s and subcutaneously engrafted on the flank with
CRC cell line HT-29 [171, 172]. These systems are promising
models of immune system and tumor interactions, as with the
humanized breast cancer model created by Wege et al., where
human immune cells are able to traffic and infiltrate the mi-
croenvironment and enable human tumor-immune system in-
teractions to be studied [171]. In summary, humanized onco-
logical models may address vital questions on tumor-immune
system interactions, mechanisms of tumor escape, and thera-
peutic potential of immune modulation, and may be of signif-
icant importance in predicting response to immunotherapy
such as checkpoint inhibition in the future [171, 173].

4.3.4 Drug discovery and drug screening

To date, perhaps the most significant role for PDX in transla-
tional cancer research is in assessing drug response and trans-
lating in vivo drug screening data to the clinic [78, 128, 131].
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A recent systematic review of retrospective studies correlated
patient response in multiple oncologic indications with PDX
response in vivo for cancer types including breast, ovarian,
and small-cell lung cancer [169]. In support of the predictive
capabilities of PDX models, they note a study that used a
panel of seven human breast cancer patient-derived orthotopic
xenografts (PDOXs) to predict patients’ responses to the che-
motherapeutics docetaxel and 5-FU given in combination
therapy with the monoclonal antibody trastuzumab, revealing
an overall concordance in five of seven patients and corre-
sponding PDOX models [169]. In the case of ovarian cancer,
another study found that 19 of 21 PDXs exhibited congruent
results of sensitivity or resistance with patients in retrospective
studies with cisplatin treatment [169]. Lastly, in SCLC, strong
correlations between the response rate to chemotherapy with
cisplatin and etoposide combination treatment between SCLC
patients and PDXs were demonstrated in seven of nine patient
PDOX pairs [169]. While this systematic review highlights
the potential role of PDX models in predicting tumor drug
responses in certain cancer types such as breast cancer, ovar-
ian cancer, and SCLC, primary research utilizing larger co-
horts in other cancer types has additionally yielded interesting
results. For example, Bertotti et al. produced a large cohort of
patient-derived xenografts from 85 patients with metastatic
colorectal cancer and characterized response to cetuximab
(an anti-EGFR antibody) in correlation to patients in clinic
[56]. In this panel of CRC patients and corresponding
PDXs, all 85 were concordant regarding treatment response
or resistance to cetuximab treatment. For treatment with
cetuximab, the response rate (11%), disease stabilization
(30%), or progression (59%) was in line with the data reported
in the prospective analysis of the patients. Importantly, meta-
static CRC xenografts retained the morphologic characteris-
tics of the corresponding patient’s tumor, and serial mouse
passaging did not substantially alter the genetic makeup of
tumors as it related to copy number changes and hotspot on-
cogenic mutations. This indicates that in addition to being of
benefit for prediction of drug response in CRC, PDX mouse
models also retain key features of human tumors despite pas-
saging and mouse stromal invasion [56]. However, the valid-
ity of PDX models as predictive tools in translational research
has been questioned suggesting more validation tools are
needed as part of PDX studies [146].

In modelling of drug pharmacokinetic and dynamic prop-
erties, PDX models have demonstrated promise in some sys-
tems while exhibiting limitations in others. Wong et al. carried
out a retrospective PK/PD analysis of clinical response data
from 8 well-characterized cytotoxic agents including 5-FU
and docetaxel in comparison with response and PK/PD pa-
rameters in corresponding xenograft models with these same
agents [174]. It was observed that regimens of docetaxel that
were varied by dose and cycle duration in metastatic breast
cancer models, such as the Cal51x1.1s PDX exhibited similar

parameters of tumor growth inhibition and overall response to
those documented in the clinical setting. Likewise, modelling
of PK/PD parameters for treatment of CRC with 5-FU dem-
onstrated that continuous infusion exhibited superior perfor-
mance in comparison with a 5-day regimen in the Colo205
PDX model and was representative of clinical response in
both cases [174]. Meanwhile, previous studies by Combest
et al. concluded that genetically engineered transgenic mouse
models may more closely recapitulate drug pharmacokinetic
properties in comparison with PDX models in the setting of
melanoma [126]. The limited pharmacokinetic data that exists
for direct comparison of PDX and GEMM systems demon-
strate that GEMM models may be superior in accurately
modelling drug PK parameters in some cancer types [126].

5 Conclusion

Each of the tools discussed here plays important roles in
unraveling tumorigenesis, identifying drug targets, and ascer-
taining drug efficacy (Fig. 1). Two-dimensional cell culture still
has a prominent role in cancer research and a long history of
generating valuable results on underlying genetic changes in
cancer that has led to the discovery of drug targets and thera-
peutic agents. Indeed, cell culture is a simple and cheap means
to screen compounds and candidate drugs prior to more elabo-
rate and predictive in vivo models. However, on its own, cell
culture is subject to such profound shifts in gene expressionwith
prolonged culture that its translational value is limited. The prin-
ciple uses of cell culture are for preliminary drug screening/drug
discovery (Fig. 1). Although there has been work on cancer
immunology using cell culture, there are better systems avail-
able as noted. Likewise, cell culture is not ideally suited for the
study of metastasis, and while there are migration, invasion, and
metastasis assays, they lack the robustness of mouse models.

Organoids are a more elaborate form of cell culture that can
be used to study tumor heterogeneity (Fig. 1). Organoids also
appear to be effective and predictive platforms for drug
screening and discovery, more so than cell culture but less
than some mouse models (Fig. 1). Similar to cell culture,
organoids are not well suited for studying cancer immune
function or metastasis.

Comparison of in vivo mouse model systems including
xenograft, syngeneic, GEMMs, and PDX models reveals that
there are unique benefits and limitations to each (Fig. 1). Of
these, cell line–derived xenograft mouse models appear to be
the least valuable for studying tumor heterogeneity, tumor
evolution, and immune-tumor interactions, but have demon-
strated some success in studying metastasis and drug action
(Fig. 1). While syngeneic models offer a competent immune
system, as discussed, particular care needs to be taken when
choosing the murine tumor cell line used. Significant differ-
ences in genetic composition and immunologic profile have
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been demonstrated in this model within the same cancer type,
and drug response results have been shown to differ between
syngeneic models and human subjects for multiple indications
[63, 65, 71]. Further concern regarding this model system is
the lack of similar stromal and immune compartments in the
tumor microenvironment following injection of tumor cells
[89]. Although not without limitations, GEMMs appear to
be a reasonable option for studying tumor heterogeneity, tu-
mor evolution, metastasis, and to a lesser degree, immune-
tumor interactions (with a mouse immune system). Although
GEMMs also have predictive value in modelling drug re-
sponse and PK parameters, they are still mouse tumors [123,
126]. PDX mouse models remain the strongest in vivo model
for predicting drug response in patients [128] (Fig, 1).
However, limited data for direct comparison of PDX and
GEMM systems regarding PK modelling has demonstrated
PDX tumors may be inferior in accurately recapitulating drug
PK parameters in some cancer types [126, 175], and further
studies are needed. As noted, the lack of an immune system
hampers the use of PDX mice in studying immune-tumor
interactions or the effects of immunotherapy agents.
However, the advent of humanized PDX mice has helped to
fill this gap (Fig. 1).

Ultimately though, it is through the use of combinations of
models that the ideal system may come closest to realization.
Combining translational models is now frequently employed
to leverage the advantages each system has to offer. The work
described earlier by Lu et al., for example, typifies this trans-
lational combinatorial approach. Here, they describe how both
syngeneic mouse models, which spontaneously develop tu-
mors that aggressively metastasize to the lungs, were used in
tandem with NSG mice transplanted with these tumors for
drug screening [116]. Furthermore, coupling in vivo models
with single-cell analysis technology and computational assays
also stands to extend the resolution of data gleamed from any
one technique.

Finally, there are a number of promising approaches being
developed that extend beyond the scope of the current review
and into clinical cancer diagnosis, but merit consideration given
their potential use in pre-clinical cancer research. Advancements
in imaging and spectroscopy have led to refinement of technol-
ogy such as Raman spectroscopy andmass spectrometry for use
in cancer detection and diagnosis [176, 177]. Thus, it is con-
ceivable that these technologies could be used in tandem with
mouse models, such as PDX mice, to detect metastatic tumor
formation and circulating tumor cells thereby extending the role
of these models in cancer drug development.
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