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Associations of maternal and infant 
metabolomes with immune 
maturation and allergy 
development at 12 months 
in the Swedish NICE‑cohort
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Carl Brunius1 & Ann‑Sofie Sandberg1

Allergic diseases are the most common chronic diseases in childrenin the Western world, but little 
is know about what factors influence immune maturation and allergy development. We therefore 
aimed to associate infant and maternal metabolomes to T- and B-cell subpopulations and allergy 
diagnosis. We performed liquid chromatography-mass spectrometry based untargeted metabolomics 
on blood plasma from mothers (third trimester, n = 605; delivery, n = 558) and from the umbilical 
cord (n = 366). The measured metabolomes were associated to T- and B-cell subpopulations up to 
4 months after delivery and to doctor´s diagnosed eczema, food allergy and asthma at one year of 
age using random forest analysis. Maternal and cord plasma at delivery could predict the number of 
CD24+CD38low memory B-cells (p = 0.033, n = 26 and p = 0.009, n = 22), but future allergy status could 
not be distinguished from any of the three measured metabolomes. Replication of previous literature 
findings showed hypoxanthine to be upregulated in the umbilical cord of children with subsequent 
asthma. This exploratory study suggests foetal immune programming occuring during pregnancy as 
the metabolomic profiles of mothers and infants at delivery related to infants’ B-cell maturation.

Allergic diseases such as atopic eczema, allergic rhinitis,asthma and food allergies are the most common chronic 
diseases among children in the Western world. Allergic diseases are caused by a dysregulated immune system 
and the development of allergies depends on a complex interaction between genetic and environmental factors1. 
IgE-mediated allergy involves a faulty activation of the adaptive immune system, resulting in allergen-specific 
helper T- and B-cells, production of IgE antibodies and generation of symptoms upon renewed encounter with 
the allergen2. The immune system starts to develop in utero and rapid changes can be observed during this period 
and during the first months of life3. Functional T-cells4 are produced in the thymus as early as ten weeks gestation5 
and start to circulate in the fetus late in the first trimester4,6. The thymus is maximally active during infancy and 
early childhood7. Little antigen stimulation occurs in utero, and a majority of the circulating T-cell at birth will 
be of a naïve CD45RA+ phenotype, but this fraction declines with age8 as they encounter environmental antigens 
and naïve T-cells are activated into effector cells, and later into memory T-cells. B-cell precursors are produced in 
the fetal liver9 where they are found as early as seven weeks gestation10. During the second and third trimesters 
of pregnancy, foetal B-cell production settles in the bone marrow9 and then continues throughout life to release 
transitional immature B-cells into the circulation11,12. These immature B-cells mature into naïve B-cells in the 
spleen11. Encounters with specific antigens and activation of naïve B-cells lead to the differentiation into either 
plasma cells that produce antibodies or memory B-cells that express the surface markers CD27 and CD24, but low 
or no CD3813,14. At birth, most B-cells in the circulation are naïve or immature CD5+ B-cells, while approximately 
1% are of a CD27+ memory B-cell phenotype15. Higher proportions of immature CD5+ B-cells at birth have 
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been associated with an increased risk of food allergy, atopic dermatitis and asthma16,17. However, what factors 
influence the maturation of immature B-cells and the activation of naïve B- or T-cells in utero are still uncertain.

Heredity is an important risk factor for the development of allergy18,19, while environmental factors such as 
older siblings20,21, growing up in a farming environment22,23 and pet ownership19,24 have been shown to be pro-
tective. According to the hygiene hypothesis21, exposure to microorganisms in early life stimulates the immune 
system in a manner that facilitates the development of tolerance to harmless foreign proteins21. Dietary factors 
also influence the risk of allergy development, consumption of fish25 and milk products26 by the pregnant mother 
being protective, and margarine appearing to increase the risk of allergy in the offspring23,27. Many diet-associated 
compounds rapidly appear in circulation after absorption in the intestine28,29. Epidemiological studies suggest 
maternal asthma to have a stronger influence on childhood asthma than paternal19,30,31, indicating that not only 
genetics are involved, but also other interactions in the mother–child interface, possibly including imprinting of 
the fetal immune system by metabolites in the maternal circulation. As several factors seem to relate to a maternal 
influence on the childs’ future allergies, we hypothesize that some of the risk of developing future allergic diseases 
could be associated with metabolites transferred from the mother to the child.

Metabolomics aims to provide comprehensive coverage of the metabolome (metabolic profile), i.e., the small-
molecule metabolites (< 2000 Da) in a biological specimen (e.g., plasma or urine). Metabolomics lies furthest 
down in the ‘omics’-chain following genomics, transcriptomics, and proteomics. It gives a snapshot pictures 
of what reactions have occurred in the body and what compounds have been absorbed into the circulation. 
Metabolomics thus represents the omics discipline closest to the phenotype level32. Liquid chromatography-
Mass spectrometry (LC–MS) provides the most comprehensive coverage of the metabolome and can reflect 
changes in several different metabolic pathways and can also be used to assess different lifestyle factors (e.g., 
diet, exercise or pollutants)33.

Previous studies have highlighted the potential to associate the metabolome with the occurrence of allergic 
symptoms and their severity in individuals with manifest allergies, such as asthma, atopic dermatitis and food 
allergy34–44. While such studies can be useful for diagnosis and selection of treatment for the alleviation of 
symptoms, they can neither predict allergic diseases, nor give any indications regarding their etiology. Focusing 
on predictive biomarkers could help to identify individuals at risk before the onset of symptoms as well as to 
help identify targets for preventive strategies. In a previous pilot study in a smaller cohort, we have prospectively 
predicted allergy development from the umbilical cord plasma GC–MS/MS metabolome45. To extend this, we 
here investigate the cord blood metabolome as well as the maternal metabolome in a larger cohort. To the best of 
our knowledge, no other previous study has attempted to predict allergy development from the mothers’ plasma 
metabolome at or before delivery.

The aim of this study was to determine if there are relationships of the plasma metabolomes from mothers 
taken in the early third trimester and at delivery, and from infant umbilical cords at delivery with subsets of 
infant immune cells up to 4 months after delivery. Furthermore, the study also aimed to investigate the capacity 
of the metabolomes to predict allergic outcomes (atopic eczema, food allergy and asthma) in the infant, and 
examine if biomarkers found in our pilot study45 could be replicated. In addition, the study investigated whether 
previously reported biomarker candidates of manifest disease could be observed in the metabolic profiles of the 
present study and prospectively associated with allergy.

Results
Characteristics of the study population.  Background characteristics for the study participants are 
shown in Table 1. There were no differences between allergic and non-allergic infants regarding maternal age, 
maternal Body Mass Index (BMI), birth weight, gestational length, parity, caesarean section or paternal heredity. 
Children with allergic mothers were overrepresented in the allergic group (p = 0.019).

Table 1.   Background characteristics for the study participants divided according to allergic diagnosis (healthy 
or allergic) at 12-month follow-up. a Maternal age and BMI were assessed at admission to maternity clinics in 
the first trimester. b Defined as either nulliparous or parous. Results presented as median (25th–75th percentile) 
or n (%). P values were obtained with Mann–Whitney tests for continuous data and with Pearson’s chi-squared 
test for categorical data.

All participants
n = 507

Allergic cases
n = 82

Non-allergic controls
n = 425 p-value

Birth weight (g) 3570 (3260–3970) 3565 (3275–3995) 3575 (3260–3955) 0.808

Gestational length (days) 281 (275–288) 281 (275–288) 282 (275–288) 0.710

Parity (> 0)b 266 (53%) 46 (57%) 220 (52%) 0.504

Caesarean section 68 (13%) 13 (16%) 55 (13%) 0.595

Maternal age (years)a 30 (27–34) 31 (27–34) 30 (27–34) 0.865

Maternal BMI (kg/m2)a 24 (22–28) 24 (22–29) 24 (22–28) 0.640

Allergy within the family

Mother 198 (39%) 42 (51%) 156 (37%) 0.019

Father 226 (45%) 35 (43%) 191 (45%) 0.798

Siblings 97 (33%) 19 (37%) 78 (31%) 0.4972
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Maternal and infant metabolic profiles in relation to subsets of T‑ and B‑cells in the infants dur‑
ing the first year of life.  Subsets of T- and B-cells were measured by flow cytometry in fresh blood samples 
drawn from the infants at four time points from birth to four months of age, i.e., at birth, at 48 h, one month and 
four months of age. Associations for the 23 subsets of cells, measured at four time points, with the three metabo-
lomes are summarised in Suppl. Table S5. Associations were observed between maternal and child metabolomes 
and B-cell subsets in the child, that matched our a priori criteria of Q2 > 0.2 (Table 2). In contrast, no associa-
tions were found between the metabolomes and T-cell subsets. Specifically, the memory B-cell counts at four 
months of age were associated with the maternal metabolome during pregnancy and delivery. Memory B-cells 
were identified in two ways, either by expressing the CD27 surface marker or by the CD24+CD38low phenotype. 
Memory B-cells expressing the CD27 surface marker were associated with the maternal pregnancy metabolome. 
Memory cells of the CD24+CD38low phenotype were associated both with the maternal metabolome at delivery 
and the infant cord blood metabolome (Table 2). CD5+ B-cells, which represent an immature form of B-cells that 
we have previously noted to be more numerous in infants who subsequently developed allergy17, were associated 
with the infant metabolome at delivery (Table 2).

Associations between B-cell populations and metabolome did not appear to be heavily influenced by single 
outliers (Suppl. Fig. S1).

Metabolites associated with immune cell maturation.  Metabolite features of interest selected by the 
MUVR algorithm relating to immune cell maturation (Table 2) are reported in Table 3, together with putative 
annotation and univariate correlation with its respective associated immune cell population. Correlations of 
features in each model available in Suppl. Fig. S2.

Table 2.   Associations of T- and B-cell phenotypes with the plasma metabolomes from the mothers (at third 
trimester and at delivery) and infants (umbilical cord). a p-value from permutation test (n = 100).

Outcome Number of samples Q2 p-valuea

Cell population outcomes vs. maternal metabolome during pregnancy (week 28)

CD27+ memory B-cell count at 4 m 24 0.20 0.023

Cell population outcomes vs. maternal metabolome at delivery

CD24+CD38low memory B-cell count at 4 m 26 0.21 0.033

Cell population outcomes vs. umbilical cord metabolome

CD24+CD38low memory B-cell count at 4 m 22 0.24 0.009

CD5+ B-cell count at 4 m 22 0.23 0.037

Table 3.   Putative annotations of metabolites selected in relation to immune maturation parameters and 
their correlation with associated immune cell population. HMDB Human Metabolome DataBase, MSI 
Metabolomics Standard Initiative, mz mass over charge ratio, rt retention time, RP Reverse phase Positive, RN 
Reverse phase Negative. *p < 0.05, **p < 0.01, ***p < 0.001.

Feature (mz@rt) Annotation Method Pearson r MSI level

Maternal pregnancy plasma in relation to CD27+ memory B-cell counts at 4 months

‘RP377.74198@479.325 Unidentified Phosphatidylserine HMDB (MS1) -0.751*** 3

RP589.49395@574.6313 Diglyceride (32:1) HMDB + Sirius (MS2) 0.657*** 3

RP212.171317@346.555 Unidentified carnitine HMDB (MS1) 0.647*** 3

RP730.11357@437.645 Unknown -0.515* 4

Maternal delivery plasma in relation to counts of CD24+CD38low memory B-cells at 4 months

RP265.1185@178.6629 Unknown -0.698*** 4

RN263.10382@178.73063 Phenylacetylglutamine HMDB + CSI:FingerID (MS2) -0.635*** 2

RP446.37427@441.2178 Triglyceride (45:7) HMDB (MS1) -0.617*** 3

RN843.53007@506.17202 Unknown -0.438* 4

Umbilical cord plasma in relation to counts of CD24+CD38low Memory B-cells at 4 months

RP312.161740@369.1786 Unknown 0.713*** 4

RN286.14498@351.3176 Unknown 0.730*** 4

RN263.10382@178.73063 Phenylacetylglutamine HMDB + CSI:FingerID (MS2) -0.579** 2

Umbilical cord plasma in relation to counts of CD5+ B-cells at 4 months

RP1180.82198@513.2628 Unknown 0.771*** 4

RN398.208237@370.4420 Unknown -0.673*** 4

RN397.205563@371.37 Unknown -0.666*** 4

RP445.125473@419.18997 Unknown 0.431* 4
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Only 6 of the 15 selected features of interest could be fully or partially identified: CD27+ memory B-cells 
correlated negatively with an unidentified phosphatidylserine and positively with an unidentified diglyceride (32 
carbons, one unsaturation) in maternal pregnancy plasma. CD24+CD38low memory B-cells correlated negatively 
with a triglyceride (45 carbon atoms, seven unsaturations) in maternal delivery plasma. Notably, CD24+CD38low 
memory B-cell counts were correlated negatively with phenylacetylglutamine concentrations in both maternal 
and infant delivery plasma.

Maternal and infant metabolic profiles in relation to allergy in the infants during first year of 
life.  Allergic and non-allergic infants were matched in pairs. Classification rates (i.e., number of individuals 
classified in the correct group based only on the metabolic profiles) for the three metabolomes in relation to the 
allergy outcomes are shown in Table 4. The classification rates for infant allergies related to the maternal preg-
nancy metabolome ranged from 32% up to a modest 58%, i.e., at maximum 58% of the infants were classified 
correctly as cases or controls. The classification rate for models based on the maternal metabolome at delivery 
ranged between 33 and 61% and based on umbilical cord plasma metabolome from 32 to 42%. The best clas-
sification rate was achieved for any allergic diagnosis (i.e., eczema and/or food allergy) in relation to maternal 
metabolome, however still under our a priori limit of 66% for permutation testing (a classification rate of 50% 
corresponding to random guessing).

Metabolites previously associated with manifest allergy.  We selected metabolites for targeted anal-
yses from 13 previously published studies 34–37,39–43,45–48 where associations between metabolites and allergic 
outcomes were found, 151 metabolites based on analysis of plasma, 20 on urine and 11 on exhaled breath. Of 
all the 182 metabolites that were associated with manifest allergy in these studies, we found five of them in cord 
plasma to be associated with future allergy in our study. We did not find any of these metabolites in the maternal 
plasma to be associated with allergy (Table 5). The only metabolite where an association was found to be in the 
same direction and for the same allergic disease as in the literature was hypoxanthine. The other four were found 
in relation to other allergic diseases or associated in the opposite direction to what was previously reported in 
the literature.

Discussion
The aim of the present study was to investigate whether T- and B-cell immune maturation during infancy and 
early allergy development were related to maternal and fetal metabolomes. Plasma was obtained from maternal 
blood obtained at week 28 of pregnancy and at delivery and from umbilical cord blood. We found associations 

Table 4.   Associations of allergic outcomes with the mothers’ plasma metabolomes during the third trimester 
and delivery and from the umbilical cord at birth for matched case/control pairs. Results presented as the 
proportion of correctly classified samples as healthy or allergic using random forest multilevel modelling based 
on matched case–control pairs.

Maternal pregnancy 
metabolome

Maternal metabolome at 
delivery

Umbilical cord blood 
metabolome

n Classification rate (%) n Classification rate (%) n Classification rate (%)

Asthma 34 32 30 33 38 42

Food allergy 33 58 31 56 48 40

Eczema 33 36 32 59 42 36

Any allergy 54 39 51 61 44 32

Table 5.   Associations of prospective allergy diagnosis with metabolites previously related to manifest allergy. 
a All metabolite associations reported for cord plasma. No associations were observed with the maternal plasma 
metabolites. b Data presented as fold change (FC), with FC > 1 indicating a positive association with allergy.

Cord plasma metabolitea Association in literature Association in present study

Paired t-test
Generalized 
linear model

FCb p-value FCb p-value

Histidine Lower in asthma patients 
18–63 years old34 Higher in subsequent food allergy 1.91 0.029 1.17 0.045

Hypoxanthine Higher in asthma patients 
9–19 years old41 Higher in subsequent asthma 5.13 0.053 1.54 0.030

Hydroxybutyric acid Higher in atopic dermatitis 
patients 6–10 months old39

Lower in subsequent atopic 
dermatitis 0.93 0.092 0.77 0.025

Tyrosine Higher in children with asthma 
6–14 years old48

Lower in subsequent atopic 
dermatitis 0.94 0.090 0.80 0.005

Proline betaine Correlated with asthma severity in 
children 6–14 years43

Higher in subsequent atopic 
dermatitis 31.78 0.017 1.64 0.083
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between B-cell maturation and maternal as well as fetal metabolomes. The CD24+CD38low B-cell count in four 
months old infants was moderately associated with maternal and infant metabolomes at delivery. Further, the 
maternal pregnancy metabolome was associated with the concentration of CD27+ B-cells in 4 months old infants. 
Both the CD24+CD38lowand the CD27+ phenotypes are markers of memory B-cells.

The multivariate MUVR models selected 15 metabolites that were related to immune maturation in any of the 
three metabolomes. Only one of these could be completely identified; phenylacetylglutamine (PAG) whose levels 
in both maternal and infant plasma at delivery negatively correlated with circulating memory CD24+CD38low 
B-cell counts in the infant at four months of age. PAG is a gut-microbial metabolite formed in the colon49,50 but 
can also be produced by mitochondria in the human liver and kidney cells51–53. It is formed by decarboxylation 
of phenylalanine into phenylacetic acid followed by conjugation with glutamine into PAG. In mice, PAG has 
shown anti-inflammatory properties54,55 reducing the production of the cytokines TNFα and interleukin-6 (IL-
6), the latter being an important stimulant and maturation factor for B-cells. This might explain why a higher 
concentration of PAG in both maternal and umbilical cord blood associated with lower memory B-cell count 
in the infant. We could not identify any specific metabolite responsible for the association between pregnancy 
metabolome and CD27+ memory cells in the infant at four months of age.

We also identified an association between the infant cord blood metabolome and CD5+ B-cells at four months 
of age. These cells are primarily found among so called "translational" B-cells, which are immature B-cells recently 
produced in the bone marrow (or fetal liver). Higher levels of CD5+ B-cells have previously been shown to 
lead to higher allergy incidence16,17 and are a sign of an immature immune system. Unfortunately, none of the 
metabolites related to this association could be identified.

We further investigated whether allergic disease during the first year of life could be predicted by metabolomic 
profiles, measured in the mother during pregnancy and at delivery and in the infants’ umbilical cord blood. We 
could not observe any prospective associations between any of the assessed metabolomic profiles with any of the 
allergic diseases diagnosed at 12 months of age; food allergy, eczema or asthma. Allergic diseases tend to appear 
in succession during childhood, with eczema and food allergy being early manifestions, followed by asthma 
that usually appears around school age and hay fever often presents in adolescence, a phenomenon termed the 
"atopic march"56. At 12 months, the full spectrum of allergic diseases have not manifested in many individuals 
and it might thus be too early for establishing a reliable diagnosis of other allergic manifestations than food 
allergy and eczema. Furthermore, some early atopic manifestations may be transient and disappear later during 
childhood. The infants examined here will be offered a second clinical examination at four and six years of age 
as well. Possibly, associations between cord and pregnancy metabolomics and allergy at an older age might be 
revealed, which will be the focus of future studies.

Our results could be influenced by maternal heredity being more frequent in the allergic group, potentially 
contributing to confounding. It was, however, not feasible to stratify analyses according to maternal allergy due 
to the low number of allergy cases. Moreover, we did not find any associations between allergy and metabolome. 
Consequently, the null findings are likely not affected by potential differences in recruitment between general 
and high-risk populations.

Several studies have identified associations between metabolome and manifest allergic diseases such as asthma 
and eczema. The metabolites identified in these studies might also have potential as early (prediagnostic) pre-
dictors of allergic disease. To complement the exploratory random forest-based approach, we thus performed 
a targeted analysis of 182 metabolites previously related to allergy development, asking whether some of them 
were also prospectively associated with disease. Among all investigated associations, only hypoxanthine was 
regulated in the same direction in our study as in the literature: We found that higher levels of hypoxanthine 
in cord blood plasma associated with asthma at 12 months of age. It was previously reported to be higher in 
9–19 years old children/adolescents with asthma compared with non-allergic controls41. Four other metabolites 
associated with manifest allergic disease in previous studies, were either not associated with the same allergic 
disease in our study, or associated in the opposite direction. It should be noted that these associations represent 
exploratory analyses not adjusted for multiple comparisons and these results should be interpreted with caution.

Previous studies have found metabolic profiles to be associated with manifest allergic disease, including 
asthma34,42 and atopic dermatitis35,39 in adults and food allergy40, asthma 37,38,40,41,46–48 and atopic dermatitis36 in 
children. Still, to the best of our knowledge, our study is the first to prospectively analyse the metabolome before 
the onset of disease. The discrepancy between the results from our study and previous studies may be due to 
several reasons. Previous studies have been cross-sectional with metabolic profiles measured in samples collected 
after onset of the disease. Therefore it is uncertain whether potential metabolite biomarkers from those studies 
are related to the cause, mechanisms or symptoms of disease, or even from medication or reverse causation from 
lifestyle interventions. However, our study employed a prospective design, where symptoms or medication likely 
should not interfere to an appreciable extent. Further, previous studies have mainly been performed on adults 
and children older than eight years. In contrast, we have focused on immune maturation and allergy develop-
ment before and during delivery and in early life. In addition, previous studies have investigated the metabolome 
predominantly in urine, both in relation to childhood asthma47,48 and atopic dermatitis in infancy39. Other studies 
have used less common biospecimen that reflects the phenotype of the specific allergic disease in question, such 
as exhaled breath condensate for asthma37,38,57 and non-lesioned skin for atopic dermatitis58. However, we have 
investigated the metabolomes in plasma as we expected this to best reflect what is being transferred to the fetus 
in utero as well as during birth. These differences in biospecimens may also contribute to the lack of replication 
for a majority of the reported metabolite markers from the literature.

A major strength of this study is that allergy diagnosis was performed through consistent, well-documented 
procedures by the same allergology specialist, thus improving accuracy compared to self-reported questionnaires. 
However, although the occurrence of allergic diseases during the first year of life is well documented in our study, 
the infants continue to develop allergies later in life and the control group may in fact contain pre-allergic infants. 
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In combination with the low proportion of allergic cases, this imposes limitations for discerning prospective 
associations between immune maturation, allergy development and the maternal and cord plasma metabolomes. 
Another strength of this study is that we used robust statistical methods to reduce the likelihood of false-positive 
discoveries in our main, machine learning-based analyses.

An important limitation of the current study is the long sample storage at 4 °C until centrifugation for samples 
collected from deliveries occurring during weekends, which may induce undesired, variability in the measured 
metabolome. We addressed this aspect by performing sensitivity analyses, excluding samples stored for longer 
than 24 h. These analyses showed similar results, suggesting that pre-analytical management was not a main 
contributor to the null findings in our main analyses. In addition, associations may have been diluted from vari-
ability inherent to untargeted LC–MS metabolomics. However, data sanity checks (regression on BMI for the 
two maternal metabolomes and gestational length for the umbilical cord metabolome; Q2 > 0.2) indicated that 
the data was structurally sound.

Another limitation is the potential overfitting from the low number of samples for the cell count results as 
well as the multiple testing of outcome variables. However, the distribution in relation to the cell count variables 
indicate that overfitting was at least not due to a few outliers. As this is an explorative study, we only report 
nominal p values and results should be interpreted with appropriate caution.

Furthermore, the present study utilized reverse phase chromatography only, limiting the discovery of relevant 
metabolic features more easily observable from hydrophilic interaction liquid chromatography or lipidomic 
platforms. Still, the reverse phase has overlap with those complementary techniques, indicating that the null 
findings are likely robust for prediagnostic allergy development at one year of age.

It is important to note that the NICE birth cohort is not population-based. Due to extensive sampling of 
biological samples and questionnaire data, we were only able to include around 10% of the women that delivered 
at the Sunderby hospital during the inclusion period. This reduced both the power and the potential generaliz-
ability of results to the entire population.

Conclusion
In this study, we found significant but modest associations between infant B-cell maturation and the plasma 
metabolic profiles from mothers during pregnancy and at delivery, as well as infants at delivery suggesting foetal 
immune programming in utero. However, since B-cell population measurements were only available in a smaller 
subset of the samples, our results should be interpreted with caution and need to be replicated in larger stud-
ies. We found no associations between the full metabolomes and allergy development up to 12 months of age; 
longer follow-up should provide further evidence regarding the potential to discover prospective biomarkers 
of allergy development.

Materials and method
Study population.  The birth-cohort NICE (Nutritional impact on the Immunological maturation during 
Childhood in relation to the Environment) recruited pregnant women during 2015–2018 with planned birth 
at Sunderby Hospital, in northern Sweden. The study protocol has been described in detail before59. The study 
was approved by the Regional Ethical Review Board in Umeå (2013-18-31 M, 2016-232-32); written informed 
consent was obtained from the prospective parents. All methods were performed in accordance with the ethical 
approval and in accordance with the declaration of Helsinki.

According to predefined protocols, allergy was diagnosed by a pediatric allergologist (author AS) at 12 months 
of age: Food allergy was defined as an immediate or delayed reaction to intake of a specific food with improve-
ment once the food was excluded from the diet. Except when the first reaction was acute and severe, the diagnosis 
was confirmed by a provocation causing similar symptoms. Sensitization or specific IgE antibodies against the 
particular food supported diagnosis but was not mandatory. Atopic dermatitis was diagnosed according to Wil-
liams’ criteria60–62. Asthma was defined as any of the following: wheezing between infections, persistent wheeze 
for ≥ four weeks, wheezing during infection combined with concomitant allergic disease, or three episodes of 
wheezing during an infection, without concomitant allergic disease. In total, 539 children participated in the 
12-month follow-up, 43 of whom were diagnosed with food allergy, 36 with atopic eczema and 35 with asthma26.

Collection of blood samples.  Blood was sampled in EDTA tubes (Becton Dickinson, New Jersey, USA) 
in gestation week 28, (participants were encouraged to fast for 8 h prior to this sampling), and from mothers 
and infants (cord blood) at delivery. In gestational week 28, samples were taken by midwives at maternity wards. 
The samples were left at room temperature for 30 min before centrifugation. Centrifuged tubes were stored at 
4 °C until transportation to the research laboratory at the hospital the same day or for some samples the fol-
lowing workday. Upon arrival at the research laboratory, the plasma was aliquoted and frozen in − 80 °C. At 
delivery, venous blood was collected from the mothers. The umbilical cord was clamped and severed and blood 
was squeezed out into EDTA tubes. Samples were stored at 4 °C at the delivery ward, without centrifugation, 
until transportation to the research laboratory at the hospital. At weekends, transportation occurred the first 
following workday. At the research laboratory, the delivery samples were centrifuged and plasma was collected, 
aliquoted and stored at − 80 °C. The time elapsed from sampling until freezing for individual samples is shown 
in Suppl. Figs. S1–S3

In total, 605 samples from pregnancy, 558 maternal samples from delivery and 366 umbilical cord samples 
were available (Fig. 1).
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Metabolomics analysis.  Prior to analyses, samples were randomly assigned into 20 batches. For quality 
control (QC) samples, 50 µl each of the 71 samples from the first batch were mixed and vortexed for 2 min. 
Aliquots (30 µl) were stored at – 80 °C.

The day before analysis, samples and QC were transferred to -20 °C. Samples were thawed at room tempera-
ture (RT) for 30 min, kept at 4 °C for 2 h and vortexed for 10 s. Aliquots (30 µl) were mixed with acetonitrile 
(200 µL, 4 °C) in 96-well plates that were sealed and put on an orbital shaker (1000 rpm, 3 min) and centrifuged 

Figure 1.   Overview of the number of cases and controls used in analyses. (+) indicating that three more 
children are added to the study due to twins being born.
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(500×g, 4 °C, 20 min). After filtration (Captiva ND plates; Agilent P/N A5969045) using water vacuum for 5 min, 
45 µl was retrieved and kept at 4 °C.

Untargeted LC–MS metabolomics was performed on an Agilent Infinity 1290 UHPLC with an Agilent 6520 
QTOF mass spectrometer. Centroided MS data were acquired with Mass Hunter B.08.00. LC and MS settings 
are reported in Suppl. Table S1. Five QCs were injected before the first sample for each batch, and one QC after 
every 12 samples.

Data preprocessing.  Raw .d data files were converted to .mzML using Proteowizard (v 3.0.18345)63. All 
further computations were performed in R v 3.6.064 at the Swedish National Infrastructure for Computing 
resource for sensitive data (SNIC-SENS). Data were processed using xcms v3.6.065. Preprocessing parameters 
were obtained from manual and IPO-assisted optimization66 (Suppl. Table S2). Values missing after hard filling 
with fillChromPeaks (2.5% in positive and 13% in negative ionization) were imputed using an in-house PLS-
based algorithm (mvImpWrap() function; https://​gitlab.​com/​CarlB​runius/​StatT​ools). Correction for intensity 
drift was performed using batchCorr v0.2.467. Isotopes, adducts and fragments were aggregated using RAMClust 
v1.0.668, resulting in 3296 features in positive and 789 features in negative mode (Suppl. Table S3) referred to by 
a unique combination of mass to charge ratio (mz) and retention time (rt). Scripts for parameter optimization 
and preprocessing are available from the authors upon request.

Flow cytometry.  Flow cytometry was performed on blood samples collected from infants at birth (cord 
blood) (n = 123), 48 h (n = 70), one (n = 93) and 4 months (n = 99) of age. Samples were stored dark in RT directly 
after collection and staining was performed within 48 h of sampling.

Whole blood (50 µl) was added to TruCount™ tubes (BD Bioscience, Erembodegem, Belgium), together 
with 20 µl antibody cocktail containing anti-CD4, anti-CD8, anti-CD20 and anti-CD45 (Suppl. Table S4) and 
incubated dark at RT for 15 min. BD Lysing Solution was added and allowed to act for 15 min. Samples were 
analyzed within 1 h of staining in an Accuri C6 (BD Bioscience). For each sample, 5000 beads were collected 
in the flow cytometer.

For B- and T-cell phenotype, 900 µl blood was lysed with RCB lysis buffer (eBioscience) (15 min, RT) and 
stopped with FACS buffer, before centrifugation (5 min, 300×g). The supernatant was discarded and the pellet 
resuspended with 1 ml FACS-buffer. Cell suspensions (50 µl) were stained with 30 µl antibody cocktail (Table S4) 
in 96 V-bottom plates for (20 min, 4 °C, dark), washed with 300 µl FACS-buffer and centrifuged (3 min, 300×g). 
The supernatant was discarded and the cells were resuspended in 300 µl buffer (Foxp3 Fixation/Perm. Kit, eBio-
science) and incubated at RT for 15 min. Cells were then centrifuged (3 min, 500×g), washed with Foxp3 buffer, 
again centrifuged (3 min, 500×g), resuspended in FACS-buffer and stored in the dark (4 °C) until analysis in the 
Accuri C6 flow cytometer. Flow cytometry data were analysed using Flow Jo v10 (TreeStar, Ashland Oregon). 
Gating strategy for the FACS analyses are shown in Supplementary Fig. S4.

Data collection.  Maternal characteristics, such as age, educational level, parity and BMI, were collected 
from hospital records and data on heredity to allergic diseases, pet ownership and residence were collected by 
the study paediatrician at the 12-month follow-up.

Data analysis.  Multivariate Random Forest analysis (RF) with repeated double cross-validation and unbi-
ased variable selection, MUVR package v0.0.97169, was used to associate metabolome data matrices with T- and 
B-cell subpopulation counts measured at birth, 48 h, one month and four months of age (further information on 
which subpopulations in Suppl. Table S5, and MUVR parameters in Suppl. Table S6). Significance was assessed 
using permutation tests (n = 100) on models with potentially relevant performance, defined a priori as clas-
sification rates > 66% or regressions with Q2 > 0.2, set to reflect meaningful predictions. As points of reference, 
Q2 = 0 and classification rate = 50% would represent null associations (random conditions). (Definition of Q2 
and classification rates available in Supplementary Methods). Sensitivity analyses were performed by excluding 
samples stored for > 24 h (n = 130, 159 and 118 pregnancy, delivery and umbilical cord samples, respectively) 
before centrifugation.

The three metabolic matrices, i.e., maternal pregnancy and maternal and infant at delivery, were associated 
to asthma, atopic eczema and food allergy using RF classification. Allergic cases (Fig. 1) were matched to non-
allergic and non-sensitized controls (1:1) based on gestational length (± 10 days), parity (previous children or 
not), mother’s age (± 5 years), sex and maternal BMI (± 5). Matching for caesarean section could not be achieved. 
Matching criteria had to be relaxed for BMI (± 11, n = 4 cases) and gestational length (± 61 days, n = 7).

Metabolite identification.  Features of interest from the statistical modelling (still not annotated, but 
referred to by m/z and retention time) were selected for masspectrometric fragmentation (MSMS) analysis. 
Samples with high levels of these features were reanalysed using the same procedure as described above while 
specifically targeting these features for fragmentation. Annotation of features was performed using MSMS 
matching to the Human Metabolome DataBase (HMDB) and using CSI:FingerID70 and CANOPUS71,72. For 
features where MSMS data was unavailable, MS1 matching was attempted using HMDB.

Metabolites previously associated with manifest allergy.  W allergic disease could be e investigated 
whether previously reported possible metabolite biomarker candidates of manifest prospectively associated with 
allergy development in our study.

https://gitlab.com/CarlBrunius/StatTools
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The biomarker candidates were identified first from a literature search, complemented by metabolomics stud-
ies in plasma and serum reported by Schjødt et al.44 (a complete list of investigated metabolites in Suppl. Table S7). 
We then matched all qualified features from our untargeted metabolomics experiment to plausible molecular 
masses obtained from the biomarker candidates (i.e., neutral monoisotopic masses, combined with the adducts 
[M + H] +, [M + Na] +, [M + K] +, [M + NH4] +, [M + CH3OH + H] +, [M + ACN + H] + and [M + 2H]2+ in positive 
mode and [M–H]–, [M–H2O–H]–, [M + Na–2H]–, [M + K–2H]–, [M + Cl]–, [M + FA–H]–, [M + HAc–H]– and 
[M–2H]2– in negative mode) within a mass tolerance of 10 ppm. Associations between allergic disease and 
metabolomic features matched to biomarker candidates were assessed using two approaches: first, paired t-tests 
were performed between matched case/control pairs. Second, since matching criteria might not have been suf-
ficiently strict in order to fully match controls to cases, generalized linear models were performed with allergy 
as independent factor and metabolomic feature as dependent variable, further adjusted for gender, gestational 
length, cesarean section, age of mother, parity and BMI of the mother. Features, nominally significant in either 
of these two models, were further filtered out if not matching the suggested metabolite biomarker candidates, 
first by MS (if, e.g., matching to an isotope instead of the main fragment) and later by MSMS by comparing 
fragmentation patterns to the Human metabolome database hits of the suggested biomarker candidates.

A general overview of sampling and analytical work flow are shown in Fig. 2.
The datasets generated during and/oranalysed during the current study are available from the corresponding 

author on reasonable request and fulfilment of ethical requirements.
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