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INTRODUCTION 
 
The challenges presented by neurodegenerative diseases 
(NDs) in an aging population make research into the 
pathogenesis of these diseases urgently needed [1]. 
Brain iron abnormalities have been implicated in 
various NDs, including Alzheimer’s disease (AD), 
Huntington’s disease (HD), amyotrophic lateral 
sclerosis (ALS), multiple sclerosis (MS) and especially 
in Parkinson’s disease (PD) [2, 3]. With postmortem, 
MRI and transcranial ultrasound, the excessive iron  

 

deposition is consistently demonstrated in the substantia 
nigra and basal ganglia of the brain in PD patients, and 
a 25% to 100% increase of the iron levels in substantia 
nigra is present according to the quantitative data [4, 5]. 
Iron plays important roles in multiple biochemical 
processes by facilitating two-way electron transport, 
and it functions as a critical cofactor of many proteins 
involved in cellular proliferation, differentiation, and 
apoptosis [6, 7]. Given that the metabolic activity of 
brain is high and the iron functions as an enzymatic 
cofactor in myelinogenesis, the concentration of iron in 
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ABSTRACT 
 
Iron homeostasis is critical for maintaining normal brain physiological functions, and its mis-regulation can cause 
neurotoxicity and play a part in the development of many neurodegenerative disorders. The high incidence of iron 
deficiency makes iron supplementation a trend, and ferric citrate is a commonly used iron supplement. In this 
study, we found that the chronic oral administration of ferric citrate (2.5 mg/day and 10 mg/day)  
for 16 weeks selectively induced iron accumulation in the corpus striatum (CPu), substantia nigra (SN) and 
hippocampus, which typically caused parkinsonism phenotypes in middle-aged mice. Histopathological analysis 
showed that apoptosis- and oxidative stress-mediated neurodegeneration and dopaminergic neuronal loss 
occurred in the brain, and behavioral tests showed that defects in the locomotor and cognitive functions of these 
mice developed. Our research provides a new perspective for ferric citrate as a food additive or in clinical 
applications and suggests a new potential approach to develop animal models for Parkinson’s disease (PD). 
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the brain is high [8]. Disorders of iron metabolism, both 
iron deficiency and iron overload, could be harmful to 
the brain and a cause of neurological diseases. The lack 
of iron results in the construction of abnormal neural 
connections or the abnormal synthesis of neuro-
transmitters synthesis, and it is implicated in a range of 
neurological disorders primarily clinically characterized 
by cognitive, physical and social impairments, such as 
restless leg syndrome and cognitive dysfunctions [9–
11]. On the other hand, as the redox reactivity of iron is 
high but not selective, iron overload in the brain will 
disrupt redox balance and drive oxidative stress, which 
is widely associated with NDs [12]. Cells with active 
iron metabolism are more sensitive to this iron toxicity, 
such as dopaminergic neurons that need iron for 
dopamine synthesis [13]. Therefore, the homeostasis of 
iron, which mainly depends on the balance between iron 
uptake and iron release, needs to be well controlled in 
the brain [14]. 
 
Iron is taken up through the blood-brain barrier (BBB) 
in the brain, from the basolateral membrane of 
endothelial cells to the cerebral compartment. The 
present evidence suggests that the transferrin/transferrin 
receptor/divalent metal transporter 1 (Tf/TfR/DMT1) 
pathway is the major pathway for iron transport across 
the BBB, which includes the processes of binding, 
endocytosis, acidification, dissociation and translocation 
[15, 16]. On the other hand, brain iron release is 
dependent on the only iron exporter currently identified, 
ferroportin-1 (Fpn1), which releases iron into 
circulation to be loaded onto Tf by collaborating with 
ceruloplasmin or ferroxidase [17, 18]. Although more 
than two-thirds of the total amount of iron needed in the 
body is from the degradation of senescent red blood 
cells and the rest comes from the diet [19], according to 
the WHO, iron deficiency is the most common 
nutritional disorder in the world, especially in 
developing countries [20, 21]. In addition, iron 
deficiency is a multifactorial condition in which the 
incidence increases with age in adulthood, and a 
substantially higher prevalence is present in middle-
aged and elderly populations than in young populations 
[22, 23]. Thus, rational iron supplementation is 
important to maintain iron homeostasis in the body and, 
of course, in the brain. Many different types of iron 
supplements are available on the market, including 
ferrous and ferric iron salts, such as ferrous sulfate, 
ferrous gluconate, ferric citrate, and ferric sulfate [24]. 
Therefore, as trace element supplementation becomes 
increasingly normalized, additional attention must be 
paid to the side effects of excessive iron supple-
mentation. 
 
The toxicity of iron overload on brain functions was 
widely studied in iron injection models, and the 

intranigral infusion of ferric citrate or some other iron 
carriers resulted in increased sensitivity to 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), enhanced 
oxidative stress in nigral neurons, and accelerated 
dopamine (DA) depletion [25, 26]. However, the 
toxicity of overloaded iron intake by oral sup-
plementation on brain functions has rarely been 
explored. A study performed by Sobotka et al. found 
increased brain iron concertation and some neuro-
behavioral dysfunctions in rats with dietary iron 
overload [27], while Schroder et al. reported memory 
deficits in adult rats orally administered excessive 
ferromyn, a common iron supplement [28]. Ferric 
citrate is another common oral iron supplement and is 
widely used as a food additive in flour, formula milk, 
crackers, etc. Ferric citrate is on the registered list of 
food ingredients from the Ministry of Health, Labour 
and Welfare of Japan, and the Code of Federal 
Regulations (CFR) of the US [29]. No evidence for 
chronic toxicity or tumorigenicity of ferric citrate was 
found in mice administered long-term and low-dose 
(0.06% and 0.12%) supplementation [30], and no 
changes in the brain weight of adult rats were observed 
under high-dose ferric citrate (up to 4%) oral 
supplementation for 13 weeks [31]. However, it was 
reported that the oral administration of high-dose ferric 
citrate quickly induced a significant increase in iron in 
the male rat brain [32]. Therefore, it is reasonable to 
suspect that oral supplementation with high-dose ferric 
citrate would be harmful to the structure or function of 
the brain, especially under long-term conditions in 
middle-aged or elderly subjects, who are more sensitive 
to iron overload and its resulting oxidative stress [33, 
34]. In this study, we aimed to address this issue and 
investigate the effects of the chronic oral administration 
of ferric citrate on brain histology and neurobehavioral 
functions in middle-aged mice to provide new 
perspectives for iron supplementation. 
 
RESULTS 
 
Chronic oral administration of ferric citrate induces 
selective iron overload in the brain 
 
To evaluate the effects of the chronic supplementation 
of ferric citrate on the brain functions of middle-aged 
subjects, 9-month C57BL/6 mice were intragastrically 
administered ferric citrate (2.5 mg or 10 mg) daily for 
16 weeks. Weekly body weight and food intake, as well 
as brain weight, were measured, and no significant 
differences among the different groups were observed 
during the experimental period (Figure 1A–1C). The 
accumulation of iron in the body was analyzed after the 
mice were killed. The absorption of ferric citrate led to 
a robust increase in the serum iron level in the ferric 
citrate groups (Figure 1D), and the accumulation of iron
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Figure 1. Chronic oral administration of ferric citrate induces selective iron overload in the brain. (A to C) Quantifications show 
no differences in the body weight, daily food intake and brain weight of mice supplemented with ferric citrate. Error bars indicate SD. (D) 
Quantification shows the increased serum iron levels of mice supplemented with ferric citrate (N=10). Error bars indicate SEM.  
(E) Quantification shows the increased peripheral tissue iron levels of mice supplemented with ferric citrate (N=10). Error bars indicate SEM. 
(F) Quantification shows the selective iron overload in the brains of mice supplemented with ferric citrate (N=10). Error bars indicate SEM. (G 
and H) Representative images from Prussian blue staining show the excessive iron accumulation in the Cpu and SN of mice supplemented 
with ferric citrate. Bars, 100 μm. (I) qRT-PCR shows the increased mRNA levels of TFR1 in the Cpu and SN of mice supplemented with ferric 
citrate (N=5). Error bars indicate SEM. (J) qRT-PCR shows that the mRNA levels of FPN1 increased in the Cpu and SN of mice from the 1.25% 
ferric citrate group but decreased in those of mice from the 5% ferric citrate group (N=5). Error bars indicate SEM. Compared with the Ctr 
group, *p<0.05 and **p<0.01. Compared with the 1.25% ferric citrate group, #p<0.05 and ##p<0.01. 
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was also observed in the heart, liver, spleen and kidney, 
especially in the 5% ferric citrate group (Figure 1E). In 
the brain, the iron level was quantified by flame atomic 
absorption analysis. We found that the accumulation of 
iron was dramatically increased in the substantia nigra 
(SN), caudate putamen (CPu), olfactory bulb (OB) and 
thalamus (THA) after ferric citrate administration, and 
the hippocampal (Hip) iron level moderately increased 
in the high-dose ferric citrate group, but no such 
changes were detected in the cortex (Ctx), cerebellum 
(CB) and hypothalamus (HYP) (Figure 1F). The 
accumulation of iron in the SN and CPu, further 
confirmed by Prussian blue staining, indicated that there 
was a marked dose-dependent increase in the positive 
signals in the ferric citrate groups (Figure 1G and 1H). 
Increased iron transport, as indicated by the upregulated 
expression of the major iron uptake transporter TFR1, 
may be responsible for the accumulation of iron in the 
brain after ferric citrate supplementation (Figure 1I). 
Excessive iron is excreted by the protective exporter 
mechanism of the brain, and FPN1 functions as an iron 
efflux transporter in the brain [35]. A robust increase in 
FPN1 expression was detected in the 1.25% ferric 
citrate group, while a dramatic decrease was observed 
in the 5% ferric citrate group (Figure 1J), suggesting the 
dose- and time-dependent destruction of the balance 
between iron uptake and export with ferric citrate 
supplementation. These data demonstrated that the 
chronic oral supplementation of ferric citrate, especially 
at a high dose, could lead to an accumulation of iron in 
the brain with selective regional differences. This 
finding is consistent with previous reports that the 
concentration of iron varies greatly among different 
regions of the brain, and more iron tends to accumulate 
in the regions associated with motor functions than 
nonmotor-related regions [36, 37]. 
 
Motor and cognitive defects are associated with iron 
accumulation in ferric citrate-supplemented mice 
 
Increasing evidence has demonstrated that excessive 
iron accumulation in selective brain regions may induce 
oxidative stress-related damage and thereby cause 
neurobehavioral dysfunctions that are widely implicated 
in NDs [38, 39]. Considering the potential accumulation 
of iron in the brain after ferric citrate supplementation, 
multiple behavioral tests were performed during the 
experiment. First, locomotor functions were assessed by 
an open field test. Representative maps of mouse 
activities showed that the oral administration of ferric 
citrate could reduce the mobility of mice (Figure 2A). 
Further statistical results found that the total travel 
distance and the speed, frequency, distance and time 
spent in the center zone were decreased in the ferric 
citrate groups in a time- and dose-dependent manner 
(Figure 2B–2F). Second, the accelerated rotarod test 

and pole test were performed to measure the gross 
motor skill and motor coordination of these mice [40, 
41]. Quantification showed that compared with the mice 
in the other groups, the mice supplemented with 5% 
ferric citrate displayed a significant time-related 
decrease in fall latency (Figure 2G), while the times 
required for the mice to turn around and descend to the 
floor in the pole test were remarkably increased (Figure 
2H and 2I). Then, in the last experimental week, the 
grip strength of these mice was measured with a traction 
test [42], and the results showed that the mice from the 
5% ferric citrate supplementation group spent much less 
time on the rope than those from the other two groups 
(Figure 2J). In addition, as mentioned above, the iron 
concentration in the hippocampus was also increased in 
the 5% ferric citrate-supplemented mice; thus, we also 
performed a Y-maze test to assess the cognitive 
function of these mice [43]. As shown in Figure 2K, the 
frequency that mice entered the novel arm of the Y-
maze was lower in the 5% ferric citrate group than in 
the control group. These results showed the effects of 
the chronic oral intake of ferric citrate on impairing the 
motor and cognitive functions of middle-aged mice, and 
these behavioral defects are known to be indicative of 
experimental parkinsonism [44]. Therefore, we consider 
these middle-aged ferric citrate over-supplemented mice 
to be a potential PD animal model, which will be a 
powerful tool for research on PD mechanisms and 
drugs. 
 
Iron overload induced by ferric citrate supplemen-
tation causes neurotoxicity in SN and CPu 
 
Given that the brain iron accumulation resulting from 
the chronic oral uptake of ferric citrate caused motional 
and cognitive defects, we further explored the under-
lying histopathological damage. As shown by H&E 
staining, nerve cell swelling was present in the SN, 
while white matter edema and vasodilatation were 
observed in the CPu of the mice supplemented with 5% 
ferric citrate (Figure 3A and 3B), but no observable 
pathological changes were found in the 1.25% ferric 
citrate and control groups. Moreover, cell swelling or 
white matter edema was also found in the globus 
pallidus, thalamic and red nuclei (Supplementary Figure 
1). These histopathological findings suggested the 
occurrence of neuroinflammation after ferric citrate 
supplementation, which was further evidenced by 
detecting the expression of inflammatory factors. As 
shown in Figure 3E, the expression levels of the 
proinflammatory factors TNF-α and IL-6 were 
increased, while the expression of the anti-inflammatory 
factor IL-4 was suppressed in the 5% ferric citrate 
group (Figure 3E). Nissl staining was performed to 
quantify the numbers of neurons in the SN and CPu and
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Figure 2. Motor and cognitive defects are associated with iron accumulation in ferric citrate-supplemented mice. (A) 
Representative maps of mouse activities in the open field test. (B) Effect of ferric citrate on the distance traveled by mice. (C) Effect of ferric 
citrate on the speed of mice. (D) Effect of ferric citrate on the time mice spent in the center zone. (E) Effect of ferric citrate on the frequency 
mice moved into the center zone. (F) Effect of ferric citrate on the distance mice traveled in the center zone. (G) Effect of ferric citrate on the 
fall latency of mice. (H and I) Effect of ferric citrate on the performance of mice in the pole test. (J) Effect of ferric citrate on the time to fall of 
mice in the traction test. (K) Effect of ferric citrate on the cognitive functions of mice, as evidenced by the quantification of their frequency to 
enter the novel arm in the Y-maze test. Error bars indicate SD. Compared with the Ctr group, *p<0.05 and **p<0.01. Compared with the 
1.25% ferric citrate group #p<0.05 and ##p<0.01. 
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displayed a remarkable neuronal loss in the 5% ferric 
citrate group (Figure 3C, 3D and 3F). Specifically, the 
neurons lost in the SN were dopaminergic neurons, as 
indicated by tyrosine hydroxylase (TH) staining and 
qRT-PCR (Figure 3G–3I), which further resulted in the 
depletion of dopamine (DA) and its metabolite 
(dihydroxyphenylacetic acid, DOPAC) in the CPu 
(Figure 3J and 3K). Besides, the expression of dopamine 
transporter (DAT) in striatum was also reduced in 5% 
ferric citrate group (Figure 3L). Moreover, our study 
further demonstrated that cellular apoptosis was 
responsible for the neuronal loss in the SN and CPu, as 
many more positive signals were observed in the 
subjects in the 5% ferric citrate group by TUNEL and 
cleaved caspase-3 staining (Figure 3M to 3O). 
Dopaminergic neurons constitute a major source of 
dopamine, which is one of the most important 
neurotransmitters involved in the nigrostriatal pathway 
that controls voluntary motor movement [45]. 
Therefore, the neurotoxicity to SN dopaminergic 
neurons after the chronic oral uptake of ferric citrate 
may be the cause for the behavioral defects previously 
observed. Lewy bodies are important clinical 
manifestation in PD patients, but in our model, even we 
have detected increased expression of alpha synuclein (a-
syn) in the CPu from 5% ferric citrate group (Figure 3L), 
but we didn’t observe any Lewy body both in SN and 
CPu (Data not shown).  
 
Oxidative stress-induced neuronal loss is implicated 
in the neurotoxicity of ferric citrate supplementation 
 
As a transition metal, iron is capable of generating 
hydroxyl radicals via the Fenton reaction. 
Consequently, elevated iron deposition induces 
oxidative stress and triggers the accumulation of 
oxidative damage and neuronal death, which is widely 
implicated in NDs [8, 46]. To explore whether oxidative 
stress was induced by chronic ferric citrate 
supplementation, oxidative damage was analyzed in the 
SN and CPu of mice. Lipid peroxidation was evaluated 
by 4-hydroxynonenal (4-HNE) staining, and a 
widespread increase in 4-HNE positive signals was 
observed in the SN and CPu of mice, especially in the 
5% ferric citrate group (Figure 4A and 4B). This 
increased 4-HNE level was accompanied by an increase 
in malondialdehyde (MDA) (Figure 4C), another 
product generated from lipid peroxidation [47]. 
Oxidative damage to proteins and DNAs was quantified 
by a protein carbonylation assay kit and an 8-
hydroxydeoxyguanosine (8-OHdG) assay kit, 
respectively [48]. The data showed that markedly higher 
levels of protein carbonylation (PC) and 8-OHdG were 
present in the SN and CPu of mice in the 5% ferric 
citrate supplementation group than in the control group 
(Figure 4D and 3E). Iron accumulation was reported to 

result in the depletion of reduced glutathione (GSH), 
resulting in decreased oxidative defense [49]. 
Consistent with this observation, we detected a 
significant decrease in GSH in the SN and CPu of mice 
from the 5% ferric citrate group (Figure 4F). In 
addition, the expression levels of multiple critical 
antioxidant defense genes, such as superoxide 
dismutase 1 (SOD1), catalase (CAT) and glutathione 
peroxidase (GPX), were downregulated in the SN and 
CPu of mice supplemented with 5% ferric citrate 
(Figure 4G), and the activities of SOD in these tissues 
were also reduced (Figure 4H). Accumulating oxidative 
damage triggered cellular apoptotic processes, as shown 
in Figure 3L and 3M. This finding suggested that the 
oxidative stress generated in the ferric citrate-
supplemented mice was involved in dopaminergic 
neuronal loss and neurobehavioral defects. 
 
DISCUSSION 
 
The potential neurodegenerative effects of iron overload 
in specific brain regions have been explored before. 
Correlations among iron accumulation, DA/DOPA 
concentrations, and progressive nigral atrophy have 
been found in models intranigral infused with different 
iron reagents, such as ferric chloride, ferric citrate and 
ferric ammonium citrate [25, 26, 50]. Iron overload 
models induced by oral supplementation were also 
preliminary studied by some groups. Sobotka et al. fed 
adult weanling rats diets composed of different doses of 
iron for 12 weeks, and reduced total activity, impaired 
avoidance learning and prepulse inhibition were 
detected in the high-dose group (20 000 ppm). 
However, the iron concentrations in different brain 
regions and the pathological injuries responsible for 
behavioral defects were not evaluated in that study [27]. 
Iron overloaded diets were administered to adult rats for 
7 days by Yu et al., who found increased iron/MDA and 
decreased GSH in the brain [51]. The far-reaching 
effects of postnatal iron over-supplementation on 
learning behavior were also evaluated in rat pups. 
Short-term (3 days) administration of excessive 
ferromyn to 10-day-old rats resulted in significantly 
increased iron concentrations in the SN and memory 
defects at adult ages [28]. In this study, we first 
systematically evaluated the effects of long-term oral 
iron overload on neurobehavior and its underlying 
mechanism in middle-aged subjects. Selective iron 
deposition was observed in different brain regions, 
which is different from a previous study with short-time 
administration [51]. The iron accumulation induced 
oxidative stress in the SN/CPu and further induced 
neuronal apoptosis, which led to dopaminergic neuronal 
loss and defects in the motor and cognitive functions of 
the mice in our study. These data reveal the
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Figure 3. Iron overload induced by ferric citrate supplementation causes neurotoxicity in the SN and CPu. (A and B) 
Representative images of H&E staining display the histopathological damage in the CPu and SN induced by ferric citrate supplementation. 
Red arrows show white matter edema, red stars show vasodilatation, and green arrows display nerve cell swelling. (C, D and F) 
Representative images and quantification of NISSL staining display the decreased numbers of neurons in ferric citrate-supplemented mice. 
Error bars indicate SD. (E) qRT-PCR showed increased mRNA levels of TNF-α and IL-6 and decreased expression of IL-4 in the Cpu and SN of 
mice supplemented with ferric citrate (N=5). Error bars indicate SEM. (G and H) Representative images and quantification of TH staining 
display decreased numbers of dopaminergic neurons in the SN of mice supplemented with ferric citrate. Error bars indicate SD. (I) qRT-PCR 
shows decreased mRNA levels of TH in the SN of mice supplemented with ferric citrate (N=5). Error bars indicate SEM. (J and K) 
Quantifications show the decreased levels of DA and DOPAC in mice supplemented with ferric citrate. Error bars indicate SEM. (L) qRT-PCR 
show the mRNA levels of DAT and a-syn in the SN of mice supplemented with ferric citrate (N=5). Error bars indicate SEM. (M to O) 
Representative images and quantification from TUNEL and cleaved caspase-3 staining display the increased neuronal apoptosis in the SN of 
mice supplemented with ferric citrate. Bars, 100 μm. Compared with the Ctr group, *p<0.05 and **p<0.01. Compared with the 1.25% ferric 
citrate group, #p<0.05 and ##p<0.01. 
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neurotoxicity of the chronic oral uptake of ferric citrate 
to the brain of middle-aged mice in a region-selective 
and time-dependent manner. 
 
In addition to iron supplements, ferric citrate is also 
used as a phosphate binder to treat hyperphosphatemia 
both in patients with dialysis- and nondialysis-
dependent chronic kidney disease (CKD) [52]. The 
typical initial dose of ferric citrate hydrate is 
approximately 500 mg 3 times per day after meals; then, 
the dosage is adjusted based on the concentration of 
serum phosphorus, and a maximum daily dose of  
6 000 mg ferric citrate hydrate is suggested. Ferric 
citrate hydrate is composed of approximately 20% 
water by weight; thus, the maximum daily dose of ferric 
citrate was approximately 4800 mg [29]. In our study, 
the daily doses of ferric citrate were approximately 83.3 
mg/kg and 333.3 mg/kg in the 1.25% and 5% groups, 
respectively. These daily doses could be converted to 
equivalent doses for human adults (subjects with 70 kg 

bodyweight) according to previously described [53, 54] of 
approximately 646.5 mg and 2585.9 mg. These equivalent 
doses (646.5 mg and 2585.9 mg) are less than the 
currently suggested maximum daily dose for ferric citrate 
(4800 mg). As progressive neurobehavioral dysfunctions 
and accumulating brain pathological damages were 
present in the mice administered ferric citrate in our study, 
we think that more attention needs to be directed to the 
current suggested dose of ferric citrate or ferric citrate 
hydrate both for the treatment of hyperphosphatemia and 
as an iron supplement, especially in cases with long-term 
medication and middle or even elderly ages. 
 
Considerable injuries occur before the onset of clinical 
symptoms in PD patients, making the identification of 
early events a challenge. Animal disease models, both 
toxic and genetic, are important for the pathophysiological 
studies, new medical target identification, and risk factor 
screening of PD. MPTP injection is the most widely used 
method to generate PD models in mice and nonhuman

 

 
 

Figure 4. Oxidative stress-induced neuronal loss is implicated in the neurotoxicity of ferric citrate supplementation. (A and B) 
Representative images of immunohistochemical 4-HNE staining show the accumulation of lipid peroxidation in the CPu and SN induced by 
ferric citrate supplementation. (C–E) Quantifications show the increased peroxidation of lipids, DNAs and proteins in the CPu and SN induced 
by ferric citrate supplementation. (F) Quantification shows the decreased GSH levels in the CPu and SN induced by ferric citrate 
supplementation. (G) qRT-PCR shows the decreased mRNA levels of typical antioxidant genes in the CPu and SN of mice supplemented with 
ferric citrate (N=5). (H) Quantification shows the decreased activities of SOD in the CPu and SN induced by ferric citrate supplementation. 
Error bars indicate SEM. Bars, 100 μm. Compared with the Ctr group, *p<0.05 and **p<0.01. Compared with the 1.25% ferric citrate group, 
#p<0.05 and ##p<0.01. 
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primates [55, 56]. A profound loss of DA in the CPu/SN 
resulting from damage to the nigrostriatal DA pathway 
is present after MPTP injection [57]. However, an acute 
or subacute pathological process is displayed in MPTP 
models, so it is not suitable for the observation of 
developing pathological processes or screening early 
diagnostic indicators of PD. Such defects are also 
present in models induced by 6-hydroxydopamine (6-
OHDA). Moreover, the establishment of this model is 
not very convenient because 6-OHDA cannot cross the 
blood-brain barrier, and it can only be directly injected 
into the SNc, medial forebrain bundle or striatum to 
induce parkinsonism [58]. Rotenone is another 
commonly used agent to develop PD models. In 
contrast to MPTP and 6-OHDA, the induction of 
parkinsonism by rotenone can be chronic and 
continuous [59]. Modeling time can last up to 
approximately 2 months, and many features of PD can 
be reproduced in this model [60]. However, the 
mortality of this model can be high, and the replication 
is poor [61]. In our study, we found that the chronic oral 
administration of ferric citrate could induce the 
phenotypes of parkinsonism in mice, including the 
selective degeneration of the dopaminergic neurons, 
iron accumulation and oxidative stress in the CPu and 
SN, as well as defects in locomotor and cognitive 
functions, which suggest that this model could be a 
potential animal disease model for PD. And, this model 
has two major advantages over existing ones. First, the 
longer modeling time and progressive behavioral and 
pathological development make this model more 
suitable for monitoring the early events and screening 
the early diagnostic indicators of PD. Second, 
selectively iron deposition in this model will make it 
valuable for the study of PD treatments. For example, 
the emergence of iron mismanagement has elicited 
interests in developing neurotherapeutic strategies with 
chelation therapies, which have been tested in cell 
models, animal models and clinical studies. 
Desferrioxamine (DFO), a cell impermeable iron 
chelator, has been reported to reduce DA neuronal 
degeneration both in the 6-OHDA-induced rat model 
and MPTP-treated mouse model [62]. While, VK28, a 
strong brain permeable iron chelator, also displays 
neuroprotection effect on the PD progression in the 6-
OHDA-treated rat model [63]. Besides, neurorestorative 
effects of iron chelation on PD have even been reported 
in some studies [64–66]. However, iron deposition is 
not a typical feature for both MPTP models or 6-OHDA 
models, and this is the advantage of our model. Thus, 
this model could be a more suitable choose to evaluate 
the effects of iron chelator on PD, and to study whether 
this protection of iron chelator is dependent on chelation 
of iron or not. In addition to these advantages, 
limitations need to be thought for our model. First, 
considerations and studies of the impact of peripheral 

iron overload on the progression of PD in this model are 
needed. Second, as region specific iron may vary 
depending on different PD stages, the dosage of iron 
supplements during disease progression may be 
different and could be changed. 
 
In conclusion, we first reported that long-term oral 
supplementation with high-dose ferric citrate to middle-
aged mice caused selective iron accumulation in the 
SN/CPu, which further induced oxidative stress-
mediated dopaminergic neuronal loss. The defects in 
locomotor and cognitive functions resulting from these 
histopathological injuries were observed in these mice. 
Our research provides a new perspective for ferric 
citrate in food additives and clinical applications and a 
new potential method for developing PD animal 
models. 
 
MATERIALS AND METHODS 
 
Animal care and maintenance 
 
All animal works were performed in accordance with 
the requirements of “The National Institutes of Health 
Guide for the Care and Use of Laboratory Animal” and 
were approved by the Animal Welfare and Animal 
Ethics Committee of Sichuan Agricultural University, 
China. Sixty C57BL/6 male mice (9 months old) were 
obtained from Beijing Weitong Lihua Experimental 
Animal Technology Co. Ltd. and maintained in 
individual cages in a specific pathogen-free environ-
ment with an automatically controlled 12-hour 
light/dark cycle and free access to food and water for  
7 days. Then, the mice were randomly divided into  
3 groups, with 20 mice in each group, including the 
control group (Ctr), 1.25% ferric citrate group and 5% 
ferric citrate group. The dosages of ferric citrate refer to 
Toyoda’s study [31]. We used male mice to generate 
our model because the males do not have the 
physiological cycle of the females, and the hormones in 
males maintain a dynamic balance, which is important 
for the experimental stability and repeatability. Before 
ferric citrate administration, 5 g ferric citrate was 
dissolved in 100 ml physiological saline to obtain a 5% 
ferric citrate solution when heated to boiling. Then, a 
gradient dilution was performed to obtain a 1.25% ferric 
citrate solution. Under these conditions, the solubility of 
ferric citrate was good, and the solution was clear. In 
our study, 0.2 ml of ferric citrate solution was 
intragastrically administrated to the mice each day, and 
an equal volume of physiological saline was intra-
gastrically administrated to the mice in the control 
group. Therefore, the daily chemical intake was 2.5 mg 
and 10 mg in the low- and high-dose ferric citrate 
groups, respectively (Table 1). The intragastric 
administration of ferric citrate was performed daily
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 Table 1. Animal treatments. 

Group 
The volume of intragastric 

administration 
(ml/day) 

Chemical intake 
(mg/day) 

Conversion dose* 
(mg/kg/day) 

Ctr 0.2 0 0 

1.25% 0.2 2.5 83.3 

5% 0.2 10 333.3 

Ctr, control group that was intragastrically administered physiological saline.  
*The conversion dose of ferric citrate was calculated according to the initial average bodyweight of the mice (~30 g) 
 

beginning at 10:00 am for 16 weeks, and the body 
weight and food intake were determined weekly. 
Behavioral tests were conducted to evaluate the effects 
of ferric citrate on locomotor and cognitive functions 
during the first week of the trial and each subsequent 
month. At the end of the trial, all mice from each group 
were randomly and evenly divided into two groups. 
Subjects from one group were killed by decapitation, 
and then the brain, heart, liver, spleen and kidney were 
obtained and frozen in liquid nitrogen for RNA 
extraction and biomedical assays. Subjects from the 
other group were anesthetized with 4% chloral hydrate 
and perfusion-fixed with 4% paraformaldehyde. The 
same organs were obtained and fixed in 4% para-
formaldehyde and cryopreserved for subsequent 
histological and immunostaining. 
 
Detection of iron 
 
The levels of iron in serum, heart, liver, spleen and 
kidney were determined by a Colorimetric Assay Kit 
(Nanjing Built Biology, Nanjing, China) according to 
the manufacturer’s instructions. The iron levels in the 
brain were quantified by flame atomic absorption 
analysis. Briefly, the sample was digested in 
concentrated nitric acid at 180 °C for 2 h (Mars 6, 
Thermo Fisher Scientific Inc. Waltham, MA, USA). 
Then, the iron concentration was determined by flame 
atomic absorption spectrometry (Model PE-800, 
PerkinElmer, USA). Validation of the mineral analysis 
was conducted using green tea or bovine liver powder 
as a standard reference material (National Institute of 
Standards and Technology, Beijing, China). 
 
Perls staining 
 
First, paraffin slices were dewaxed, soaked in distilled 
water for 3 min, and then incubated in Perls solution 
containing 7% potassium ferrocyanide and 3% 
hydrochloric acid at a 1:1 ratio for 30 min, followed by 
three washes in PBS. Second, the slices were soaked in 
1% H2O2 for 30 min and washed 3 times with distilled 

water. Finally, the slides were incubated in PBS 
containing 0.25 mg/mL DAB and 0.02% H2O2 for  
10 min, counterstained for 5 min, dehydrated with 
gradient alcohol and mounted with xylene. 
 
Behavioral studies 
 
Open field test 
The open field test was performed according to a 
previous report [67]. An open field device was provided 
by Jiangsu Cyrus Biotechnology Co. Ltd. and consisted 
of a white square arena (50×50 cm2, 50 cm high) and 
video capture system. The test was initiated by placing 
the mouse at the center of the arena and allowing the 
mouse to explore the arena for 10 min. Then, locomotor 
activities were analyzed by using an ANY-maze animal 
behavior video analysis system (Global Biotech Inc., 
USA). 
 
Accelerated rotarod test 
An accelerated rotarod test was performed according to 
a previous study [68]. An accelerated rotarod 
experimental device was provided by Jiangsu Cyrus 
Biotechnology Co. Ltd. The mice were placed in a 
uniform rotating rod (rotation speed 5 r/min) with a 9 
cm wide lane and a 3 cm diameter rotating rod. When 
the speeds of the mice were stable, they underwent a 
uniform acceleration process (maximum time of 5 min, 
speed increases every 8 s) three times. The average 
retention time on the revolving rod was determined. The 
day before the test, all the mice were pretrained on the 
rotarod three times (1 h interval). 
 
Pole test 
The pole test was performed as previously described 
[41]. Briefly, mice were placed vertically on a 50 cm 
tall pole with a 1 cm diameter, after which the mice 
make a 180° turn and return to the base of the pole. The 
day before the test, the mice were habituated to the pole 
5 times. During the test, the amount of time was 
recorded for the mouse to turn toward the ground (time 
to turn) and to reach the ground (time to climb). Each 
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mouse underwent five trials, and the average times were 
quantified. 
 
Traction test 
Both forelimbs of the mice were hung on a wire with a 
diameter of 1.5 mm, 30 cm above the ground, and a cap 
was placed 1 cm above the rod to prevent the mice from 
turning over. The time before landing was recorded, and 
each test interval was 1 min. A total of 5 tests were 
conducted to average. 
 
Y-maze test 
A food reward type of Y-maze test was performed as 
previously described [69]. Briefly, all mice were 
subjected to a 2 Y-maze test trials separated by a 1-h 
intertrial interval to assess spatial recognition memory. 
The mice were fasted the day before the test. The first 
stage was the training period. The new arm was blocked 
by the partition, and the mouse was placed in the 
labyrinth and allowed to freely move from the starting 
arm for 10 min. The second stage was the detection 
period. Food was placed at the new arm, and the mouse 
was allowed to freely move in the maze for 5 min. Data 
are expressed as the percentage of novel arm entries 
made during the 5-min trial. 
 
Histopathologic analysis 
 
H&E and Nissl staining 
Organs were fixed in 4% paraformaldehyde before 
paraffin sectioning. Then, hematoxylin and eosin 
(H&E) and Nissl staining were performed according to 
the instructions provided by the manufacturer 
(Beyotime, Shanghai, China). The number of neurons 
was quantified by Image Pro Plus (MEDIA 
CYBERNETICS, USA). 
 
Immunohistochemical staining 
Organs were fixed in 4% paraformaldehyde before 
paraffin sectioning. Then, the paraffin slices were 
dewaxed and subjected to immunohistochemical 
staining with standard methods [70] and primary 
antibodies, including tyrosine hydroxylase (TH) 
(ENZO, USA, 1:1000), 4-hydroxynonenal (4-HNE) 
(Abcam, USA, 1:1000) and cleaved caspase-3 (ZEN 
BIO, China, 1:100). Positive signals were visualized 
using colorimetric detection with diaminobenzidine 
(DAB), and the hematoxylin indicated the nucleus. 
Finally, the images were photographed with a 
microscope (BX63, Olympus). 
 
Enzyme-Linked Immunosorbent (ELISA) and 
Biochemical Reaction assay 
 
The levels of dopamine (DA), 3,4-dihydroxyphenylacetic 
acid (DOPAC), 8-hydroxy-2- deoxyguanosine (8-OHdG) 

Table 2. Real-time fluorescence quantitative PCR 
primer sequences. 

Gene Primer (5′-3′) 
Product 
size (bp) 

TH 
F CTCCCAGGACATTGGACTTGC 

153 
R TCTCCATAGGAAGACAGCAGCC 

α-syn 
F AAGAAGGACCAGATGGGCAAG 

135 
R GGCTTCAGGCTCATAGTCTTGG 

SOD1 
F TGGAGACCTGGGCAATGTGA 

147 
R CCACCTTTGCCCAAGTCATC 

CAT 
F GGTCACCGGCACATGAATGG 

100 
R CCTGGTCGGTCTTGTAATGGAAC 

GPX-1 
F CCAGGAGAATGGCAAGAATGA 

138 
R AGGAAGGTAAAGAGCGGGTGA   

TNF-α 
F CATTGCTGCCAACATCATCCA 

92 
R CCAGAGCGGCTACTCAGAAACT 

IL-4 
F GTTGCCTTCTTGGGACTGATGT 

96 
R TCTGTTGTGGGTGGTATCCTCTG 

IL-6 
F CTGTTGCTGCTACTGAACCTGG 

134 
R CGCTTTTGAGCTAAGGGAGTTG 

DAT 
F GGAGTGCTCATTGAAGCCATTG 116 
R TTCCAGCATAGCCGCCAGTA 

β-actin 
F CATCCGTAAAGACCTCTATGCCAAC 

171 
R ATGGAGCCACCGATCCACA 

 

and protein carbonylation (PC) were measured by ELISA 
assay kits (Shanghai Enzyme Linked Organisms, 
Shanghai, China) according to the manufacturer’s 
instructions. The activity of superoxide dismutase (SOD) 
and the levels of glutathione (GSH) and malondialdehyde 
(MDA) were determined by a biochemical reaction assay 
kit (Nanjing Built Biology, Nanjing, China) according to 
the manufacturer’s instructions. 
 
Quantitative real-time PCR 
 
Total RNA was extracted from the sample using 
RNAiso Plus (TaKaRa, Dalian, China). Total RNA was 
subjected to reverse transcription using the PrimeScript 
RT reagent kit with gDNA Eraser (Perfect Real Time) 
(TaKaRa). Quantitative real-time PCR was performed 
using the Bio-Rad® CFX96 PCR System (Bio-Rad, CA, 
USA), and the relative gene expression was normalized 
to β-actin as the internal control. The primer sequences 
of the target genes are described in Table 2. 
 
Statistical analysis 
 
The regions of the mouse brain were located according 
to an anatomical map by Pingyu Wang [71]. A one-way 
ANOVA with LSD correction was used to compare 
different groups. Data are expressed as the mean ± 
standard deviation (X±SD) for bodyweight, food 
uptake, behavioral test and staining, while the 



www.aging-us.com  9857 AGING 

quantifications for iron concentration, qRT-PCR, and 
oxidative damage are presented as the mean ± SEM (X 
± SEM). Analyses were performed using SPSS 20.0 
software (IBM Corp, USA) for Windows, with the level 
of significance set at 0.05. 
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SUPPLEMENTARY MATERIALS  

 

 
 

Supplementary Figure 1. Representative images of H&E staining display the histopathological damage in globus pallidus, 
thalamic and red nuclei of the brain induced by ferric citrate supplementation. Red Stars show white matter edema, red arrows 
show display nerve cell swelling. 
 


