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Background. Lung squamous cell carcinoma (LSCC) is a frequently diagnosed cancer worldwide, and it has a poor prognosis. The
current study is aimed at developing the prediction of LSCC prognosis by integrating multiomics data including transcriptome,
copy number variation data, and mutation data analysis, so as to predict patients’ survival and discover new therapeutic targets.
Methods. RNASeq, SNP, CNV data, and LSCC patients’ clinical follow-up information were downloaded from The Cancer
Genome Atlas (TCGA), and the samples were randomly divided into two groups, namely, the training set and the validation set.
In the training set, the genes related to prognosis and those with different copy numbers or with different SNPs were integrated
to extract features using random forests, and finally, robust biomarkers were screened. In addition, a gene-related prognostic
model was established and further verified in the test set and GEO validation set. Results. We obtained a total of 804 prognostic-
related genes and 535 copy amplification genes, 621 copy deletions genes, and 388 significantly mutated genes in genomic
variants; noticeably, these genomic variant genes were found closely related to tumor development. A total of 51 candidate genes
were obtained by integrating genomic variants and prognostic genes, and 5 characteristic genes (HIST1H2BH, SERPIND1,
COL22A1, LCE3C, and ADAMTS17) were screened through random forest feature selection; we found that many of those
genes had been reported to be related to LSCC progression. Cox regression analysis was performed to establish 5-gene signature
that could serve as an independent prognostic factor for LSCC patients and can stratify risk samples in training set, test set, and
external validation set (p < 0:01), and the 5-year survival areas under the curve (AUC) of both training set and validation set
were > 0.67. Conclusion. In the current study, 5 gene signatures were constructed as novel prognostic markers to predict the
survival of LSCC patients. The present findings provide new diagnostic and prognostic biomarkers and therapeutic targets for
LSCC treatment.
1. Introduction

The incidence and mortality of lung cancer have been
increasing annually all over the world in the past few decades
[1], allowing lung cancer to become a leading cause of male
cancer death and the second most frequent cause of female
cancer death right behind breast cancer [2]. Lung squamous
cell carcinoma (LSCC) is the second most common patho-
logical type of lung cancer, second to lung adenocarcinoma.
LSCC accounts for 40%-50% of all lung cancer cases, and
its early symptoms are not obvious and atypical; thus, most
patients are already at a middle or late stage by the time of
diagnosis [3]. In recent years, advances in scientific research
and clinical practice and achievements have been made in
understanding the mechanism of the occurrence and devel-
opment of lung cancer; moreover, predictive screening indi-
cators and targeted drug therapy have also been improved.
However, scientific research and achievements concerning
lung adenocarcinoma and LSCC are limited; therefore,
regarding such a research gap, the study of LSCC is highly
urgent and necessary.

Multiomics data, such as cancer genome mapping
(TCGA) and therapies applied to research (TARGET) pro-
jects, have the potential to generate effective treatments, as
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Table 1: Clinical information statistics of three sets of datasets.

Characteristic TCGA training datasets (n = 247) TCGA all datasets (n = 494) GSE42127 (n = 43)

Age (years)
≤50 8 19 0

>50 238 470 43

Survival status
Living 144 282 22

Dead 103 212 21

Gender
Female 62 128 18

Male 185 366 25

Smoke years
≤20 11 21

>20 94 199

pathologic_T

T 1 54 114

T 2 146 287

T 3 36 70

T 4 11 23

pathologic_N

N 0 158 316

N 1 67 127

N 2 18 40

N 3 1 5

pathologic_M
M 0 194 406

M 1/M X 50 84

Tumor stage

Stage I 120 242 23

Stage II 81 158 10

Stage III 41 83 10

Stage IV 4 7
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they can be used effectively to predict disease progression
[4]. Liu et al. predicted the prognosis of high-risk diseases
by integrating the data of copy number variations (CNVs)
and single-nucleotide polymorphisms (SNPs) [5]. SNPs
account for 1% of the human genomes and exist in coding
or noncoding regions that affect exon splicing or transcrip-
tion [6]. SNPs have been considered predictive markers of
complex diseases [7] and have been found to be associated
with many common diseases, including type II diabetes [8],
Crohn’s disease [9], schizophrenia [10], and breast cancer
[11]. However, the functional significance and gene/variant
alleles of novel disease-related SNPs studied by genome-
wide association studies (GWAS) or next-generation
sequencing (NGS) data remained a challenge to be investi-
gated. CNVs are defined as sequence variants, which ranged
from 50 bps to a few megabits (Mb) in size, and have dele-
tions, duplicates, triplets, insertions, complex genome rear-
rangements (CGR), and other CNVs [12]. CNVs have more
than 10 times differences in heritable sequences compared
with single nucleotide variants (SNVs) in the general popula-
tion [13], and its genome-wide map has been comprehen-
sively studied [14].

Recently, many genetic biomarkers for LSCC patients
have been studied, but most of these studies have focused
on a single gene in LSCC’s prognosis, recurrence, or diagno-
sis, for example, PD-L1 [15], family with sequence similarity
83 member B (FAM83B), hyaluronidase 3 (HYAL3), and
minichromosome maintenance protein 2 (MCM2) [16].
Moreover, in some other studies, more than one gene is
identified; for example, a prognostic risk model con-
structed by 4 abnormally methylated genes (VAX1,
CH25H, AdCyAP1, and Irx1) has been found to be able
to predict the survival rate of LSCC patients [17]. A previ-
ous study established 4-gene expression signature cluster-
ing models with 14 genes collected from cluster patient
samples and indicated that the signature could effectively
help predict the prognosis of LSCC patients and improve
treatment strategies [18]; however, this also poses difficul-
ties and challenges in clinical applications, as selecting the
suitable signature is not an easy work. Therefore, it is
essential to define and validate an effective genetic signa-
ture model for predicting LSCC prognosis.

Gene expression profile, single-nucleotide mutation,
and CNVs of patients with LSCC were obtained from
large datasets in TCGA and GEO databases. Prognostic
markers were screened by integrating genomics and tran-
scriptome data to establish a 5-gene signature, and its abil-
ity to predict survival was further verified by an internal test
set and an external validation set. We found that the 5-gene
signature is involved in important biological processes and
pathways of LSCC, and similar results were also shown by
GSEA analysis, suggesting that the 5-gene signature could
effectively predict the prognostic risk of patients with LSCC.
Thus, the signature established in the current study could
provide a basis for better understanding of the molecular
mechanism of LSCC prognosis.



Table 2: Top 20 prognosis-related gene information.

ENSG ID HR Coefficient Z-score p value

ENSG00000229859 1.381 0.323 4.186 2.84E-05

ENSG00000133055 1.293 0.257 4.070 4.71E-05

ENSG00000249158 1.386 0.327 3.952 7.74E-05

ENSG00000100632 0.645 -0.439 -3.904 9.48E-05

ENSG00000188467 1.456 0.376 3.821 0.000132923

ENSG00000080511 1.283 0.249 3.794 0.000148025

ENSG00000069509 0.673 -0.396 -3.780 0.000156912

ENSG00000187733 1.265 0.235 3.759 0.000170307

ENSG00000072657 1.348 0.298 3.730 0.000191851

ENSG00000099937 1.341 0.293 3.718 0.000200903

ENSG00000126752 1.267 0.237 3.706 0.000210942

ENSG00000179520 1.244 0.218 3.702 0.000213691

ENSG00000100994 1.430 0.358 3.462 0.000535801

ENSG00000041353 1.409 0.343 3.448 0.0005653

ENSG00000162551 1.412 0.345 3.392 0.000694076

ENSG00000271447 1.328 0.284 3.383 0.000717711

ENSG00000165762 1.239 0.214 3.356 0.000791736

ENSG00000172789 1.306 0.267 3.335 0.000852719

ENSG00000105650 1.276 0.244 3.306 0.000947676

ENSG00000253537 1.371 0.316 3.305 0.000949615

3BioMed Research International
2. Materials and Methods

2.1. Data Acquisition and Processing. TCGA RNA-Seq
FPKM data contained a total of 553 samples, and clinical
follow-up information contains 758 samples with SNP chips
6.0; copy number variation data contained 501 samples
downloaded from UCSC; mutation annotation information
(MAF) contains 178 samples downloaded using GDC cli-
ent, downloaded from the GEO standardized expression
profile; and clinical information contains 176 samples of
GSE42127 [19] data; among them, a total of 43 had clini-
cal follow-up information downloaded from GEO, and
download date was on June 5, 2019. A total of 741 LSCC
cases with follow-up information were collected from
TCGA RNASeq data and further randomly divided into
a training set (N = 247) and a test set (N = 494).
GSE42127 data with clinical follow-up information served
as the external validation set. Sample information of each
group is shown in Table 1.
2.2. Univariate Cox Proportional Hazard Regression Analysis.
Guo et al. [20] previously performed univariate Cox pro-
portional risk regression analysis with the training dataset
for each gene to screen genes significantly related to over-
all survival (OS) of patients; p < 0:05 was also defined as
the threshold in the present study.
2.3. Analysis of CNV Data. GISTIC was widely used to detect
both broad and focal (potentially overlapping) recurring
events; GISTIC 2.0 [21] software was used to identify genes
with significant amplification or deletion according to the
parameter thresholds of amplified or absent fragments > 0:1
and p < 0:05.

2.4. Genetic Mutation Analysis. In order to identify the
genes with significant mutations, Mutsig 2.0 software was
used to identify the genes with significant mutations in
the maf file of TCGA mutation data, with a threshold
value of p < 0:05.

2.5. Construction of Prognostic Gene Signature. Genes sig-
nificantly associated with patient OS and those with
amplification, deletion, and mutation were selected and
subjected to random survival forest algorithm to rank
genes that showed prognostic values [22]. As previously
described by Meng et al. [23], R package random survival
forest was used for screening, with the Monte Carlo iter-
ation number set as 100 and the previous progress num-
ber set as 5; moreover, a gene with relative importance
greater than 0.27 was identified as a characteristic gene.
Additionally, multivariate Cox regression analysis was
carried out, and the following risk scoring model was
constructed:

Risk score = 〠
n

k=1
Expk ∗ eHR

k, ð1Þ

where n is the number of prognostic genes, Expk is the
expression value of the prognostic genes, and eHR

k is
the estimated regression coefficiency of genes in the mul-
tivariate Cox regression analysis.

2.6. Functional Enrichment Analyses. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis was performed using the R
package clusterprofiler [24] to identify overrepresented GO
terms in three categories (biological processes, molecular
function, and cellular component) and KEGG pathway. For
the analysis, a FDR < 0 :05 was considered statistically
significant.

GSEA [25] was performed by JAVA program (http://
software.broadinstitute.org/gsea/downloads.jsp) using MSigDB
[26] C2 Canonical pathway gene set collection, which contains
1320 gene sets. After performing 1000 permutations, gene sets
with a p value lower than 0.05 were considered to be signifi-
cantly enriched.

2.7. Statistical Analysis. The Kaplan-Meier (KM) curve was
plotted by using the median risk score in each dataset as a
cutoff to compare the risk of survival between the high-
risk group and the low-risk group. Multivariate Cox
regression analysis was conducted to examine whether
gene markers were independent prognostic factors. Statisti-
cal significance was defined as p < 0:05. The AUC analysis
was performed using the R package pROC, and the heat
map was drawn using the R package pheatmap. All analy-
ses applied default parameters except for special instruc-
tions, which are performed in R software version 3.4.3.

http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp
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Figure 1: Continued.
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Figure 1: (a) A significantly amplified fragment of lung squamous cell carcinoma genome (LSCC). (b) A significant deletion fragment of the
LSCC genome. (c) The distribution of the 50 genes with most significant p-valued genes in patients with LSCC; the bar chart at the top shows
the total number of synonymous and nonsynonymous mutations in 50 genes in each patient, while the bar chart at the right shows the
number of mutations in 50 genes in all samples.
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3. Results

3.1. Analysis of Multiomics Data to Identify Genes Associated
with Overall Survival of Patients with LSCC. For the sam-
ples of the TCGA training set, univariate Cox regression
analysis was performed to establish a relationship between
OS of patients and gene expression. 804 prognostically sig-
nificant genes were identified, and information of the 20
genes with the highest significance is shown in Table 2.

3.2. Gene Set for the Identification of Genomic Variation. For
CNV data in TCGA, GISTIC 2.0 was used to identify genes
with significant amplification or deletion, with parameter
thresholds of amplification or deletion > 0:1 and p < 0:05.
Figure 1(a) shows significantly amplified fragments of the
LSCC, and a total of 535 genes were amplified. Among them,
EGFR was significantly amplified at the 7p11.2 segment
(q = 1:33E − 16); CD72 was significantly amplified on the
9p13.3 segment (q value = 1.38E-07); CDK3 was significantly
amplified on the 17q25.1 segment (q value = 0.0092281).
Figure 1(b) shows the segments of the LSCC genome with
significant deletion, and a total of 621 genes were deleted. A
significant loss of CDKN2A on the 9p21.3 segment (q value
= 7.83E-116) and a significant loss of FOXP1 on the 3p13
segment (q value = 6.47E-21) were observed; moreover, RB1
was absent in the 13q14.2 segment (q value = 0.0012441).
For the TCGA mutation annotation data, Mutsig2 used to
identify genes with significant mutations screened a total of
388 genes with significant mutation frequencies. The distribu-
tion of synonymous mutations, missense mutations, frame-
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Figure 2: (a) 1385 genes with copy number variation and mutation are involved in the KEGG pathway. (b) Biological processes involve 1385
genes with copy number variation and mutation (GO bp).
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Figure 3: (a) The relationship between the error rate and the number of classification trees. (b) Importance order of 5 genes out-of-bag. (c)
Distribution of KM survival curves of the 5-gene signature in the TCGA training set. (d) The ROC curve and AUC of the 5-gene signature
classification. (e) Risk score, survival time, survival status, and expression of the 5 genes in TCGA training.
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Table 3: Five genes significantly associated with the overall survival in the training-set patients.

Ensembl gene ID Symbol HR Z-score p value Importance Relative importance

ENSG00000275713 HIST1H2BH 0.69 -3.239003 1.20E-03 0.0178 1

ENSG00000099937 SERPIND1 1.34 3.717879 2.01E-04 0.0115 0.648

ENSG00000169436 COL22A1 1.29 2.732945 6.28E-03 0.0105 0.593

ENSG00000244057 LCE3C 1.26 3.234898 1.22E-03 0.0093 0.5216

ENSG00000140470 ADAMTS17 0.74 -2.686823 7.21E-03 0.0049 0.2729
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insertion or deletion, frame-shifting, nonsense mutations,
shear sites, and other nonsynonymous mutations in TCGA
patients showed the most significant p values (Figure 1(c)),
and CDKN2A, PTEN, TP53, RB1, PIK3CA, and some other
genes were found closely related to the occurrence and devel-
opment of LSCC.

3.3. Functional Analysis of CNVGenes andMutated Genes. In
order to analyze the function of genomic mutant genes, a total
of 1385 amplified and deleted genes and significantly mutated
genes identified were integrated. GO biological process and
KEGG functional enrichment analysis were performed on
the 2261 genes. The results of KEGG enrichment analysis
revealed that the 1385 genes were significantly enriched in
the mTOR signaling pathway, cell apoptosis, autophagy,
EGFR tyrosine kinase inhibitor resistance, non-small cell lung
cancer, B cell signaling pathway, and other KEGG biological
pathways related to the development of cancer (Figure 2(a)).
In the category of the biological process, the 1385 genes were
mainly enriched in epidermal development, epidermal cell dif-
ferentiation, keratinocyte differentiation, and other GO terms
(Figure 2(b)). Noticeably, these terms are also closely related to
the occurrence and development of cancer; in other words,
these genomic mutations are closely related to tumors.

3.4. Identification of a 5-Gene Signature for LSCC Survival.
First, a total of 804 candidate prognostic genes of gene vari-
ants and prognostic genes were integrated, and we finally
identify 51 genes with amplification, deletion, and mutation
as candidate genes. Furthermore, a random survival forest
algorithm is used for feature selection, and the relationship
between the error rate and the number of classification trees
is shown in Figure 3(a). Genes with relative importance of
> 0.27 served as the final signature, and finally, 5 genes were
obtained (Table 3). These genes play important roles in the
regulation of tumor-related pathways and biological pro-
cesses; however, their expression levels did not always show
a high AUC for the prediction of tumor prognosis
(Figure S1). The importance of out-of-bag of these 5 genes
was ranked and is shown in Figure 3(b). A 5-gene signature
was established using multivariate Cox regression analysis,
and the model is as follows:

Risk5 = −0:3337301 ∗HIST12BH + 0:2931728 ∗ SERPIND1
+ 0:2956749 ∗ COL22A1 + 0:2592219 ∗ LCE3C
− 0:2458371 ∗ADAMTS17:

ð2Þ
The risk score of each sample was calculated, and the
samples were grouped according to the mid-value of the
risk score (cutoff = ‐0:05950035). A significant difference in
prognosis, which is a carcinogenic signature, was identified
between the high-risk group and the low-risk group
(Figure 3(c)). The 3-year AUC of the 5-gene signature in
the training set was 0.76 (Figure 3(d)). The relationship
between the expressions of the 5 genes and risk score was
observed; specifically, high expressions of SERPIND1,
COL22A1, and LCE3C were found correlated with a high
risk, and these genes are therefore considered risk factors,
while highly expressed HIST1H2BH and ADAMTS17 were
correlated with a low risk and could be regarded as
protective factors.

3.5. Verification of the Robustness of the 5-Gene Signature
Model. In order to determine the robustness of the 5-gene
signature model, the risk score of each sample was calcu-
lated in the test set, and the samples were divided into
two groups according to the threshold of the training set,
with significant prognostic differences observed between
the two groups (Figure 4(a)). ROC analysis showed that
the 5-year AUC reached 0.68 (Figure 4(b)). Furthermore,
the analysis of the relationship between the expressions
of the 5 genes and risk score revealed that SERPIND1,
COL22A1, and LCE3C were associated with a high risk
and were seen as risk factors, while HIST1H2BH and
ADAMTS17 were indicative of low risk; thus, the two
could serve as protective factors. This is also consistent
with the training set results (Figure 4(c)). In conclusion,
the model showed highly effective prognosis classification
results in the TCGA dataset.

In order to verify the classification performance of the 5-
gene signature model in data from different data platforms,
GEO platform data GSE42127 and GSE37745 were taken as
the external dataset. The signature model was used to calcu-
late the risk score of each sample, and the cutoff of the train-
ing set was used to divide the samples into the high-risk and
low risk groups. The results demonstrated that the prognosis
of the low-risk group was significantly better than that of the
high-risk group (Figure 5(a)). Moreover, ROC analysis
showed that the 3-year AUC reached 0.79 (Figure 5(b)).
The relationship between the expressions of 5 genes and the
risk score was also consistent with the training set
(Figure 5(c)). In addition, the similar results were observed
in the GSE37745 dataset, 5-year AUC was found to be 0.74,
and the OS between the two groups showed a significant dif-
ference (Figure 6). In conclusion, our 5-gene signature model
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Figure 4: (a) Distribution of 5-gene signature’s Kaplan-Meier (KM) survival curve in the TCGA test. (b) ROC curve and AUC of the 5-gene
signature classification. (c) TCGA test focused on risk score, survival time and survival status, and the expressions of 5 genes.
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Figure 5: (a) The 5-gene signature’s KM survival curve distribution in GSE42127. (b) ROC curve and AUC of the 5-gene signature
classification. (c) Risk score, survival time, survival status, and expression of 5 genes in GSE42127.
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Figure 6: (a) ROC curve and AUC of the 5-gene signature in GSE37745. (b) risk score, survival time, survival status, and expressions of the 5
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has demonstrated its predictive performance of prognosis for
both internal and external datasets.

3.6. Clinical Independence of the 5-Gene Signature Model.
In order to identify the independence of the 5-gene signa-
ture model in clinical application, univariate and multivar-
iate Cox regression analyses were performed to analyze the
relevant HR, 95% CI of HR, p value of the TCGA training
set, TCGA dataset, and GSE42127 data. Clinical information
and our 5-gene signature grouped information, including
age; sex; smoking history; pathology stages T, N, and M; and
tumor stage, were systematically analyzed from TCGA and
GSE42127 patients (Table 4). In the TCGA training set, uni-
variate Cox regression analysis found that the high-risk group,
pathologic T4, and pathologic M1/MX were significantly cor-
related with OS; however, the corresponding multivariate Cox
regression analysis revealed that only the high risk group
(HR = 2:27, 95%CI = 1:30601-3.936, p = 0:004) had clinical
independence. In the TCGA dataset, the univariate Cox
regression analysis found that the high-risk group, pathologic
T3, pathologic T4, pathologic M1, and tumor stage III were
greatly associated with OS, whereas the corresponding multi-
variate Cox regression analysis demonstrated that only the
high-risk group (HR = 1:737, 95% CI = 1:2456-2.423, p =
1:14E − 03) and pathologic MX (HR = 2:250, 95% CI =
1:1797-4.293, p = 0:014) were clinically independent. In con-
clusion, our model 5-gene signature is a prognostic indicator
independent of other clinical factors and has independent pre-
dictive performance with a clinical application value.

3.7. Comparison of the 5-Gene Signature Model with Other
Models. The performance of the 5-gene signature model
was compared with other 4 previously established prog-
nostic feature signatures, namely, autophagy-related gene
prognostic signature by Zhu et al., sixteen-gene prognostic
biomarker by Ma et al., glycolysis-related gene signature
by Zhang et al., and immune-related signature by Zhang
et al. In order to allow those models to be more compara-
ble, we calculated the risk score of each sample in the
TCGA using the same method based on the corresponding
genes in the 4 models. The ROC of each model was exam-
ined, and the samples were divided into the high-risk and
low-risk groups based on the median risk score, and the
OS prognosis difference between the two groups of sam-
ples was calculated. The KM curve of OS showed that
the prediction performance of the four models was less
accurate than our 5-gene signature model (Figures 7(a)–
7(d)). To further compare the predictive performance of
these models on TCGA samples, the “rms” package in R was
used to calculate the restricted mean survival curves of the 4
models and our model, and the results demonstrated that
our model has the highest C-index among the total 5 models
investigated (Figure 7(e)); noticeably, our 5-gene model also
showed more advantages in long-term survival prediction.
Furthermore, we compared the 5-gene signature and the pre-
diction results of the 4 models by the DCA curve, and results
showed that the performance of the 5-genes signature model
established in the current study was higher than those of the
other four (Figure 7(f)).

3.8. GSEA Analysis on Enriched Pathway Differences
between the High-Risk Group and the Low-Risk Group. In
the TCGA training set, GSEA used to identify the signifi-
cantly enriched pathways in the high-risk group and the
low-risk group screened a total of 41 significantly enriched
pathways (Table 5). Among them, KEGG cell adhesion
molecules (cams), KEGG ECM receptor interaction, KEGG
JAK STAT signaling pathway, and KEGG focal adhesions
were all significantly related to the occurrence, develop-
ment, and metastasis of LSCC (Figure 8).

4. Discussion

Lung cancer is a leading cause of cancer deaths, and the
incidence of the cancer is increasing worldwide. In all lung
cancer cases, LSCC causes an annual death of at least



Table 4: Univariate and multivariate Cox regression analysis to identify prognostic clinical factors and clinical independence.

Variables Univariate analysis Multivariable analysis
HR 95% CI of HR p value HR 95% CI of HR p value

TCGA training datasets
5-gene risk score
Low-risk group 1 (reference) 1 (reference)
High-risk group 2.72 2.01-3.66 5.310E-11 2.27 1.30601-3.936 0.004
Age 1.00 0.97-1.02 9.980E-01 1.03 0.97001-1.093 0.33624
Gender female 1 (reference) 1 (reference)
Gender male 0.92 0.58-1.43 0.70 0.63 0.30321-1.301 0.21085
Smoke years 0.98 0.96-1.01 0.37 0.99 0.96278-1.015 0.40262
Pathologic T1 1 (reference) 1 (reference)
Pathologic T2 1.41 0.8314-2.381 0.20341 1.48 0.52948-4.114 0.45674
Pathologic T3 1.69 0.8693-3.283 0.122 1.74 0.2188-13.78 0.602
Pathologic T4 3.90 1.4234-10.69 0.008 13.87 0.25483-754.666 0.197
Pathologic N0 1 (reference) 1 (reference)
Pathologic N1 1.21 0.7879-1.857 0.384 0.54 0.10297-2.854 0.470
Pathologic N2/N3 0.77 0.3517-1.686 0.513 0.91 0.02173-37.89 0.959
Pathologic M0 1 (reference) 1 (reference)
Pathologic M1/MX 1.70 1.059-2.717 2.80E-02 3.65 1.58507-8.395 2.34E-03
Tumor stage I 1 (reference) 1 (reference)
Tumor stage II 1.02 0.6474-1.615 0.924 1.46 0.32211-6.599 0.62452
Tumor stage III 1.27 0.7519-2.132 0.3749 0.89 0.0297-26.834 0.94791
Tumor stage IV 3.23 0.9983-10.429 0.050 1.31 0.08057-21.187 0.85

TCGA datasets, GSE42127
TCGA test datasets
5-gene risk score
Low-risk group 1 (reference) 1 (reference)
High-risk group 1.85 1.501-2.283 8.89E-09 1.737 1.2456-2.423 1.14E-03
Age 1.02 0.9995-1.033 0.058 1.029 0.9916-1.067 0.132
Gender female 1 (reference) 1 (reference)
Gender male 1.20 0.8669-1.646 0.277 1.240 0.7443-2.067 0.408
Smoke years 0.99 0.9739-1.007 0.26 0.99 0.973-1.01 0.349
Pathologic T1 1 (reference) 1 (reference)
Pathologic T2 1.25 0.8779-1.765 0.219 0.89 0.4878-1.629 0.708
Pathologic T3 1.82 1.1618-2.847 0.009 0.897 0.27-2.98 0.859
Pathologic T4 2.32 1.2481-4.327 0.008 1.014 0.2338-4.396 0.985
Pathologic N0 1 (reference) 1 (reference)
Pathologic N1 1.07 0.7824-1.466 0.669 0.687 0.2744-1.721 0.423
Pathologic N2 1.32 0.831-2.093 2.40E-01 1.475 0.3304-6.588 0.611
Pathologic N3 2.51 0.6183-10.212 1.98E-01 3.030 0.3645-25.18 0.305
Pathologic M0 1 (reference) 1 (reference)
Pathologic M1 3.18 1.3-7.778 1.13E-02 1.472 0.1424-15.22 0.746
Pathologic MX 1.55 1.049-2.299 0.028 2.250 1.1797-4.293 0.014
Tumor stage 1 (reference) 1 (reference)
Tumor stage II 1.13 0.8234-1.559 4.43E-01 1.011 0.4121-2.48 0.981
Tumor stage III 1.64 1.1622-2.311 4.84E-03 1.351 0.2684-6.796 0.716

GSE42127
5-gene risk score
Low risk group 1 (reference) 1 (reference)
High risk group 2.07 1.133-3.778 0.018 2.33 1.1539-4.697 0.018
Age 1.03 0.9751-1.084 0.306 1.0127 0.9497-1.08 0.7002
Gender female 1 (reference) 1 (reference)
Gender male 1.196 0.4723-3.029 0.706 1.1037 0.4032-3.021 0.848
Tumor stage I 1 (reference) 1 (reference)
Tumor stage II 0.82 0.2549-2.643 0.741 1.00 0.2773-3.576 0.995
Tumor stage III 2.0311 0.7574-5.447 0.159 2.7395 0.9225-8.136 0.070
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Figure 7: Continued.
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Figure 7: Comparison and analysis of the 5-gene signature model and other existing models. (a) AUC and KM curves of autophagy-related
gene prognostic signature by Zhu et al. (b) AUC and KM curves of immune-related signature by Zhang et al. (c) AUC and KM curves of
sixteen-gene prognostic biomarker by Zhang et al. (d) AUC and KM curves of glycolysis-related gene signature by Zhang et al. (e) RMS
curves of four models and the 5-gene signature. (f) DCA curves of four models and the 5-gene signature.
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400,000. Similar to many other cancers, lung cancer
patients are usually at advanced stages by the time of diag-
nosis, suggesting that there is nearly no available treatment
for the patients. However, early diagnosis and surgical
resection can significantly improve the survival rate of
lung cancer patients. The development of molecular bio-
markers play an important role in personalized medicine
and current precision medicine [27]; therefore, there is
an urgent need for a classifier for predicting the prognosis
of LSCC patients with poor prognosis and designing cus-
tomized therapies. In our current study, transcriptome,
copy number variation, and mutation data were mined
from TCGA to search for obtaining novel prognostic
markers for LSCC. Interestingly, we found that the gene
signature constructed from 5 differentially expressed genes
demonstrated great prediction performance for LSCC.

TCGA data with large-scale genome analysis allowed it
to be possible to examine the molecular characteristics
associated with LSCC results [28]. In 2015, Huang et al.
analyzed gene and miRNA expressions, DNA methylation,
and CNV data of 129 LSCC specimens in TCGA, and they
established a genome-wide integration network by using
variance expansion factor regression and isolated lung can-
cer subnetwork by the Bayesian method [29]. LSCC
patients with a 4-gene expression signature among 14 dif-
ferentially expressed feature genes were at a high risk of
developing a poor prognosis. Gao et al. also reported that
12 of the 133 abnormally expressed miRNAs were corre-
lated with OS in the TCGA LSCC cohort [30]. The AUC
of our 5-gene signature was close to 0.7 in the training
set, test set, and verification set. All these genes had
abnormal genome mutations, which allows an easy clinical
detection. In a word, our 5-gene signature had high AUC
and involved fewer genes; thus, it was conducive to clinical
transformation.

We were also interested in investigating the prospec-
tive molecular mechanisms of these 5 genes. Therefore,
GSEA analysis was conducted to explore related gene
enrichment pathways. SERPIND1, COL22A1, and LCE3C
are risk factors, while ADAMTS17 is a protective factor
in gene signature. Hereinto, SERPIND1 acts as a potential
oncogene in the development of tumor, including in lung
cancer [31, 32]. In head and neck cancer, highly expressed
COL22A1 mRNA is statistically correlated with reduced
disease-free survival and is significantly associated with
lymph node metastasis [33]. HIST1H2BH is associated
with the prognosis of cervical cancer patients [34]. Knock-
ing down Adamts17 expression induces the apoptosis of
breast cancer cells and inhibits cancer cell growth [35].
However, LCE3C has not been shown to be associated



Table 5: GSEA analyzed significantly enriched KEGG pathways in high-risk and low-risk groups.

Name Size ES NES
NOM
p-val

FDR
q-val

FWER
p-val

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 243 -0.609 -2.002 0.0001 0.055 0.037

KEGG_LEISHMANIA_INFECTION 64 -0.709 -1.985 0.0001 0.039 0.052

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 68 -0.726 -1.969 0.0001 0.035 0.064

KEGG_HEMATOPOIETIC_CELL_LINEAGE 84 -0.708 -1.967 0.0001 0.026 0.064

KEGG_CELL_ADHESION_MOLECULES_CAMS 122 -0.623 -1.961 0.002 0.023 0.07

KEGG_VIRAL_MYOCARDITIS 67 -0.636 -1.933 0.0001 0.028 0.1

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 108 -0.551 -1.920 0.002 0.029 0.115

KEGG_AUTOIMMUNE_THYROID_DISEASE 49 -0.710 -1.817 0.002 0.075 0.259

KEGG_CHEMOKINE_SIGNALING_PATHWAY 178 -0.491 -1.799 0.020 0.080 0.3

KEGG_ASTHMA 27 -0.790 -1.795 0.0001 0.075 0.306

KEGG_TYPE_I_DIABETES_MELLITUS 40 -0.747 -1.791 0.008 0.070 0.316

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES 14 -0.681 -1.732 0.008 0.107 0.454

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 45 -0.727 -1.720 0.009 0.109 0.476

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 127 -0.510 -1.710 0.018 0.112 0.505

KEGG_ALLOGRAFT_REJECTION 34 -0.807 -1.709 0.006 0.105 0.508

KEGG_ECM_RECEPTOR_INTERACTION 82 -0.592 -1.708 0.023 0.100 0.511

KEGG_JAK_STAT_SIGNALING_PATHWAY 147 -0.468 -1.701 0.014 0.100 0.525

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 78 -0.581 -1.692 0.033 0.102 0.546

KEGG_LYSOSOME 115 -0.483 -1.683 0.024 0.103 0.562

KEGG_GRAFT_VERSUS_HOST_DISEASE 36 -0.780 -1.669 0.016 0.109 0.595

KEGG_FOCAL_ADHESION 189 -0.484 -1.664 0.031 0.109 0.607

KEGG_PRION_DISEASES 35 -0.487 -1.662 0.006 0.106 0.613

KEGG_RENIN_ANGIOTENSIN_SYSTEM 16 -0.603 -1.655 0.028 0.107 0.624

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 54 -0.489 -1.608 0.041 0.142 0.722

KEGG_HISTIDINE_METABOLISM 26 -0.484 -1.592 0.046 0.154 0.757

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 82 -0.445 -1.583 0.037 0.157 0.776

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 99 -0.441 -1.574 0.048 0.160 0.787

KEGG_OTHER_GLYCAN_DEGRADATION 15 -0.587 -1.532 0.060 0.201 0.852

KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION 47 -0.415 -1.515 0.026 0.216 0.874

KEGG_BASAL_TRANSCRIPTION_FACTORS 34 0.584 1.895 0.004 0.141 0.131

KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 0.607 1.855 0.004 0.124 0.2

KEGG_CELL_CYCLE 112 0.531 1.841 0.004 0.100 0.231

KEGG_HOMOLOGOUS_RECOMBINATION 24 0.700 1.831 0.004 0.082 0.246

KEGG_SPLICEOSOME 90 0.605 1.811 0.004 0.081 0.283

KEGG_DNA_REPLICATION 32 0.732 1.767 0.004 0.106 0.392

KEGG_MISMATCH_REPAIR 23 0.674 1.718 0.016 0.141 0.503

KEGG_BASE_EXCISION_REPAIR 33 0.609 1.680 0.024 0.165 0.59

KEGG_RNA_DEGRADATION 47 0.530 1.676 0.012 0.152 0.6

KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_
BIOSYNTHESIS

22 0.570 1.638 0.024 0.179 0.675

KEGG_RNA_POLYMERASE 28 0.556 1.622 0.033 0.181 0.711
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with tumor. In this study, for the first time, LCE3C was
found to be a new prognostic marker for lung adenocarci-
noma. Meanwhile, our GSEA analysis results showed that
the pathway enriched by the 5-gene signature was signifi-
cantly correlated with the pathway and biological process
of the occurrence and development of LSCC. These results
indicated that our 5-gene model has a potential clinical
application value and could provide a potential target for
the clinical diagnosis of LSCC patients.

It should be noted that though potential candidate
genes for tumor prognosis were identified in large samples
through bioinformatics techniques, some limitations still
exist in the present research. Firstly, the sample lacked cer-
tain clinical follow-up information; thus, we did not
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Figure 8: Five-gene signature-enriched pathways in high-risk and low-risk groups.371
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consider factors such as the presence of other health
statuses of the patient in distinguishing prognostic bio-
markers. Second, the results obtained only through bioinfor-
matics analysis are not fully adequate; thus, experimental
validation is required to further confirm our findings. More-
over, validation and experimental studies should be con-
ducted on a larger sample size.
5. Conclusion

In conclusion, in this study, a 5-gene signature prognostic
stratification system has been developed, and the model dem-
onstrated great AUC in both the training set and validation
set and was independent of clinical features. Compared with
clinical features, gene classifier can improve the prediction of
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survival risk. Therefore, this classifier could serve as a molec-
ular diagnostic test in the evaluation of the prognostic risk of
patients with LSCC.
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