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Hourglass Dirac chain metal in rhenium dioxide

Shan-Shan Wang1, Ying Lid!, Zhi-Ming Yu!, Xian-Lei Shengl2 & Shengyuan A. Yang 1

Nonsymmorphic symmetries, which involve fractional lattice translations, can generate exotic
types of fermionic excitations in crystalline materials. Here we propose a topological phase
arising from nonsymmorphic symmetries—the hourglass Dirac chain metal, and predict its
realization in the rhenium dioxide. We show that ReO, features hourglass-type dispersion in
the bulk electronic structure dictated by its nonsymmorphic space group. Due to time
reversal and inversion symmetries, each band has an additional two-fold degeneracy, making
the neck crossing-point of the hourglass four-fold degenerate. Remarkably, close to the Fermi
level, the neck crossing-point traces out a Dirac chain—a chain of connected four-fold-
degenerate Dirac loops—in the momentum space. The symmetry protection, the transfor-
mation under symmetry-breaking, and the associated topological surface states of the Dirac
chain are revealed. Our results open the door to an unknown class of topological matters, and
provide a platform to explore their intriguing physics.
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opological metals or semimetals, which host robust fer-
mionic excitations around protected band-crossing points,
have been a focus of current research. For example, Weyl
and Dirac semimetals possess two- and four-fold degenerate
isolated band-crossing points close to the Fermi level, around
which the quasiparticles resemble the relativistic Weyl and Dirac
fermions'~'®. Under certain symmorphic symmetry operations
such as mirror or inversion, the crossing points may also form
one-dimensional (1D) nodal loops”‘30 or even linked nodal
loops®'=4, but such loops are usually vulnerable against
spin—orbit coupling (SOC) and can be removed without altering
the symmetry, hence they are termed as accidental nodal loops.
Recently, it was realized that nonsymmorphic symmetries, which
involve fractional lattice translations, could play a key role in
stabilizing the band-crossing points*>~*3. They have two impor-
tant effects. First, the degeneracies enabled by nonsymmorphic
symmetries could be robust against SOC. Particularly, spin—orbit
nodal loops with two- or even four-fold degeneracy have been
theoretically proposed**~*3. Second, nonsymmorphic symmetries
may entangle multiple bands together, so that the resulting
crossing points are unavoidable and entirely dictated by the
crystalline symmetry. Such band-crossing points are thus referred
to as essential. For example, it was found that bands are entangled
into groups of four and form hourglass-shaped dispersion on the
2D surface of nonsymmorphic insulators KHgX (X = As, Sb, Bi)
49-51 Theoretical modeling suggested that such hourglass fer-
mions may also exist in the bulk of 3D crystals®?, and interest-
ingly, Bzdusek et al.>> showed that the neck point of the hourglass
may trace out a Weyl chain of two-fold-degenerate nodal loops,
when multiple nonsymmorphic operations are present.
Although the essential band-crossings are solely determined by
the space group for which theoretical analysis has offered valuable
guidelines, the search for realistic materials that exhibit them at
low energy is still challenging. This is because the bands in real
materials typically have complicated 3D dispersions, such that the
crossing point that we are chasing may be far away from the
Fermi energy. The situation could be even worse for nodal loops,
since the points on the loop are not guaranteed to have the same
energy, there might be large energy variation around the loop. So
far, the proposed nonsymmorphic topological metals are still
limited, therefore, besides exploring new topological phases, it is
also urgent to discover more suitable candidate materials to
expedite experimental studies of their intriguing properties.
Here we predict a remarkable topological phase that is enabled
by nonsymmorphic symmetry—the hourglass Dirac chain metal,
of which the existence can be argued purely from symmetry
analysis. Furthermore, based on first-principles calculations, we
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Fig. 1 Dirac chain and hourglass dispersion. a Schematic figure showing
Dirac chain in ReO,, which consists of one (red) loop in k, =z plane and
one (green) loop in k,=x plane. There is another isolated Dirac point
(orange dot) on T-Y. These crossings are four-fold degenerate and
correspond to the neck crossing-point of the hourglass-type dispersion. For
example, b shows the schematic band dispersion along a path on the k, ==
plane connecting R and P (an arbitrary point on U-X). Each band is two-fold
degenerate, and the neck point (green dot) is four-fold degenerate
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demonstrate that this phase is realized in an existing material—
ReO,, which serves as a solid example to illustrate the essential
physics. We show that four-fold degenerate lines and hourglass-
type essential band-crossings occur in the bulk band structure of
ReO,. Due to time reversal (7') and inversion (P) symmetries, the
hourglass here is actually doubled, and the neck crossing-point
here becomes a Dirac point with four-fold degeneracy. Remark-
ably, close to Fermi level, the neck point traces out a Dirac chain
—a chain of connected (four-fold-degenerate) Dirac loops—in
the momentum space, as schematically shown in Fig. 1a, b. This
chain is essential, robust against SOC, and dictated by two
orthogonal glide mirror planes combined with 7 and P sym-
metries. In addition, there is another pair of isolated bulk hour-
glass Dirac points on a symmetry line (Fig. 1a). We clarify the
protection of these exotic band-crossings, and discuss their
transformations under symmetry-breaking. At the sample sur-
face, we find an interesting coexistence of drumhead-type surface
states and surface Fermi arcs. The bulk hourglass Dirac chain as
well as the topological surface states should be readily probed in
experiment. Our findings provide an exciting platform to explore
the intriguing topological fermions from nonsymmorphic
symmetries.

Results

Symmetry and band structure. We demonstrate the essential
physics of hourglass Dirac chain using ReO, as a solid example.
Single-crystal ReO, is observed with three structures denoted as
a, B, and rutile-type>® 5. f-ReO, is energetically more stable, and
is experimentally shown to be a stable paramagnetic metal in a
wide temperature range from the ambient temperature down to
the liquid helium temperature (~4.2 K)°® *’. Hence we focus on
p-ReO, here. It adopts the PbO,-type orthorhombic crystal
structure with space group no. 60 (Pbcn)>*. As shown in Fig. 2a,
the structure is characterized by zigzag chains of Re atoms run-
ning along the c-axis, and each Re atom is contained in a slightly
distorted octahedron of six surrounding O atoms. As we shall see,
the hourglass Dirac chain is solely dictated by the space group
symmetry of the structure, which may be generated by the fol-
lowing symmetry operations: the inversion P, and two glide
mirror planes involving half lattice translations M, : (x,y,z) —
(—x+1,y+12) and M, : (x,p,2) > (x+1,y+1,—z+1).
Here the tilde above a symbol indicates that it is a non-
symmorphic symmetry. One also notes that combining all three
operations leads to a third glide mirror
M, : (x,y,2) — (x,—y,z+13). The Brillouin zone of the struc-
ture is shown in Fig. 2b.

The electronic band structure of ReO, is calculated by first-
principles methods based on the density functional theory (DFT).
SOC was included, and possible correlation effect of Re(5d)
orbitals was tested. The details are presented in the Methods
section. Following experimental results, we focus on the
paramagnetic phase of f-ReO,, the possibility of magnetic
ordering at ultra-low temperature (<4.2K) will be discussed
later in the Discussion section. In octahedral crystal field, Re(5d)
orbitals are split into #,, and e, groups, with the latter at higher
energy. For Re** with 3 valence electrons, the Re-t,, orbitals will
be half-filled, resulting in a metallic state. Figure 2c shows the
calculated band structure of ReO, along with the projected
density of states (PDOS). Indeed, one observes a metallic phase
with fairly dispersive bands around Fermi level, and the low-
energy states are dominated by the Re-,, orbitals. Understanding
that each band is at least two-fold degenerate due to the presence
of 7 and P, two interesting type of band features can be observed
from Fig. 2c: Firstly, all bands are four-fold degenerate along
U-X, Z-T, and T-R (Fig. 2b); secondly, hourglass-shaped
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Fig. 2 Crystal and electronic structures of ReO,. a Crystal structure of
ReO,. b 1/8 Brillouin zone. The red lines indicate the paths where bands are
four-fold degenerate. ¢ Electronic band structure along with PDOS. d-f The
enlarged band structure around the four-fold-degenerate neck-crossing
points. The hourglass dispersion along U-R is somewhat distorted, as
schematically shown in the inset of e

dispersions appear on T-U, U-R, and T-Y (Fig. 2d—f). The neck
point of the hourglass is a crossing-point with four-fold
degeneracy. In the following, we shall demonstrate each feature
purely from the symmetry of the system.

Four-fold degenerate high-symmetry nodal lines. Let us first
investigate the first feature regarding the four-fold degeneracy
along the three high-symmetry lines. Consider the U-X line at k,
=x and k,=0 (in unit of the inverse of respective lattice para-
meter). It is an invariant subspace of M, so each Bloch state |u)
there can be chosen as an eigenstate of M,. Since

(Mx)zz TorE = —e ™™, (1)

the M x eigenvalue g, must be +i on U-X. Here T,o denotes the
translation along y by one unit cell, and E is the 2z spin rotation.
The commutation relation between M, and P given by

MP = Ty ¢PM, (2)

means that {M,, P} =0 on U-X. Consequently, each state |u)
and its Kramers-degenerate partner P7 |u) must share the same
M, eigenvalue. For example, assume |u) has g, =+i (denoted as
|+1)), then

M(PT|+i)) = =PT (+i)|+i) = i(PT|+i)),  (3)
where in the second step we used the fact that 7 is an anti-
unitary operator. Same result holds for a state with g, =—i. On the

other hand, U-X is invariant under another anti-unitary sym-
metry M,7T, which also generates a Kramers-like degeneracy
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since (/\;IZT)ZZ —1 on U-X. Note that
Mx-/\;lz = _TTOOMZM)C? (4)

where the minus sign is due to the anti-commutativity between
two spin rotations, i.e., {6,, 6,} =0, so that [Mx7/\/l ] =0 on
U-X. Following similar derivation in Eq. (3), one finds that |u)
and M,7T|u) have opposite g, Thus, the four states,
{|u), PT |uy, M.T |u), PM;|u)} at the same k-point on U-X
must be 11nearly independent and degenerate with the same
energy. The four-fold degeneracy along Z-T and T-R can also be
derived in a similar way (Supplementary Note 1).

Hourglass dispersion and Dirac chain. Next, we turn to the
second feature regarding the hourglass dispersion. Consider the
line U-R. It is invariant under both M, and M. From Eq. (4),
[M,, M.] =0 on U-R, so each state |u) there can be chosen as
simultaneous eigenstate of both operators, with eigenvalues
(g0,8:) = (+i, +1)e /2 Using the commutation relation in

(2) and M, P =T, 1173/\/12, one finds that
(./\;lx,./\;lz)'PT|gx,gZ> = (8,8)P7T (g, &), (5)

so the Kramers pair |u) and P7 |u) at any k-point on U-R share
the same (g,, g.) eigenvalues. In addition, points R and U are
time-reversal invariant momenta. At R= (7, 7, 7), (g, &) = (%1
+i), hence if |u) has eigenvalues (g, g.), its Kramers partner 7 |u)
must have (g,, —g,). Similarly, at U= (z, 0, ), since (g, g,) = (+i,
1), 7 |u) must have eigenvalues (—g,, &) if |u) has (g, g)-
Focusing on the eigenvalue g,, the analysis shows that the four
states in the degenerate quartet (may be chosen as
{lu), T|u), Plu), PT |u)}) at R all have the same g, (+1 or —1);
whereas at point U, they consist of two states with g, = +i and two
other states with g,=-i. Hence there has to be a switch of
partners between two quartets along U-R, during which the eight
bands must be entangled to form the hourglass-type dispersion.
The situation is schematically shown in Fig. 3a. It is important to
note that the four-fold-degenerate neck crossing-point (denoted
as D on U-R) is protected because the two crossing doubly
degenerate bands have opposite g, (with each degenerate pair
sharing the same g,, as shown in Eq. (5) and illustrated in Fig. 3a).
_Furthermore, since the whole k=7 plane is invariant under
My, g, is well defined for any state on this plane. Hence the above
argument applies to any path lying on the k,=x plane and
connecting points U and R, which should feature an hourglass
spectrum with four-fold-degenerate crossing-point in between.
The crossing-point must trace out a closed Dirac loop L; on this
plane, as indicated in Fig. 3b. One also notes that not only U,
actually any point P on U-X has four-fold degeneracy with two
gx=+i and two g,=—i, as we analyzed before. Thus hourglass
pattern is guaranteed to appear on any path connecting R to an
arbitrary point on U-X [Fig. 3b].
Similar analysis as in the last two paragraphs applies to the k, =
7 plane, with the role played by M, replaced by M,. It shows
that hourglass pattern appears on any path connecting U to an
arbitrary point on Z-T or T-R, and the neck point of the
hourglass traces out a second Dirac loop L,, as illustrated in
Fig. 3c. Interestingly, L, and L, are orthogonal to each other, and
they touch at the point D on the U-R line. Thus they constitute a
Dirac chain in the momentum space, as shown in Fig. la.
Figure 3d, e shows the locations of the Dirac loops obtained
from DFT calculations, which are consistent with our symmetry
analysis. The chain is close to the Fermi level and has small
energy variation (<0.2eV). We stress that the presence of such
band-crossing pattern is solely determined by the space group
(plus 7). However, whether such crossings could manifest
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Fig. 3 Formation mechanism of hourglass Dirac chain. a Schematic figure of hourglass dispersion along a path on k, = z plane connecting R to any point P
on U-X (including U). The labels indicate the M, eigenvalues. Partner switching between two quartets leads to the four-fold-degenerate crossing point
(green dot). b, € Such crossing traces out Dirac loop b L; on k, =z plane, and also ¢ L, on k, =z plane. The red-colored boundaries are the lines with four-
fold band degeneracy. d, e Shape of two Dirac loops obtained from DFT. The color map indicates the local gap between two crossing bands

around Fermi level and have relatively small energy variation will
depend on the specific material.

Up to now, one may wonder whether there exists a third loop
on the k, = 7 plane, given that M, is also a symmetry. It turns out
not to be the case. Consider any state ’ gy) on k,=x plane with
M, eigenvalue g,, one can show that

My (Pﬂgy» =& (PT’gy»' (6)

Thus each Kramers pair |u) and P7 |u) have opposite g,, which is
in contrast with Eq. (5) for the other two planes. As a result, M,
can no longer protect the neck crossing-point, since each doubly
degenerate band have both M, parities and two such bands
would generally hybridize to open a gap. Thus a third Dirac loop
on the k, =z plane does not appear. This is indeed confirmed by
our DFT result. Nevertheless, symmetry does dictates hourglass
dispersion with an isolated Dirac point on T-Y (Fig. 2f), due to
the presence of additional M, symmetry on this line (Fig. 1a)
(see Supplementary Note 2 for the analysis).

Surface states. Nodal loops could feature topological drumhead-
like surface states'”. We find similar phenomena for the Dirac
chain here. For example, on the (001) surface, the projected loop
L, is centered around X point, around which one indeed observes
a pair of drumhead surface bands emanating from the projected
bulk band-crossing point (Fig. 4a, b). Note that at the surface, due
to the broken inversion symmetry, the spin-degeneracy of the
surface bands are lifted by the strong SOC. From a slab calcula-
tion, we verify that on each surface (top or bottom), the two
drumhead surface bands are indeed spin-split and non-
degenerate (Supplementary Fig. 3). Similar observation is made
on the (100) surface as well.

Interestingly, we find that the pair of isolated Dirac points on
T-Y also generates surface Fermi arcs. As shown in Fig. 4c for the
(010) surface, the arcs connect the surface-projections of the bulk
Dirac points around the protection of T point in the surface
Brillouin zone, similar to the Dirac semimetals Na3;Bi and
Cd;As,® 7. In Weyl semimetals, the surface Fermi arcs are
dictated by the nontrivial topological charges (Chern number of
+1) associated with the Weyl points. However, a Dirac point

4
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carriers zero topological charge (because it consists of two Weyl
points with opposite charges), hence the protection from
topological charge is not guaranteed. In the current case, to
reveal the possible mechanism that protects the Fermi arcs, we
notice that the plane in Brillouin zone containing the points Z, T,
and S is invariant under 7 and without band-crossing. Hence a
2D Z, invariant can be defined for this plane and is found to be
nontrivial (Supplementary Fig. 5), which dictates a Kramers pair
of surface states on the T-S line of the (010) surface. Thus, the
Fermi arcs on this surface cannot be eliminated and is protected
by the nontrivial bulk Z, invariant.

Discussion
Our work not only reveals a hitherto unknown topological phase,
it also finds an existing material for its realization. The hourglass
Dirac chain revealed in ReO, represents an essential band-
crossing: it is robust against SOC and dictated by the crystalline
symmetry. We also studied a few other materials with the same
space group symmetry, and indeed the same qualitative features
can be observed in their band structures (Supplementary Note 8).
As the band-crossings discussed here are all dictated by sym-
metry, they must be kept as long as the space group symmetry is
maintained. In Fig. 5a, b, we demonstrate that when we distort
the crystal lattice while maintaining the symmetry, the shape and
the size of the chain can change, but it cannot be destroyed. In
contrast, if we break the symmetry, e.g. by varying the angle
between a and b axis away from 90° (corresponding to some
shear strain) to change the lattice from orthorhombic to mono-
clinic, the chain will lose (part of) its protection. In this case, the
distortion breaks M, but still preserves M, and P, thus the
Dirac loop on the k, =z plane is still protected (Fig. 5c), whereas
the loop on the k.= plane and the Dirac point on T-Y are
removed. These are confirmed by the DFT calculation.
Compared with the Weyl chain proposed in ref. °3, the Dirac
chain here is fundamentally different due to the doubled degen-
eracy, similar to the distinction between Dirac and Weyl points.
The added degeneracy comes from the preserved inversion
symmetry, which is explicitly broken for the Weyl chain case. We
stress that this doubling in degeneracy actually poses a more
stringent condition regarding the symmetry protection of the
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Fig. 4 Topological surface states. a Projected spectrum on (001) surface, and b the corresponding constant energy slice at —60 meV. The arrows indicate
the drumhead-like surface states. ¢ Surface Fermi arcs on (010) surface connecting the surface projections of the Dirac points on T-Y (marked by the

orange dots)
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Fig. 5 Dirac chain under lattice deformation. a, b Dirac chain is maintained under lattice distortion that preserves the symmetry. The figures show the two
loops when lattice parameters are increased by 5%. ¢ By changing the angle between a and b axis (here to 80°), symmetry is reduced and only L, loop is

preserved

band-crossings: Superposing two copies of Weyl chain does not
necessarily lead to a Dirac chain—they may hybridize and open a
gap; the Dirac chain requires additional symmetry protection
than the Weyl chain. Indeed, if there were no such degeneracy in
the current case, the (missing) loop on the k, = 7 plane would be
well protected. In terms of surface states, the Dirac chain metal
here possesses a pair of spin-split drumhead surface bands for a
single surface, although there is no spin-splitting in the bulk
bands; whereas for the Weyl chain metals, both surface and bulk
bands are without spin-degeneracy, and a surface typically has
only one drumhead surface band. Furthermore, like the Dirac
semimetal, the Dirac chain metal may also be considered as a
parent phase for other topological phases (including Weyl chain
metal) under symmetry breaking. For example, by suitably
breaking 7 or P, we can transform a Dirac chain metal into a
Weyl chain metal or a nodal-loop metal (Supplementary Note 6).

Several recent works proposed the nodal-link semimetal
phase®134, which also contains multiple nodal loops. However, a
link structure (in which the loops do not touch each other) is
topologically different from a chain. The nodal-link models in
those works do not require any non-symmorphic symmetry; the
linked loops are generally vulnerable against SOC; and the link is
not essential in the sense that it can be removed without breaking
the symmetry of the system. These features are distinct from
those of the Dirac chain studied here.

In experiment, the paramagnetic metal phase of f-ReO, was
shown to persist from room temperature down to the liquid
helium temperature (4.2 K), and no magnetic ordering has been
found®® 7. Hence the exotic band features reported here should
be readily accessible for experimental measurements. In DFT + U
calculations, we find that a relatively large U value could drive the
system towards an antiferromagnetic (AFM) insulator phase
(Supplementary Note 7), indicating the possibility of magnetic
ordering at very low temperatures (at least < 4.2 K according to
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experiment). Interestingly, we find that even in the AFM state (if
it indeed exists), the Dirac chain or one of the Dirac loops may
still be preserved if the magnetic moment is aligned along certain
high-symmetry directions (Supplementary Fig. 10).

The Dirac chain, the hourglass dispersion, and the surface
states are close to the Fermi level. They could be directly imaged
in ARPES measurement and compared with our calculation
results. Besides ARPES, we also suggest several interesting effects
derived from the nontrivial bulk and surface states that could be
useful for characterizing Dirac chain metals.

As for the bulk states, it was predicted that under an external
magnetic field parallel to the Dirac loop plane, there will appear
an almost flat Landau band at the loop energy>®. This will lead to
a pronounced peak in the density of states which can be detected
by the scanning tunneling spectroscopy. For a Dirac chain as in
Fig. 1a, one expects that the peak will be most pronounced when
the B field is along the y-direction (parallel to both loops), and it
will be relatively small when the field is not parallel to either loop.
In addition, it has been shown that the nodal-loop dispersion
leads to distinct scaling in optical absorption that Ime(w) scales as
1/w, where ¢ is the dielectric function and @ is the light
frequency™.

The drumhead-type surface states may also lead to several
interesting effects. It has been argued that they could produce a
huge surface density of states, which may offer a route toward
high-temperature superconductivity®®. The recent work by Li
et al.?® attributed the unusually high surface density of states on
the Be (0001) surface to the drumhead surface states, which
combined with the strong electron—phonon coupling found on
that surface®" may lead to a surface superconductivity (yet to be
confirmed by experiment). Interestingly, the giant enhancement
of the Friedel oscillation on the Be (0001) surface was also found
to be due to these nontrivial surface states?®. In addition, with
electron—electron interaction, the drumhead surface states may
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lead to a surface ferromagnetism, as discussed by Liu and
Balents®2. These effects are also expected for the Dirac chain
metals, and they can be detected by surface-sensitive probes such
as scanning tunneling microscopy/spectroscopy (for Friedel
oscillation and superconductivity) and surface magneto-optic
Kerr effect (for surface magnetism). More interestingly, the
orthogonal loops dictate the presence of drumhead surface states
on multiple surfaces. For the case in Fig. 1a, the drumhead surface
states would appear on (100) and (001) surfaces but not on the
(010) surface. Thus, the different surfaces of a Dirac chain
material could exhibit very different behaviors, e.g. in terms of the
Friedel oscillation strength and the possible surface super-
conducitivity/ferromagnetism, as determined by the surface
orientation relative to the chain.

Methods

First-principles calculation. The first-principles DFT calculations are performed
by using the Vienna Ab-initio Simulation Package®® %4, The projector augmented
wave (PAW) method®® was employed to model the ionic potentials, and the
generalized gradient approximation (GGA) with Perdew—Burke—Ernzerhof
(PBE)®® realization was adopted for the exchange-correlation functional. The
energy cutoff was set as 400 eV. Energy and force convergence criteria are set to be
107 eV and 0.01 eV A~ respectively. I-centered k-mesh with size 11 x 11 x 11
was used for the Brillouin zone sampling. The surface states are studied using the
method with maximally localized Wannier functions®” . As Re(5d) orbitals may
have correlation effects, we also validate our result by using the GGA + U
method”’. Several on-site Hubbard U values from 0 to 1.5 eV were tested, which
yield no appreciable difference. Hence in the main text, we focus on the GGA
results. The experimental values of the lattice parameters (a=4.809 A, b=5.643 A,
c=4.601 A)>* were used in the calculation.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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