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Many pathogenic viruses are endemic among human populations and can cause a broad
variety of diseases, some potentially leading to devastating pandemics. How virus popu-
lations maintain diversity and what selective pressures drive population turnover is not
thoroughly understood. We conducted a large-scale phylodynamic analysis of 27
human pathogenic RNA viruses spanning diverse life history traits, in search of unifying
trends that shape virus evolution. For most virus species, we identify multiple, cocircu-
lating lineages with low turnover rates. These lineages appear to be largely noncompet-
ing and likely occupy semiindependent epidemiological niches that are not regionally or
seasonally defined. Typically, intralineage mutational signatures are similar to interline-
age signatures. The principal exception are members of the family Picornaviridae, for
which mutations in capsid protein genes are primarily lineage defining. Interlineage
turnover is slower than expected under a neutral model, whereas intralineage turnover
is faster than the neutral expectation, further supporting the existence of independent
niches. The persistence of virus lineages appears to stem from limited outbreaks within
small communities, so that only a small fraction of the global susceptible population is
infected at any time. As disparate communities become increasingly connected through
globalization, interaction and competition between lineages might increase as well,
which could result in changing selective pressures and increased diversification and/or
pathogenicity. Thus, in addition to zoonotic events, ongoing surveillance of familiar,
endemic viruses appears to merit global attention with respect to the prevention or mit-
igation of future pandemics.
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Viruses, ubiquitous across the tree of life, occupy an astounding diversity of ecological
niches (1–3). Viral niches are primarily defined by the behavior and immunity of the
respective hosts and are often the subject of deep but narrow investigation (4, 5). In
this work, we sought to uncover common trends at relatively short evolutionary distan-
ces by studying the microevolution of human pathogenic RNA viruses. The devastating
COVID-19 pandemic has made it abundantly clear that understanding these micro-
evolutionary features is of vital importance not only to forward our understanding of
virology, in general, but to inform appropriate public health measures during a pan-
demic (6, 7).
Viral populations explore their viable sequence space defined by both intrinsic con-

straints and those imposed by host behavior (8) through the accumulation of muta-
tions, potentially leading to diversification (9). A single host species can offer multiple
independent niches that are explored by distinct virus subpopulations. Niches can be
formed and maintained through regional or seasonal separation. Regional separation
of subpopulations has been demonstrated, for example, for yellow fever virus (YFV)
(10, 11). At sufficiently long evolutionary distances, niches can be defined by immuno-
logical differences, which enable a viral subpopulation to overcome immune cross-
protection, allowing the same host to be infected by multiple subpopulations largely
independent of prior infections. This phenomenon has been demonstrated for enterovi-
ruses with many cocirculating serotypes (12). These immunological niches do not need
to be spatially or temporally segregated.
Generally, niches are not necessarily static entities and can overlap or merge depending

on dissemination rates, transmission modes, and other life history traits (2). When out-
breaks are limited to small communities so that only a small fraction of the global suscepti-
ble population is infected at any time, niches can form that are not regionally or seasonally
defined but are still maintained through a combination of spatial and temporal separation
at a local scale. Thus, the maintenance of these viral niches is highly sensitive to changes in
host behavior. The number and sequence diversity of such lineages depends on constraints
intrinsic to viral biology as well as host behavior (13, 14). For example, there is a sharp
contrast between the emergence of immunological niches among measles morbilli virus
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(MMV) and influenza A virus (IAV) strain H3N2 (named
H3N2 here). Through rapid antigenic drift and shift that involve
a nonhuman host reservoir, IAV is able to overcome adaptive-
immune protection, despite infecting a substantial fraction of the
susceptible host population each year (15). As a consequence,
H3N2 goes through phases of stasis, in which neutral evolution
and purifying selection are dominant, parallel lineages are estab-
lished, and population diversity grows. Once the pool of naïve
hosts shrinks, the competition between lineages intensifies, result-
ing in a short phase of strong positive selection that favors one lin-
eage to replace all others (16–18). In contrast, no such antigenic
drift has been observed for MMV, and parallel MMV lineages do
not replace each other but, rather, stably coexist (17, 19).
The persistence of multiple, coexisting viral lineages implies

minimal interlineage competition. When such lineages are
maintained through spatial or temporal separation, increased
host–host or host–vector contact can result in the merger
between and competition among multiple lineages. Climate
change can support the spread and mixing of previously sepa-
rated vectors, which could carry distinct viral lineages. With
more vectors, the dissemination rate can rise, decreasing the
number of susceptible hosts, and increasing competition glob-
ally (2). This can result in accelerated lineage turnover of
human and agricultural pathogens, with the potential for sub-
stantial epidemiological and economic impact (20).
We sought to identify unifying trends of lineage emergence,

persistence, and turnover among human pathogenic RNA viruses
and to characterize the niches occupied by these lineages through
phylodynamic analysis (21). Taking advantage of the substantial
recent progress in virus genome sequencing (22), we constructed
phylogenetic trees for the genomes of all monopartite human
pathogenic RNA viruses for which extensive genome sequence
information was available. These phylogenies were employed to
assess the selection pressures affecting the evolution of these
viruses through an analysis of the ratio of nonsynonymous to
synonymous substitution rates (dN/dS), and to estimate the
effective population size (Ne) and the census population size (N)
for each. The viruses studied here are of clear epidemiological
relevance, span a broad variety of life history traits (2, 23), and
thus seem suitable to reveal unifying trends in the microevolu-
tion of RNA viruses. Our analysis of these viruses indicates that
most form multiple, coexisting, noncompeting lineages which
appear to occupy independent niches.

Results

Data Aggregation. Despite the substantial progress of the past
several years (22), the available numbers of (nearly) complete
genome sequences of human pathogenic RNA viruses differ
widely among viral species, with few sequences available for several
viruses. In the dataset for the present analysis, we included only
those species for which 200 or more (nearly) complete genome
sequences, with at least 50 isolated from a human host, were
available in the National Center for Biotechnology Information
(NCBI) virus database (24) or Global Initiative on Sharing All
Influenza Data (GISAID) for severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) (25) (Fig. 1). These criteria excluded
viruses which are widespread, for example, lyssa rhabdovirus and
rubella virus, but for which few (nearly) complete genomes were
available, as well as comparatively rare, even if highly pathogenic,
viruses including some Ebola virus species (Zaire, but not Reston
or Sudan, was included) and Marburg virus.
Only monopartite RNA viruses were considered, in order to

exclude potential effects of segment reassortment and enable

the construction of a single, unambiguous phylogeny. This
restriction excluded six species with many genomes available:
three influenza viruses (A, B, and C), Reovirus, Lassa mammar-
enavirus, and Dabie bandavirus. We further omitted HIV,
given its retrotranscribing replication strategy. Altogether, our
dataset included 26 monopartite virus species. We added IAV
H3N2 to this group (with a phylogeny constructed from hem-
agglutinin) as a thoroughly studied reference virus (14, 16, 17).
The 27 viruses analyzed here cover a broad variety of viral life-
styles and ecological constraints and have been subject to varied
countermeasures, including vaccination (SI Appendix, Table
S1). This diversity enables the exploration of potential unifying
trends of viral lineage turnover and niche formation.

Sequences were aligned using MAFFT (26), and, with the
exception of SARS-CoV-2 and H3N2, for which the large
number of sequences necessitated an iterative strategy, phyloge-
netic trees were constructed using IQ-TREE (27) (see Brief
Methods and SI Appendix, Extended Methods for details). For
most of viruses, the resulting trees included several large, clearly
distinguishable clades (Fig. 1) that, in some cases, corresponded
to known serotypes or genotypes (for example, Dengue virus,
DENV, serotypes 1 to 4).

Low Rates of Lineage Turnover among Human RNA Viruses.
The major virus clades and the smaller lineages contained
within them are subject to turnover whereby an older lineage
goes extinct, being gradually replaced by individuals from a
newer lineage. Trees with high turnover rates are often
described as “cactus”- or “ladder”-like, and, in the limit of
extreme turnover, as “caterpillar” trees, whereas those with low
turnover are often described as “bush”-like, with ultrametric
trees representing the limit of no turnover (14, 17). In an effort
to explicitly measure lineage turnover [without relying solely on
global measures such as coalescence rate (17), which is also esti-
mated], we first sought to establish how many isolates, and dis-
tributed on the tree in what way, constitute a lineage. This
information is important, in large part, because varying substi-
tution rates across the tree complicate the estimation of global
lineage turnover (9, 28). We defined lineages as monophyletic
groups of sequences separated by periods (branches of the tree)
with apparently different substitution rates and within which
the sequencing date and the distance to the tree root are signifi-
cantly correlated (see Brief Methods and SI Appendix, Extended
Methods for details). Lineages cannot be defined in this way to
encompass all sequences, and SI Appendix, Fig. S1 shows the
fraction of sequences included in correlated lineages for each
virus. Arguably, significantly different substitution rates mark
different selective environments and may reflect movement into
distinct epidemiological niches. Because there are no apparent
periods of different substitution rates within each lineage and,
consequently, high-confidence date-constrained genealogical
trees with a single substitution rate could be fit for each (see
below), we denote these “genealogical lineages” (GLs).

Multiple GLs were identified in this manner for most viruses
(SI Appendix, Figs. S2–S7), as illustrated in Fig. 2 A and B for
the three lineages of enterovirus D (EVD). For human betacor-
onavirus 1 (BCoV1), Ebola Zaire (Ebola), MERS (Middle
East respiratory syndrome-related coronavirus), H3N2, SARS-
CoV-2, and Zika virus (ZIKV), the majority of the phylogeny
comprised a single GL. Thus, the entire population of each of
these viruses might occupy a single epidemiological niche at any
point in time (which may be subject to rapid lineage turnover as
is the case for H3N2). For Mumps rubulavirus (MRV) and
YFV, the GLs identified were not large enough for subsequent
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analysis. When interpreting our observation of a single GL for
Ebola, it should be noted that more than half of the Ebola iso-
lates stem from the 2014–2016 outbreak in Sierra Leone, Libe-
ria, and Guinea (29), the common assumption being that each
individual Ebola outbreak stems from an individual zoonotic
spillover event (30).
Having identified the virus GLs, we quantified the extent of

lineage turnover using the Shannon entropy of the GL distri-
bution over time, St, as well as traveling up the tree from root
to leaf, Sd. These measures are independent of the timescale
over which individual GLs persist and allow us to compare
whether the phylogenetic structure of GLs (Sd) reflects their
distribution over time (St). For this analysis, only sequences
included within a GL were considered. First, sliding windows
(indexed over j) containing the closest 5% of all isolates to the
specified date, w j

t , (from the date of the earliest isolated
sequence to the latest) or distance to the tree root, wj

d , were
established, and the GL distribution within each window was
obtained (Fig. 2C). Next, the probability that a sequence, x,
within each window belongs to the ith GL was computed:
P j

t ,d ðx ∈ GLi jx ∈ w j
t ,d Þ. The Shannon entropy of the GL dis-

tribution was then calculated using log base N equal to the
number of GLs identified within the tree (and yielding a maxi-
mum value of one),

Sj
t ,d ¼�∑

N

i¼1
Pj
t ,d ðx ∈ GLi jx ∈ wj

t ,d ÞlogN
�
Pj
t ,d ðx ∈ GLi jx ∈ wj

t ,d Þ
�
:

Finally, the mean over all windows was computed for each tree:
S j
t ,d j (Fig. 2D). A mean entropy near zero corresponds to a
phylogeny composed of clades that rapidly displace one another
(although effects of sampling bias cannot be excluded). A mean
entropy near one corresponds to a phylogeny in which all clades
are uniformly distributed at every time point. We observed
S j
t j > S j

d j in all but one case (hepatitis D virus [HDV]), indicat-
ing that entropy is greater than that expected from analysis of
the tree structure with no known dates of isolation. This obser-
vation, coupled with the generally high mean entropy, suggests
that most of the analyzed viruses evolve with low rates of lineage
turnover.

To further quantify lineage turnover, we constructed date-
constrained genealogical trees. As suggested above, GLs are
separated by periods (branches of the tree) with apparently dif-
ferent substitution rates. These branches are often deep within
the tree and are sparsely populated with leaves (if at all), making
the assignment of a global model for substitution rates statisti-
cally dubious and highlighting the importance of rates inferred
for individual GLs. Date-constrained trees were produced using
a least-square distance approach based on the date of isolation

Fig. 1. Phylogenies of human pathogenic
RNA viruses. Schematic depicting the origins
and phylogenetic tree topologies of 27 human
pathogenic RNA viruses. (A) Placement of each
virus in the global phylogeny of RNA viruses
(realm Riboviria). The tree topology is from ref.
76. Viral groups containing human pathogenic
viruses are named in black if containing
viruses analyzed in this work, and gray other-
wise. The numbers of viral species, for which
at least 200 nearly complete genome sequen-
ces were available, at least 50 of these isolated
from humans, are shown in colored circles
(green: monopartite viruses; blue: segmented
viruses). (B) Speciation of viral families or
orders. (C) Diversification within species. Trees
for species are scaled to the same distance
from the root to the most distal leaf and are
grafted on the tree scaffold with arbitrary
branch lengths for speciation but respecting
topology.
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for each sequence (31). A mutation rate and the date of the last
common ancestor (LCA) were estimated for all global trees and
each GL individually (Fig. 3A). Samples without a known date
of isolation introduce additional uncertainty into the calculation
and can result in future-dated portions of the genealogical tree
(see Brief Methods and SI Appendix, Extended Methods for
details). GLs tend to accumulate over time, with few if any
extinction events (Fig. 3B). Note that the apparent decline of
parallel GLs for many viruses in recent years (∼2016 to present)
is most likely a sampling artifact, although, in principle, such
decline could also point to a change in GL dynamics. These
trends are further indicative of low lineage turnover and sugges-
tive of minimal competition among GLs. Thus, each GL is likely
to occupy a distinct niche, and we sought to identify the factors
that shape and maintain these niches. SI Appendix, Table S12
lists the number of GLs per virus species and other key parame-
ters obtained during the analysis described below.

Most Virus Lineages Are Not Regionally or Seasonally Defined.
Perhaps the simplest explanation for the existence of distinct
niches would be regional separation. To assess the role played
by regionality, we examined whether isolates within a single GL
clustered by region. The great circle map distance between pairs
of isolates within each GL and between pairs of GLs was com-
puted to retrieve the mean intra- and inter-GL distance, respec-
tively (see Brief Methods and SI Appendix, Extended Methods for
details). Given that GLs do not span the entire phylogeny for
all viruses, were defined algorithmically without the incorpora-
tion of metadata beyond the date of isolation, and typically
include a small number of isolates, we additionally examined
the regionality of larger clades, usually defined by serotype or
genotype (“manual lineages” [MLs]; see Brief Methods and SI
Appendix, Extended Methods for details).
The ratio of the interlineage to intralineage map distances is

expected to be greater than unity for regionally defined GLs or
MLs, and near or below unity for those lineages that are not
regionally defined (SI Appendix, Fig. S8). For most viruses ana-
lyzed, niches do not appear to be regionally defined, with a few
notable exceptions (SI Appendix, Fig. S8). In particular, YFV is
known to split into three regional lineages (East/Central Africa,
West Africa, and South America), although the underlying mech-
anisms for this separation, especially between the African lineages,
are not well understood (10, 11). Similarly, Chikungunya virus

(CHIKV) displays regionality, although, in this case, the separa-
tion seems to be incomplete (32). West Nile virus (WNV) line-
age 1 can be found globally, whereas all other lineages are
regional (33). However, evidence of the local coexistence of mul-
tiple WNV subtypes (34) indicates that additional WNV niches
not linked to regionality might exist. HDV displays weak region-
ality that might be determined by its helper virus, hepatitis B
virus (HBV), on which HDV depends for reproduction. The
interplay between HDV and HBV genotypes is not yet well
understood (35). Ebola outbreaks show a clear regional structure,
which is due to de novo spillover events for each outbreak as well
as successful containment measures (30). Some, but not all, GLs
for Dengue virus (DENV), enterovirus A (EVA), and enterovirus
B (EVB) may be regionally defined (SI Appendix, Fig. S8). Thus,
while common, regionality does not appear to explain the exis-
tence of most apparent niches, although this does not imply an
absence of spatial separation of localized outbreaks.

Similar to regionality, seasonality could potentially support
niche formation. Although the temporal resolution of our anal-
ysis was limited by the amount of metadata available and the
precision with which dates of isolation are specified, we found
no evidence that seasonality plays a role in lineage maintenance
within viral species. We observed no biannual or longer global
periodicity of any GLs, but rather a continuous distribution of
lineages through time (SI Appendix, Figs. S2–S7), although
shorter temporal patterns are likely for respiratory viruses (36).

GLs could represent localized outbreaks (phases of enhanced
virus spread) whereby a virus infects only a minute fraction of the
global susceptible population at any given time. Under these con-
ditions, even lineages which do not form distinct immunological
niches and do not admit near-simultaneous infection can coexist
within short distances of one another. Infection or vaccination
leading to lifelong immunity, as observed, for example, in the
case of MMV or MRV (14), can support the emergence of local-
ized outbreaks. In these cases, naïve hosts are born and are not
vaccinated, so that a local community of susceptible hosts
emerges. Given sufficient evolutionary distance, lineages can
become so diverse antigenically that they form different sero-
types, which induce weak to no cross-immunity against each
other and thus admit near-simultaneous infection. This pattern
has been reported for some picornaviruses (12). In the case of
zoonotic viruses, distinct lineages can originate when the same
virus species is introduced from different animal reservoirs, which

Fig. 2. Stable coexistence of lineages among
human pathogenic RNA viruses. (A) EVD tree
colored to represent the location of the three
GLs. (B) Distance to the tree root vs. date of
isolation for EVD. Distance is scaled by the
maximum for any sequence within a corre-
lated clade, and the x axis is bounded by the
minimum/maximum date of isolation for any
such sequence. (C) The fraction of isolates
within each correlated clade (and excluding iso-
lates that did not belong to any correlated
clade) computed over a sliding window contain-
ing the nearest 5% of all isolates indexed by
sequencing date (Top) and root distance (Bot-
tom, where date* represents the date of isola-
tion corresponding to each sequence in an
alternative phylogeny where the date of isola-
tion for each sequence exactly corresponds to
the distance to the root for that sequence). (D)
The mean Shannon entropy for the correlated-
clade distribution respecting the sequencing
date (y axis, Sjt j) and root distance (x axis, Sjd j).
Dashed line displays Sjtj ¼¼ Sjd j .
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could support ongoing diversification and lineage turnover not
observed in the human population. This is how some orthohepe-
virus A (OHVA) GLs (37) and possibly some TBEV (Tick Borne
Encephalitis Virus) and WNV GLs (33, 38) could originate.
However, even in this case, the maintenance of multiple niches
with low turnover within human populations requires spatiotem-
poral or immunological separation. Regardless of the specific
mechanisms underlying the apparent coexistence of noncompeting
GLs, we sought to explore lineage-defining mutational signatures
and to establish whether significant differences existed between
the distributions of mutations within and between lineages.

Selective Pressures Acting on Human RNA Viruses. Selective
processes are often categorized as diversifying, positive, or puri-
fying, in contrast to neutral evolution via genetic drift (39–41).

We sought to probe the selective pressures involved in human
pathogenic virus evolution by estimating the ratio of nonsynon-
ymous to synonymous substitution rates (dN/dS), a gauge of
protein-level selection (42, 43). Given that different genes are
subject to distinct selective constraints and pressures, the dN/dS
value was estimated separately for each viral protein-coding
gene (44). Seeking to identify defining features of lineage emer-
gence and maintenance, we would ideally estimate dN/dS across
deep and shallow portions of each phylogeny separately. How-
ever, because most GLs antedated modern sequencing technol-
ogies, and, therefore, few samples located near the root were
available, this approach was not feasible. To partially compen-
sate for this lack of data, we compared dN/dS ratios for whole
trees, which include deep branches connecting GLs, with those
computed over each GL and ML (which are typically larger)

Fig. 3. GLs of human pathogenic RNA viruses
throughout time. (A) Mutation rates (substitu-
tions per site per year) for all main and GL phy-
logenetic trees used to construct genealogical
trees (Top). Time to LCA in years from 2021 for
all main and GL populations used to construct
genealogical trees (Bottom). (B) Number of GLs
per virus species circulating at the same
time, based on the genealogical trees for each
GL. For unannotated samples within a GL, the
sampling date was estimated based on the
date of the MRCA and root distance.
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individually (see Brief Methods and SI Appendix, Extended
Methods for details). The dN/dS estimates for whole trees
ranged between 0.02 and 0.5 for most virus protein-coding
genes, which is indicative of strong to moderate purifying selec-
tion, in line with previous results (45) (SI Appendix, Fig. S9).
The few virus genes with elevated dN/dS ratios encode proteins
that are either presented on the virion surface, such as human
respiratory syncytial virus (HRSV) glycoprotein (G) and M-2
(∼3.5× above the species mean dN/dS), or human metapneumo-
virus (HMPV) SH and G (∼3× and 5× above the species mean,
respectively) (SI Appendix, Figs. S9 and S10), or are involved in
interactions with the host immune system, for example, MMV V
protein (46) (∼4× above the species mean) (SI Appendix, Fig.
S10). These proteins are likely to experience positive selection, as
described, for example, for HMPV G, where sites under positive
selection were identified in the putative ectodomain (47). Elevated
dN/dS values were also observed for some very short proteins, for
example, the 6k peptide of DENV (SI Appendix, Fig. S11). How-
ever, such observations are sensitive to statistical artifacts and
should be interpreted with caution. For OHVA ORF3, the dN/dS
estimate was ∼4× above the species mean (0.3; SI Appendix, Fig.
S13), suggesting that this gene, which encodes an ion channel,
plays a role in host adaptation following zoonosis (48).
Next, we computed dN/dS for each GL and ML individually

(SI Appendix, Figs. S10–S13 and S14–S17, respectively).
Despite considerable differences in size, generally, the results
for GLs and MLs were comparable. For 12 of the 27 viruses
studied (members of the order Mononegavirales, HMPV,
HRSV, human respirovirus 3, MMV, and MRV; some flavivi-
ruses ZIKV, YFV, TBEV, and YFV; HDV; MERS; and
CHIKV), the dN/dS estimates for individual proteins as well as
the mean for the whole tree differed little relative to the respec-
tive estimates for individual lineages (SI Appendix, Figs.
S10–S17), with no indication of how selective pressures might
have varied over time for any genes. In contrast, the GLs of
enteroviruses (EVA-D) show elevated dN/dS, mainly among
capsid proteins (SI Appendix, Fig. S16). Although frequent
recombination among enteroviruses necessitates interpreting
these results with caution (49), this finding, coupled with the
observation that mutations in enterovirus capsid protein genes
appear to be the primary lineage-defining features (see below),
suggests a substantial change in the selective pressure acting on
the capsid proteins between the periods of lineage emergence
and subsequent maintenance. Notably, OHVA lineages show
similarly elevated dN/dS for domain of unknown function
3729 (DUF3729) (up to 0.4) and ORF3 dN/dS (up to 0.3,
which is also elevated relative to the species mean as discussed
above) (SI Appendix, Fig. S17). Both these genes are likely to
be involved in host adaptation following zoonosis (37, 48).
Further, a twofold to fivefold increase in mean dN/dS was
detected for DENV, WNV, and hepatitis C virus (HCV) GLs
across most genes relative to the complete phylogeny (SI
Appendix, Fig. S15). The interpretation of genome-wide eleva-
tion of dN/dS in GLs is more challenging and depends on
whether the GL is newly emergent, possibly reflecting a
period of rapid host adaptation and intense positive selection
(45, 50). Given the distant dates predicted for the LCAs for
these GLs and lack of lineage turnover, reduced selective pres-
sure moving from stronger purifying selection toward neutral
drift appears more likely. Overall, dN/dS analysis revealed lit-
tle about potentially differing selective pressures acting within
and between GLs, despite the apparent differences in substitu-
tion rates critical to the definition of the GLs themselves (as
discussed above).

Intralineage and Interlineage Mutational Signatures. Gene-scale
dN/dS analysis is often unable to uncover positive selection act-
ing on specific sites or neighborhoods, which can occur in
widely different backgrounds, from neutral drift to strong puri-
fying selection (51). Identification of individual positively
selected mutations can provide additional insight into differ-
ences between the evolutionary contexts of GL emergence and
subsequent maintenance. Multiple, parallel nonsynonymous
mutations comprise the most obvious indication of site-wise
positive selection. With the prominent exception of SARS-
CoV-2, for which we have previously identified up to 100 sites
with recurrent amino acid replacements that are likely subject
to positive selection (52), too few recurrent amino acid substi-
tutions were detected for comparable analysis in the remaining
viruses analyzed here, despite being the species with the largest
number of genome sequences available.

Given the infeasibility of the direct, site-specific approach, we
performed a genomic neighborhood analysis to compare inter-
lineage and intralineage mutational signatures. First, amino acid
sites were labeled according to three categories of amino acid
substitutions (Fig. 4A; see Brief Methods and SI Appendix,
Extended Methods for details): 1) multiple, deep (MD) substitu-
tions which are “lineage defining,” being conserved in at least
90% of the samples within at least two GLs, but represented by
different amino acid residues in each of these GLs—for exam-
ple, consider the third amino acid of the CHIKV ORF gp1,
97% of the sequences in GL 1 contain a serine in that site,
whereas 96% of the sequences in GL2 contain a proline in that
site; 2) multiple, shallow (MS) substitutions occurring on multi-
ple, independent occasions across GLs; and 3) all shallow (AS)
substitutions occurring at least once within a GL, representing
all “recent” events. We then computed site densities for each of

Fig. 4. Mutational signatures in human pathogenic RNA viruses vary little
with tree depth. (A) Illustration of three amino acid site classes considered:
1) MD (red), 2) MS (yellow), and 3) AS (blue). Dashed circle represents deep,
singular mutations which are excluded from this analysis. (B) Pearson cor-
relation coefficient between site densities for all pairs of site classes across
the genome computed over a moving average of 101 amino acids respect-
ing mature peptide boundaries. Rows are sorted by the first column sub-
tracted from the third column. (C) Log ratio of the mean site density across
the specified peptide relative to the whole genome for select peptides.
Bars are bounded by the 25th and 75th percentiles of simulated data
drawn from the binomial distribution with n, total number of sites across
the genome, trials of probability P, length of peptide/length of genome.
RVAjP* represents the union of peptides P2-C, P-3A, and protease-3C.
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these three categories over a sliding window of 101 amino acid
sites, respecting protein boundaries.
We then examined the correlation between the site densities

in these categories of amino acid substitutions across the genome
(Fig. 4B and SI Appendix, Figs. S18–S24). In most cases, there
was a strong, positive correlation between all three categories of
amino acid substitutions, indicating that most genomic regions
are subject to similar selection pressures during interlineage and
intralineage evolution, with several notable exceptions (Fig. 4C).
For enteroviruses, we observed an elevated MD site density
within capsid proteins (VP1-4; SI Appendix, Figs. S18–S20),
suggesting that capsid mutations are primarily lineage defining,
but become less frequent once an epidemiological niche is estab-
lished and occupied. This trend is consistent with the historical
classification of enterovirus lineages by serotype, which is deter-
mined by the antigenic properties of the capsid proteins (53). As
mentioned above, frequent intraspecies and interspecies recombi-
nation among all four types of enteroviruses requires caution
when interpreting these results (49). This trend was similarly
observed for the capsid proteins of the picornavirus Parechovirus
A (PeVA) (VP0, VP1C, and VP1D; SI Appendix, Fig. S23).
Elevated MD and MS substitution densities were observed

for HRSV G, potentially suggesting multiple residues evolving
under positive selection throughout the entire course of evolu-
tion (including both lineage emergence and maintenance) of
this immunologically exposed protein (54). Both MD and MS
substitution densities are also increased in DENV NS2A and
CHIKV nsp3. DENV NS2A is involved in virus replication
and assembly and shows viroporin-like properties (55, 56). A
detailed functional understanding of CHIKV nsp3 is lacking,
although this protein is known to be part of the replication
complex and is also involved in modulating the host cell’s anti-
viral response (57). In line with the observation of elevated
dN/dS in for OHVA DUF3729 in GLs compared to the whole
population, MS substitution densities are elevated in this gene
(SI Appendix, Fig. S22), suggesting that this poorly character-
ized protein contains multiple positively selected residues.
These residues might have played a role in relatively recent host
adaptation, but were not necessarily involved in the emergence of
multiple lineages. The high MD substitution density observed for
large human delta antigen (LHDAg) might result from statistical
fluctuations given the short length (20 aa) of this peptide and
should be interpreted with caution. As observed for the dN/dS
analysis, we found few mutational signatures, which would shed
light on different selection pressures acting within and between
GLs. These observations seem to suggest that, although the
tempo is variable, the mode of molecular evolution is broadly
conserved from the deep to the shallow portions of each phylog-
eny, thus spanning considerable evolutionary distances.

Effective Population Size of Human Pathogenic RNA Viruses.
Another tool to indirectly assess the selective pressures shaping
a phylogeny is to estimate the effective population size (Ne),
which defines the timescale of population turnover across gen-
erations and thus can reveal major evolutionary events, includ-
ing population bottlenecks (58). Assuming an evolutionary
model, such as Wright–Fisher (59) or Moran (60), one can
estimate the number of individuals per generation (that is, Ne)
required for the observed rate of turnover in an idealized popu-
lation. In what follows, we refer to “selection” as the sum of
evolutionary pressures that promote lineage turnover. Although
the background could vary from strong purifying selection
to neutral drift, the occurrence of lineage turnover implicitly
assumes some degree of positive selection in most scenarios.

In the context of lineage turnover, under strong selection, Ne is
small, whereas lack of competition leads to larger Ne values
over time (17). Ne can be inferred from the coalescence rate
(Cr) estimated for any genealogical tree (17, 61, 62): Ne � t ≈
1=Cr where t is the viral generation time (the time in days a
virus needs to complete a transmission cycle from human to
human). This expression enables a measurement of diversity and
strength of selection among phylogenies represented by a single
GL (e.g., H3N2, SARS-CoV-2), as well. Further, the census
population size N (individuals present at each generation) can be
estimated as N ¼ D � t , where D is the number of yearly cases
estimated. The N/Ne ratio may be used to quantify lineage turn-
over, where N/Ne ≫ 1 indicates population bottlenecks, and
N/Ne ≈ 1 suggests stable population diversity (17). As tree topol-
ogy, and hence Ne estimates, depend on selection strength and
sampling effort (17, 58), we directly assessed the effect of sam-
pling by randomly drawing up to either 10 or 100 samples per
year, with three replicates each, for H3N2 and EVA as represen-
tative viruses with fast and slow turnover, respectively. We then
used these reduced ensembles of isolates for genealogical tree
construction (see Brief Methods and SI Appendix, Extended
Methods for details; mutation rates and time of LCA are shown
in SI Appendix, Fig. S25). We constructed two additional ensem-
bles for each virus, composed of the same number of isolates
selected above, this time maximizing the sequence diversity (as
measured by the hamming distance between alignment rows; see
Brief Methods and SI Appendix, Extended Methods for details).
As a result, we obtained six trees evenly sampled over time
(3×, e10, and e100) as well as two maximally diverse subtrees of
the same size (d10 and d100) for both H3N2 and EVA.

We calculated the coalescence rates for all complete trees and
for the H3N2 and EVA subtrees using the PACT package
(http://www.trevorbedford.com/pact) (17) and estimated Ne (Fig.
5A). The Ne estimation was not performed for some zoonotic
viruses, including TBEV and WNV, for which the generation
time could not be reliably estimated. N/Ne ratios were calculated
based on the best estimates of Ne for complete trees and those
obtained after even and diverse sampling (H3N2 and EVA) (Fig.
5 A and B). The estimated Ne values span more than two orders
of magnitude, with H3n2 “even” 10 (H3N2e10) and EVD repre-
senting the extremes (Fig. 5A; Ne of around 400 and 270,000,
respectively). Sampling was found to have a major effect on the
estimates. The Ne estimates for EVA d100, d10, e100, and the
whole tree were similar, whereas EVA e10 was about an order of
magnitude lower. It should be noted that EVA e100 contained
most sequences present in the whole tree. This trend was even
more pronounced for H3N2, where the Ne estimates for d100,
d10, and the whole tree were similar, whereas those for e10 and
e100 were several orders of magnitude lower. It is first important
to note that the estimates were not sensitive to the number of
sequences present in the phylogeny, as illustrated by the equiva-
lency of d10 and the whole phylogeny for both viruses, indicat-
ing that the differences observed between e10 and e100 and the
whole phylogeny are not merely methodological artifacts. How-
ever, the estimate is sensitive to sampling, and, as could be
expected, this sensitivity is more pronounced for viruses with fast
lineage turnover. While perhaps unsurprising, this finding
implies that Ne has been, and likely continues to be in this
work, underestimated due to data limitations for most viruses
and H3N2 in particular.

To illustrate the potential equivalency of reduced sampling
and increased selection on Ne estimation, we simulated an
ensemble of genealogical trees under a simple phenomenologi-
cal model. Trees were iteratively constructed through the
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addition of clades representing local sequencing efforts.
Increased sequencing efforts were modeled by changing the
number of sequences in each clade from two to six. Increased
selection strength was modeled by changing the placement of
these clades on the tree, relative to the root, from the prior iter-
ation. A root distance threshold was set to be the 0th, 25th,
50th, 75th, or 95th percentile of the root distance distribution
for all leaves at the prior iteration, with higher thresholds corre-
sponding to new isolates being placed farther from the tree root
and representing increased selection (Fig. 5C and SI Appendix,
Fig. S26 A–C). Although selection and undersampling result in
qualitatively different tree topologies (Fig. 5D), their effects
cannot be disentangled from Ne analysis alone. Furthermore,
sensitivity to undersampling is more pronounced under high
selection than under low selection (Fig. 5D and SI Appendix,
Fig. S26D). These effects must be considered when evaluating
the expectation that genetic diversity (and hence Ne) plateaus
earlier in a growing census population N when selection is
strong (17). This challenge is reflected in the damped increase
of Ne from H3N2 e10 to e100 when compared to the increase
from EVA e10 to e100 (approximately fourfold and eightfold,
respectively; Fig. 5A).
Keeping these sensitivities in mind, we proceeded to examine

the N/Ne ratios. High N/Ne ratios can be an indicator of popula-
tion bottlenecks. The highest N/Ne ratio was observed for
H3N2e10 (e100 was similar); in contrast, the estimate for the
whole phylogeny was about 200-fold lower (Fig. 5D), within the
range of the majority of the other viruses. Thus, sampling efforts
can substantially affect the interpretation of the N/Ne estimation,
moving H3N2 from an outlier associated with extreme bottle-
necks to typical behavior. As discussed above, it has been well
established that H3N2 is subject to pronounced population bot-
tlenecks as a result of alternating periods of stasis and rapid host
adaptation (16–18). However, the results presented here

emphasize that, on shorter timescales, the transmission dynamics
of local outbreaks play a larger role in determining the extent of
the diversity of the H3N2 population (63), as was the case for
the majority of viruses studied in this work. BCoV1 also demon-
strated a high N/Ne ratio, within the range of H3N2 e10 and
e100 (Fig. 5B). Although this observation could simply result
from insufficient sampling, given the high incidence of this virus
(SI Appendix, Fig. S27D), it might point to pronounced popula-
tion bottlenecks during the evolution of the BCoV1 population
(although not of comparable magnitude to those for H3N2; see
below). In contrast, other viruses seem to experience less severe
bottlenecks and maintain greater genetic diversity (e.g., MRV
and enteroviruses A, C, D). The low N/Ne values for MERS,
ZIKV, and CHIKV likely result from an underestimation of N
due to large animal reservoirs that might impact estimates of N
for H3N2 as well. Furthermore, we observed a positive correla-
tion, albeit not statistically significant, between N/Ne estimates
and the extent of lineage turnover as quantified by the Shannon
entropy (SI Appendix, Fig. S28A). This trend is likely perturbed
by uncertainty in estimating N, and removing CHIKV slightly
improves the correlation (SI Appendix, Fig. S28B).

Whereas insufficient sampling can lead to an underestima-
tion of both N and Ne, the complete unavailability of genomes
from premodern periods can, perhaps counterintuitively, lead
to an overestimation of Ne. As discussed above, GLs are sepa-
rated by periods (branches of the tree) with apparently different
substitution rates. These branches are often deep within the tree
topology and sparsely populated with leaves (if at all), making
the assignment of a global model for substitution rates statisti-
cally dubious. This can result in inaccurate deep branch lengths
for genealogical trees and substantially change the predicted date
for the LCA. This date, as well as the predicted dates of other
deep nodes, is used to estimate the effective population size.
Given these limitations, we sought to establish a lower bound

Fig. 5. Estimation of effective population sizes
for human pathogenic RNA viruses. (A) Ne esti-
mated for genealogical trees. Bars represent
varying generation time t for each virus rang-
ing between 0.5 and 5 times the value corre-
sponding to the filled circle. For H3N2 and EVA,
Ne estimates for evenly sampled trees (up to
10 or 100 samples per year, e10 and e100,
respectively) and diverse sampled trees (d10
and d100) are also displayed. (B) N/Ne ratios,
where N is the census population. Bars repre-
sent varying N between 0.5 and 5 times the
value corresponding to the filled circle. N and t
estimates are shown in SI Appendix, Table S10.
As in C, N/Ne estimates are shown for evenly
and diverse sampled trees for EVA and H3N2.
Color code is as in C. (C) Ne (with generation
time t fixed to one for Ne calculation for all
trees) for simulated trees with varied selection
strength and sampling density (Ne is repre-
sented by the circle area). Sampling density (as
multifurcation multiplicity) varied from two to
six. Selection strength was simulated by posi-
tioning new leaves each iteration at the 0th,
25th, 50th, 75th, or 95th percentile of the root
distance distribution for the entire tree (see SI
Appendix, Extended Methods for details). (D)
Examples of simulated trees with varied selec-
tion strength and sampling density.
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for the effective population size, which still preserves all GLs,
through the construction of truncated global genealogical trees
or “grafted trees.” The LCA of each grafted tree is set to the
LCA of the oldest GL, and the remaining GLs are connected to
this (multifurcated) root through branches preserving the LCA
of each respective GL (see SI Appendix, Fig. S27A and Brief
Methods or SI Appendix, Extended Methods for details). We pro-
ceeded to estimate Ne for each grafted tree as well as for each GL
separately (SI Appendix, Fig. S27B). By construction, Ne estimates
for grafted trees are generally significantly smaller than those for
complete trees and larger than those for individual GLs. Notably,
the Ne estimate for H3N2 (which is represented by a single GL)
is the second-highest value observed (after rhinovirus A) among
the viruses studied when this lower bound is considered. This
counterintuitive finding emphasizes another facet of the sensitivity
of Ne estimation to data availability.
These sensitivities are evidently greater within individual

GLs, which represent only a subset of the viral diversity for
each species. These limitations notwithstanding, in an effort to
characterize lineage turnover within individual GLs, we ana-
lyzed skyline plots representing the time to the most recent
common ancestor (TMRCA) of all clades present at a given
time point and diversity within the population over time (as
measured by the average time for any two isolates to coalesce,
that is, to find their most recent common ancestor) for individ-
ual GLs and the complete population (SI Appendix, Fig. S29).
The average population diversity can be displayed as the mean
diversity per year (SI Appendix, Fig. S29A). Populations with
high turnover, such as H3N2, show a low average diversity per
year, whereas those with low turnover are characterized by high
diversity. In general, the skyline plots and mean diversity values
for complete phylogenies correspond well to Ne and N/Ne esti-
mations, supporting slow lineage turnover for most of the viruses
analyzed. For example, H3N2 displays ∼4× and ∼8× lower
mean diversity per year compared to BCoV1 and ZIKV, respec-
tively. This observation suggests BCoV1, despite having high Ne
and N/Ne values, has a slower population turnover compared to
H3N2. Of note is that evidence of high intra-GL turnover was
obtained for a few GLs (as demonstrated by a mean diversity in

the range of H3N2 or BCoV1). The two principal examples are
HRSV GL2 and Norwalk GL3 (SI Appendix, Fig. S29 C and
D). The majority of GLs show mean diversity within the range
of viral populations with low turnover, and individual GLs gener-
ally display lower diversity than each respective whole population
(SI Appendix, Fig. S29A). Although it is expected that any sub-
population has a lower diversity than the larger population from
which it is selected, a higher intra-GL turnover rate relative to the
inter-GL turnover might additionally lower diversity within indi-
vidual GLs. In the next section, we demonstrate that inter-GL
turnover is substantially nonneutral, further supporting our con-
clusion on the existence of independent environmental and epi-
demiological niches among pathogenic RNA viruses.

Significant Deviations from Neutrality Confirm Noncompeting
Niches. In principle, neutral evolution can yield multiple, coexist-
ing lineages. Although, per the definition proposed above, GLs
cannot emerge within a phylogeny resulting from an evolutionary
process with a constant substitution rate, neutral processes could
result in trees qualitatively similar to those of the genealogical trees
inferred for the viruses analyzed here. To explicitly demonstrate
the deviation from neutrality of these viral evolutionary histories,
we simulated trees under a neutral branching process [Yule–
Harding (64, 65)] and shallowly subsampled these, to reflect the
fact that efficient sequencing technologies were unavailable (for
most viruses) for the majority of the period between the present
and the predicted date of the most recent common ancestor
(MRCA) (see SI Appendix, Extended Methods for details). For
each virus, and each real and simulated tree (which has the same
number of leaves as the respective real tree), the number of paral-
lel branches from the root to the tree tips was tabulated, and the
date corresponding to the deepest leaves was estimated (Fig. 6A).
In order to probe the coalescence rate among, rather than
within, extant lineages, the period from the root to the deepest
leaves was further examined. The number of branches from the
deepest leaves back toward the root was then fit to a power law
model (Fig. 6B; see SI Appendix, Extended Methods for details).

The number of parallel branches was generally greater among
simulated trees than among the respective viral genealogical trees

Fig. 6. Probing pathogenic RNA virus evolu-
tion for neutrality. (A) The number of parallel
branches in the genealogical tree for the (sub-
sampled) Norwalk virus from the root (188
BCE) to the tree tips. The red line indicates
the position of the deepest leaves. (Inset)
Rescaled so the periods from the root to the
deepest leaves and that from the deepest
leaves to the tips are evenly displayed; branch
count is displayed at each node. (B) The num-
ber of parallel branches of Norwalk virus mov-
ing from the deepest leaves back to the root
overlaid with fitted power-law. (C) The number
of parallel branches from deepest leaves to
root normalized by the number of leaves in
each tree for all simulated and real trees fit to
power-laws. Shading identifies median 50% of
data and curves identify median. (D) Log-fold
change (simulated/real) of the time derivatives
for the number of parallel branches evaluated
at the root for those viruses with at least two
GLs vs. all others. Shading identifies minima,
maxima, and the median 50% of data. Curves
identify median. Viruses with at least two GLs,
but for which the threshold correlation was
reduced (from the default 0.8), appear in
“Other*.” (E) Log-fold change of the time deriv-
ative at the deepest leaves vs. that at the root.
Viruses containing two or more GLs with a
correlation coefficient of 0.8 or above are dis-
played in black, and others are shown in gray.
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for the duration of this period (Fig. 6C). The log-fold difference
(simulated/real) in the derivative evaluated at each tree root,
which measures the coalescence rate among (rather than within)
extant lineages, was positive, indicating that lineage turnover was
slower than that under a neutral evolution model. This deviation
from neutrality was greater among viruses containing two or
more GLs with a correlation coefficient of 0.8 (and disregarding
those with a poorer correlation; see SI Appendix, Extended
Methods for details) than among other viruses (Fig. 6D). For
most viruses, this log-fold difference was negative when evaluated
at the deepest leaves but became positive moving toward the root
(Fig. 6E and SI Appendix, Fig. S41). Of the five viruses (EVB,
enterovirus C [EVC], HCV, PeVA, and SARS-CoV-2) for which
the log-fold difference evaluated at the root was negative, only
one (EVC) contained multiple GLs. Both the EVC and HCV
phylogenies are additionally complicated by the need to remove
laboratory-related, vaccine-related, or clinical sequences, which do
not circulate globally. Recombination among PeVA genotypes
(66) (each with few sequences, leading to poorly correlated GLs)
complicates the inference of a complete genealogical tree for this
virus as well. As mentioned above, EVB lacks a global genealogi-
cal tree and is represented here by a single GL. SARS-CoV-2 has
recently emerged and constitutes a single GL in its entirety. The
log-fold difference for these and other viruses represented by a
single GL should be interpreted with caution. For these trees, the
deepest leaf is relatively nearer the root, and the portion of the
tree studied is much smaller than in other viruses. Furthermore,
interlineage turnover (between the single extant lineage and prior,
extinct lineages) may not be measurable with these methods.
Thus, among the viruses studied here, interlineage turnover

is typically slower than the neutral expectation, and intralineage
turnover is faster than the neutral expectation (as described for
select GLs above; SI Appendix, Fig. S29 C and D). These results
are consistent with our interpretation that human pathogenic
RNA virus populations are largely organized into stable, coex-
isting lineages (GLs). Each GL occupies a distinct epidemiolog-
ical niche, within which competition leads to increased lineage
turnover compared to neutrality. In contrast, among the GLs,
there is little competition, which leads to decreased lineage
turnover relative to neutrality.

Discussion

Here we present a comprehensive phylodynamic analysis of
monopartite human pathogenic RNA viruses (and H3N2 hem-
agglutinin) in an effort to establish global trends in viral evolu-
tion in human populations. Despite data limitations, the viruses
studied in this work span a wide variety of viral life history char-
acteristics. This lends considerable generality to the study, while
making it outside the scope of this work to investigate many fea-
tures specific to individual lifestyles [for example, intrahost diver-
sity, symptom characteristics, or acute vs. chronic infection (2)].
Given this diversity, the commonalities we observe among the
virus phylogenies constructed are notable. Consistent with the
conclusions of previous efforts (45, 67), we observed moderate
to strong purifying selection among all viruses.
Nearly all virus populations are characterized by low rates of

lineage turnover, and most consist of multiple, coexisting GLs,
monophyletic groups of sequences separated by periods with
apparently different substitution rates. Despite these differing
substitution rates, dN/dS and genomic neighborhood analysis
revealed little about how selective pressures might have differed
between the early period of GL formation and the subsequent
period defined by persistent coexistence. This lack of resolution

seems to suggest that, although the tempo is variable, the mode
of molecular evolution is broadly conserved from the deep to
the shallow portions of each phylogeny, spanning considerable
evolutionary distances. The distribution of lineage-defining
mutations across the virus genome is similar to that of shallow,
repeated mutations for almost all viruses, indicating that posi-
tive selection affects sites in the same neighborhoods during
both periods (Fig. 4). The lineage-defining role of enterovirus
capsid proteins was the principle exception observed, in line
with the traditional serotype classification (12). Other virus
proteins with different intralineage and interlineage mutational
signatures, which might provide insight into ongoing host and/
or vector adaptive evolution, are OHVA DUF3729, DENV
NS2A, and CHIKV NSP3. In the case of CHIKV E1-A226V,
NSP3 has been demonstrated to play an important role in the
adaptation to the vector Aedes albopictus (68).

The low inter-GL turnover, below the neutral expectation, and
broadly stable mutational signatures appear to be indicative of
weak, if any, competition among GLs, suggesting that each GL
occupies an independent epidemiological niche (Figs. 5 and 6).
Such niches could be maintained in a variety of ways, the most
obvious possibility being regionality and/or seasonality. Although
these factors can explain the persistence of some GLs identified in
this work, the majority do not show regional localization, and
none display biannual (or more coarse-grained) temporal trends
(the limit of time resolution we can reliably detect). At sufficiently
large evolutionary distances, niches can be defined by immuno-
logical differences, which can overcome immune cross-protection,
allowing the same host to be infected by multiple subpopulations
largely independent of prior infections, as seems to be the case for
picornaviruses and HRSV (54). These effects are also insufficient
to account for the stability of most GLs. We suggest that, in
many if not most cases, niches are maintained through a series of
localized outbreaks such that only a small fraction of the global
susceptible population is infected at any given time. Under this
scenario, even lineages that do not overcome immune cross-
protection can coexist within short distances of one another. Fur-
thermore, extensive environmental transfer or fragmented animal
reservoir populations could play a role. Virions that can persist
for extended periods of time outside of the (identified) host or
vector might maintain the genetic diversity of a lineage during
time periods when no active infections from that lineage occur.

As a result of globalization, disparate communities are becoming
increasingly connected, which might lead to increased interaction
between previously separated lineages, enhancing between-lineage
competition within the viral population. This effect has been dem-
onstrated already for DENV in Thailand, where multiple lineages
typically coexist throughout the country, with a well-defined pat-
tern of dissemination. However, within densely populated areas of
Bangkok, genomic analysis pointed to increased competition and
lineage turnover (69).

Conclusions

Phylodynamic analysis revealed multiple cocirculating lineages
(GLs) for the majority of human pathogenic RNA viruses, sepa-
rated by periods of apparently different substitution rates within
the phylogeny. The dN/dS and genomic neighborhood analysis
yielded surprisingly little evidence of different selection pressures
acting within and between GLs, suggesting that, whereas the
tempo of molecular evolution is variable, its mode is broadly con-
served. This slow lineage turnover, below the neutral expectation,
suggests each GL occupies an independent epidemiological niche,
with little inter-GL competition. No pronounced patterns of
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regional or temporal separation of the GLs were detected, sug-
gesting that the stability of the GLs primarily stems from limited
outbreaks within small communities, so that only a small fraction
of the global susceptible population is infected at any time. These
results raise the, perhaps pressing, question, How will increased
host–host contact resulting from globalization affect viral evolu-
tion? Could new or renewed competition emerge among lineages
of endemic viruses to drive diversification, evolution of increased
pathogenicity, or even virus speciation? With these questions in
mind, we emphasize that, in addition to zoonotic events, the
ongoing surveillance of familiar, endemic viruses deserves global
attention in effort to mitigate or prevent future pandemics.

Brief Methods

Genomes were retrieved for all viruses except IAV H3N2 and
SARS-CoV-2 from NCBI virus (24). Members of related viral
families were used to construct an outgroup when possible. IAV
H3N2 (flu H3N2) segment HA was retrieved from the NCBI
flu database (70). The SARS-CoV-2 tree and alignment analyzed
in this work was subsampled from a larger alignment consisting
of all high-quality genomes that were available as of January 8,
2021 in the GISAID database (25), as previously described (52).
Subsampling was conducted to maximize the sequence diversity.
Acknowledgments for the GISAID deposited sequences used in
this study are displayed in SI Appendix, Table S3. Subalignments
were considered for H3N2 and EVA, principally for the purpose
of effective population size analysis. In all cases, sequences were
harmonized to DNA (e.g., U was transformed to T to amend
software compatibility) and aligned with MAFFT (26), using
default settings. Sequences were clustered according to 100%
identity with no coverage threshold using Cd-hit (71), and, oth-
erwise, default settings for MERS and H3N2.
The longest sequence from each cluster was selected as a rep-

resentative. Exterior ambiguous characters were removed, and
sequences with more than 10 remaining ambiguous characters
(“N”) were discarded. Outliers based on hamming distance to
the nearest neighbor and consensus were identified and removed
from the set. Sites corresponding to protein-coding ORFs (open
reading frames) were then mapped to the alignments, and non-
coding regions were discarded. Common gaps corresponding to
multiples of three nucleotides were maintained as “true” inser-
tions or deletions and mapped into the frame if necessary.
Unique alignment rows were identified. Samples related to labo-
ratory experiments, vaccine-related sequences, and patents were
pruned based on an automated keyword search
Dates and locations of isolation are available for many iso-

lates reported as calendar dates and city or country/administra-
tive region of origin. These dates are referenced as calendar
dates in the main text and as date indices (number of days
before/after January 1, 1950) in SI Appendix. For the regional
analysis, the latitude and longitude of each city of origin or a
representative city for each country/administrative region of
origin was identified from simplemaps (https://simplemaps.
com/data/world-cities) (72). Ambiguity in metadata assign-
ments was not problematic (SI Appendix, Fig. S30).
With the exception of SARS-CoV-2 and H3N2, tree topology

was optimized using IQ-TREE (27) with the evolutionary model
fixed to GTR+F+G4 and the minimum branch length decreased
from the default 10e-6 to 10e-7 (options: -m GTR+F+G4 -st
DNA -blmin 0.0000001). For SARS-CoV-2, the tree was drawn
from the global topology previously described (52). The global
H3N2 tree was approximated using FastTree (73) specifying
GTR; a four-category gamma distribution; no support values; and

using a previously constructed maximum diversity subtree as a
constraint (compiled at double precision, options: -nt -gtr -gamma
-cat 4 -nosupport -constraints). Trees were rooted according to
the position of an outgroup when possible, and by date or mid-
point otherwise.

Viral lineages were both manually selected, based on avail-
able metadata, and algorithmically selected, into correlated
clades we call GLs. GLs are defined as monophyletic clades
with a strong correlation between the sequencing date and the
distance to the tree root. Trees were used to construct date-
constrained, genealogical trees using least-square dating (with
software LSD2) (31). We considered the Shannon entropy of
the clade distribution calculated over sliding windows based on
the known or estimated date of isolation or based on distance
to the tree root as an explicit measure of lineage turnover.

Fitch Traceback (74) was used to estimate ancestral states.
Three classes of amino acid sites were identified on the basis of
the nonsynonymous mutations within each site: 1) MD substi-
tutions are “lineage defining”; 2) MS sites. 3) AS sites. We
computed the site density of each class over a sliding window
to assess signatures of positive selection. Selection pressures
were also assessed through dN/dS analysis using PAML (44).

The effective population size Ne and the ratio of the census
population size N over Ne was estimated as previously described
(17) (http://www.trevorbedford.com/pact). Viral diversity
(average time of any pair of leaves at a given time point to find
their LCA) and average TMRCA over time were calculated
with the PACT package as well. In order to demonstrate the
potential equivalency between the impacts of selection strength
and sampling density on effective population size, we addition-
ally simulated an ensemble of trees.

Viral phylogenies were compared to trees simulated under a
neutral model, shallowly sampled to reflect the fact that the
MRCAs are predicted to have circulated much earlier than the
invention of sequencing technologies. When necessary, maximally
diverse subtrees of the respective viral phylogeny with the same
number of leaves as in each simulated tree were generated. For all
trees, real and simulated, the number of parallel branches from
the root to the tree tips was computed. In order to probe the coa-
lescence rate among, rather than within, extant lineages, the date
associated with the deepest leaves was determined, and the period
from the root to that point was further examined. The number
of branches from the deepest leaves back toward the root was
then fit to a single-parameter power-law expression [based on
expectations of a power-law distribution of node descendants
(75)] (SI Appendix, Figs. S31–35). The derivative of each curve
(SI Appendix, Figs. S36–S40) as well as the log-fold difference
between the derivatives of the simulation and the real genealogical
tree for each virus were computed (SI Appendix, Fig. S41).

Data Availability. The datasets generated and/or analyzed during the current
study are available as Supplementary Data at Zenodo, https://zenodo.org/record/
5711959, as well as through FTP, https://ftp.ncbi.nih.gov/pub/wolf/_suppl/
virNiches/. Original virus sequences are publicly available for all viruses, except
SARS-CoV-2, at NCBI virus (24). SARS-CoV-2 sequences are available at GISAID (25).
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