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Abstract: Pristine and trustworthy data are required for efficient computer modelling for medical
decision-making, yet data in medical care is frequently missing. As a result, missing values may occur
not just in training data but also in testing data that might contain a single undiagnosed episode or a
participant. This study evaluates different imputation and regression procedures identified based on
regressor performance and computational expense to fix the issues of missing values in both training
and testing datasets. In the context of healthcare, several procedures are introduced for dealing with
missing values. However, there is still a discussion concerning which imputation strategies are better
in specific cases. This research proposes an ensemble imputation model that is educated to use a
combination of simple mean imputation, k-nearest neighbour imputation, and iterative imputation
methods, and then leverages them in a manner where the ideal imputation strategy is opted among
them based on attribute correlations on missing value features. We introduce a unique Ensemble
Strategy for Missing Value to analyse healthcare data with considerable missing values to identify
unbiased and accurate prediction statistical modelling. The performance metrics have been generated
using the eXtreme gradient boosting regressor, random forest regressor, and support vector regressor.
The current study uses real-world healthcare data to conduct experiments and simulations of data
with varying feature-wise missing frequencies indicating that the proposed technique surpasses
standard missing value imputation approaches as well as the approach of dropping records holding
missing values in terms of accuracy.

Keywords: ensemble learning; health data; imputation methods; missing values; regression
algorithms

1. Introduction

Amongst the most prevalent problems in data science is the challenge of missing
value [1]. This is especially true in health care records, where multiple missing values
are common [2,3]. In current history, there is a greater emphasis on ensuring the qual-
ity of the data and reusability and automating data discovery and analysis procedures
through the publication of data tags and statistical techniques [4]. The creation and use of
automated decision support, which can improve reliability, accuracy, and uniformity [5,6],
is a fundamental medical application of data science. Substantial training data is often
utilised to produce a classifier. In contrast, test data is used to validate system correctness
when creating a diagnosing prototype in a clinical decision support system (CDSS) [7].
The training and test data should, in principle, be accurate, with no incomplete data for
any parameters. It’s not practicable or viable to get lacking information to enhance data
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modelling in circumstances of missing value, which frequently happens in real-world
traditional therapeutic records. As a result, being the core of their analytical procedure,
computational approaches must include a methodology for dealing with missing values.

1.1. Motivation

In healthcare prediction, missing data raises serious analytical difficulties. If missing
data isn’t treated seriously, it might lead to skewed forecasts. The challenge of dealing with
missing values in massive medical databases still needs more effort to be addressed [8].
To minimise the harm to data processing outcomes, it is advisable to integrate multiple
known ways of addressing missing data (or design new ones) for each system. The demand
for missing data imputation approaches that result in improved imputed values than
conventional systems with greater precision and smaller biases is the driving force behind
this study.

1.2. Missing Data Classification

Little and Rubin [9] described the missing data issue in terms of how missing values
are generated, and thus offered three categories: (1) missing completely at random (MCAR),
(2) missing at random (MAR), and (3) missing not at random (MNAR). The classification
is critical since it influences the prejudices that could exist in the data and the safety of
procedures like imputation. When an occurrence lacking a given parameter is unrelated to
any other parameter, as well as to the missing values, it is known as missing completely at
random (MCAR). It may be claimed that possible occurrences in MCAR are unrelated to
any other actual or perceived element in the research. This is the more secure setting in
which imputation may take place.

When the likelihood of catching a missing value in a database depends on the observed
data of other features and not on the missing data, this is known as missing at random
(MAR). MCAR may be thought of as a subset of MAR. Although data MAR has certain
ingrained prejudices, it is possible to examine this type of information without specifically
correcting for incomplete information. When the chance of the record having a null value
is dependent on unseen data, this is known as missing not at random (MNAR). MNAR
is prevalent in longitudinal data, such as a medical dataset where illness expansion may
result in patients dropping out of the research [10,11]. Longitudinal research studies on
mental impairment (i.e., [12,13]) have a high enfeeble rate. In general, medical records
are susceptible to the missing value of the MAR variety [14]. However, the likelihood of
missing medical data is frequently influenced by the dependent variables since ailment
intensity might affect data collection possibilities [15].

1.3. Endeavours to Impute Missing Data

A missing value is replaced with appropriate values through data imputation method-
ologies such as random values, the mean or median, spatial–temporal regressed values,
the most common value, or prominent values recognised using k-nearest neighbour [16].
Further, various data imputation methods such as Multivariate Imputation by Chained
Equation (MICE) [17] have been established to fill incomplete data numerous times. Deep
learning strategies, such as Datawig [18], can predict significantly more precise outcomes
than classic data imputation approaches [19] by using the capabilities of GPU and huge
data. However, as asserted in the statistical literature [20,21], as the volume of missing
data increases, the fluctuation of impact forecasts increases and outcomes may not be
accurate enough for hypothesis affirmation if over 40% of values are missing in relevant
characteristics [11], implying that data imputation is not a good option when a considerable
volume of data is missing. In addition, missing data in the healthcare domain does not
happen randomly. Some measured values are missing due to patient discontinuation, med-
ication toxicity, or complicated indicators [22]. Applying MAR data imputation methods to
healthcare data may result in biases in forecasting [23].
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1.4. Importance of Imputing Missing Health Data for Entropy

Entropy is extensively employed in the healthcare field for illness prediction as a
nonlinear indicator to quantify the intricacy of the biological system [3]. Aside from the
routinely discovered signs, sample entropy can assist doctors in precisely confirming
the diagnosis and prediction, allowing them to make better therapy recommendations
to patients. However, missing values, which are widespread in the massive volumes of
data gathered through medical devices, might make it difficult to use analytic approaches
like sample entropy to extract information from them. One research [24] showed that
sample entropy can be super vulnerable to missing data and the entropy variations will
be substantial once the dataset has missing items. Unfortunately, if the fraction of missing
numbers rises, the unexpected variations will rise as well [3]. In order to calculate entropy,
it is necessary to handle missing values. Thus, the authors of the current research present a
new approach for imputing missing values in health data to reduce the impact of missing
data on sample entropy computation.

1.5. Research Contributions

Current research provides the following key research contributions.

• We introduce a unique Ensemble Strategy for Missing Value to analyse healthcare
data with considerable missing values to identify unbiased and accurate prediction
statistical modelling. Overall, there are four computational benefits of the suggested
model:

1. It can analyse huge amounts of health data with substantial missing values and
impute them more correctly than standalone imputation procedures such as the
k-nearest neighbour approach, iterative method, and so on.

2. It can discover essential characteristics in a dataset with many missing values.
3. It tackles the performance glitches of developing a single predictor to impute

missing values, such as high variance, feature bias, and lack of precision.
4. Fundamentally, it employs an extreme gradient-boosting method, which includes

L1 (Lasso Regression) and L2 (Ridge Regression) regularisation to avoid overfitting.

• The current study uses real-world healthcare data (snapshot presented in Figure 1)
to conduct experiments and simulations of data with varying feature-wise missing
frequencies indicating that the proposed technique surpasses standard missing value
imputation approaches.
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The paper is divided into various sections. Section 2 highlights the related work.
Section 3 provides a detailed description of the proposed ensemble method. Section 4
details the experiments conducted, and the results obtained. Section 5 provides a detailed
discussion of the current research. Finally, Section 6 concludes this research.

2. Related Work

In current history, strategies for dealing with missing values in large datasets have
been established. Complete-case analysis (CCA) is the basic and most used technique,
which entails deleting the instances containing any missing data and thus concentrating
exclusively on individuals who have a complete record for all variables [25]. In fact, because
there is typically a large gap between the true distribution of all participants and that of
participants with complete details [26], excluding individuals with any missing data would
certainly induce biases. Furthermore, the CCA technique will dramatically lower the data
size for training prediction models, leading to under-trained frameworks.

Data imputation is another typical approach for dealing with missing data. Single and
multiple imputation procedures are the two types of imputation approaches [27]. A single
imputation is employed when a missing value can be replaced with an approximated
value [28]. The mean imputation [29] replaces a missing item with the mean value. The sim-
ple imputation technique has the drawback of drastically underestimating data variation
and ignoring intricate interactions among potential determinants [25].

For missing value imputation, the k nearest neighbours (kNN) approach is often
employed. The kNN imputation method substitutes mean values from k closest neighbours
for relevant attributes. Many studies have been conducted to increase kNN’s imputation
accuracy. To improve imputation efficiency, Song et al. took comparable neighbourhoods
into consideration [30]. More advanced single imputation strategies, including regression
imputation and expectation–maximization (EM), can be used to resolve this issue [29].
Regression models were used as a substitute to repair missing values in [31]. Instead of
attempting to deduce missing values, Song et al. [32] recommend first estimating lengths
between absent and entire values, and then imputing values using inferred lengths. These
techniques allocate a missing value by analysing the correlations between the dependent
attribute and the remaining parameters in the dataset. Chu et al. [33] focused on data
cleaning approaches, including various functional dependencies in a unified framework.
Breve et al. [34] proposed a novel data imputation technique, based on relaxed functional
dependencies, that identifies value possibilities that effectively ensure data integrity. How-
ever, in the case of healthcare data, we often encounter temporal functional dependencies
for the data of patients collected for a time span [35].

On the other hand, numerous imputation approaches use multiple imputed values to
approximate a missing value. Multivariate imputation by chained equations (MICE) is an
approach in which the statistical uncertainties of diverse imputed data are properly consid-
ered [36]. Unfortunately, for every database, neither of the available imputation methods
beats all others, implying no standard framework [29] for missing value imputation.

Although most machine learning techniques can only be used to impute missing data
or to employ CCA by default [29], XGBoost [37,38], a modern version of the gradient-
boosting technique, has crafted features that can autonomously manage missing data.
XGBoost addresses the issue of missing values by including a pre-set path for missing data
in each tree split. During the training phase, the best path for a missing value in every
explanatory parameter at every node is discovered with the objective of minimizing the
regulatory losses [37]. If no missing data in any explanatory parameter exists in the training
examples, but there are missing values in the testing dataset, the XGBoost model takes the
pre-set path. The pre-set path for parameter estimates on the testing set is often chosen by
XGBoost, which might be a concern when dealing with missing values in XGBoost. If the
missing data trends in the training and test dataset are dissimilar, the forecast might be a
rough estimate. This might be the scenario if there is a significant quantity of missing value,
particularly in the test dataset.



Entropy 2022, 24, 533 5 of 20

Overall, conventional machine learning algorithms face the challenge of not being
adaptable enough to handle big missing data. Furthermore, the disparity across train-
ing and test data has not been adequately addressed when it comes to model inference.
An ensemble model for data imputation is introduced in this paper. Ensemble models are
a machine learning methodology that combines numerous different models to provide a
forecast. Other models involved in the ensemble model are referred to as base predictors.
Ensemble approaches benefit from boosting poor learners to turn into leading ones [39,40].
Ensemble approaches have been utilized in a variety of domains to improve the accuracy of
the system. Troussas et al. [41] suggested an ensemble classification approach that uses the
support vector machine, naive bayes, and KNN classifiers in combination with a majority
voting mechanism to categorise learners into appropriate learning styles. The model is
first trained using a collection of data, and then the category of the occurrence is forecasted
using the base classifiers with the majority of votes. Zaho et al. [42] devised an ensemble
technique by integrating patch learning with dynamic selection ensemble classification,
wherein the miscategorised data have been used to educate patch models in order to
increase the variety of base classifiers. Rahimi et al. [43] used ensemble deep learning
approaches to construct a classification model that improved the accuracy and reliability of
classifying software requirement specifications.

Authors have devised a pragmatic ensemble technique for missing value imputation
based on the same concept. The below-listed technological obstacles of developing a single
imputer are likewise solved by this strategy.

• High variance is achieved by rendering the model supersensitive to the inputs given
to the acquired characteristics.

• Inaccuracy due to fitting the intensive training data with a single model or technique
may not be sufficient to satisfy expectations.

• When making predictions, noise and bias cause the models to rely mainly on one or a
few features.

3. Materials and Methods

Ensemble learning is an amalgamation of various machine learning techniques that
contemplates the estimate of various base machine learning models (base estimators) in
order to achieve better predictive performance. As a base estimator, one can implement
any machine learning algorithm. If the nature of considered base learners is homogeneous
then the ensemble strategy is termed a homogeneous ensemble learning method, other-
wise, the ensemble strategy is termed non-homogeneous or heterogeneous. The ensemble
machine learning can be constructed on three sorts of mechanisms viz. bootstrap aggrega-
tion (Bagging), boosting, and stacking. Bootstrap aggregation comprises independently
learning weak learners (base estimators) and the outcome is the average of resultants
calculated by different weak learning. While in boosting mechanism, the base estimators
are summarized one after the other and then resultant is generated as the weighted average
of base estimators’ outcomes. On the other hand, stacking ensemble mechanism fed the
same data to all chosen base estimators and then trains an additional machine learning
model called a meta-learner to upgrade model’s overall performance. In this research,
the authors have employed the stacking mechanism of ensemble strategy in order to devise
a novel methodology of missing data imputation for Health Informatics. This research will
be using different stand-alone imputations as individual base estimators in Level 1 and
then combining the outcomes of these base estimators and feeding them to a meta learner
machine learning model in Level 2 to make the final predictions. Figure 2 illustrates the
conceptual schema of the proposed ensemble strategy.
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The proposed ensemble approach targets to discover unbiased and accurate prediction
trends from healthcare data, which, if trained directly, might lead to biases due to significant
missing values [44]. The suggested model has three stages:

• Data pre-processing
• Model training
• Imputation

Hereafter in this research, the authors will be using the D ∈ RM×N matrix to represent
the dataset, which has M observations and N characteristics. Further, di,j, which is the
parameter value for the jth characteristic of ith observation, is the item of D at position
(i, j). Many parameters’ values are missing because of several intercurrent occurrences,
including medication suspension or early cessation for multiple causes. The features that
hold missing values have been discovered, and their feature indices have been placed in
vector Q. In addition, Q is a vector that represents feature indices which do not include
any missing values. Also, Dtrain dataset consists of p samples with no missing values in
any of the rows.

3.1. Data Pre-Processing

In the data pre-processing phase, the raw data is processed to produce training data
that will be used as input to a regressor model. Figure 3 depicts the entire data pre-
processing procedure, which is accomplished as listed below.
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1. Initially, the training data i.e., Dtrain, does not contain any missing values. Thus,
a dataset, i.e., Dtrainmv , is prepared by randomly eliminating the present values from
the features present in Q.

2. Three imputation techniques were chosen for the proposed ensemble methodology
as unrelated base predictors since using unrelated base predictors may significantly
reduce prediction errors in ensemble learning, as indicated in [40]. Dtrainmv data is
passed to three imputation methods, i.e., (1) simple mean imputer, (2) KNN imputer,
and (3) iterative imputer, that have been chosen as base predictors in current research.

• Simple mean imputer: Missing values are substituted in this imputer by the
mean of all non-missing values in the corresponding parameter.

• KNN imputer: By assessing respective distance measurements, the KNN method
seeks the other k non-missing findings, most comparable to the missing one for
every missing value. The missing data is subsequently replaced by a weighted
average of the k nearby but non-missing values, with the scores determined by
their Euclidean distances from the missing value.

• Iterative imputer: Multiple copies of the same data are generated and then inte-
grated to get the “finest” predicted value in this approach. The MICE technique
has been used to provide iterative imputation based on completely conditional
requirements.

3. The values predicted to be imputed for the missing data in Dtrainmv by the base
predictors are reserved in three 2-D matrices, i.e., Pred1, Pred2, and Pred3, for simple
mean, KNN, and iterative imputer, respectively.

4. Corresponding to each attribute index in Q, a regressor model is trained. For train-
ing each q ε{1, 2, . . . , Q} regressor models, a corresponding matrix Pq (structure
presented in Equation (1)) is provided as input.

Pq =
{

Pred1
p,q, Pred2

p,q, Pred3
p,q, Dtrain

p,q

}
, p ∈ all samples (1)

where, Pred1
p,q, Pred2

p,q, and Pred3
p,q represents the value of qth attribute of pth sample

imputed by simple mean, KNN, and iterative imputer, respectively, and Dtrain
p,q depicts the

actual known value of qth attribute of pth sample.

3.2. Model Training

The proposed ensemble model employs the eXtreme Gradient Boost (XGB) regression
technique for training purposes. An XGB Model is trained for each attribute index in
Q. Thus, there will |Q| XGB models. As detailed in the previous section, the training
data Pq (for q ε{1, 2, . . . , Q}) is provided as input to each XGB regression model for model
training, as depicted in Figure 4.
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The value of ith entry of Pq, i.e., âi, is predicted using Equation (2), where ai is the
observed value of ith entry and bi is the sample input corresponding to {Pi,1

q , Pi,2
q , Pi,3

q }.

âi = ∑T
t=1 scoret(bi), where scoret ∈ T (2)

The function scoret presents an independent tree among the set of regression trees,
T and scoret(bi) refers to the anticipated score provided by the ith sample and tth tree.
The objective function of the XGB, designated by OXGB, is calculated as presented in
Equation (3):

OXGB = ∑n
i=1 ∆(ai, âi) + ∑T

t=1 χ(scoret) (3)

The regression tree model functions scoret can be trained by minimizing the objective
function, OXGB. The gap between the forecasted value, âi and the true value, ai is evaluated
by the training loss function ∆(ai, âi). Further, χ is employed to prevent the challenge of
overfitting by penalising model intricacy as presented in Equation (4) for the independent
tree, t among the set of regression trees.

χ(scoret) = ϕξ+ 0.5∗ ηΘ2 (4)

where ϕ and η are the regularization factors. ϕ dictates if a particular node split depending
on the anticipated loss minimization after the split, and η is L2 regularisation on leaf
weights. ξ and Θ are the numbers of leaves and scores on every leaf, respectively. The
objective function can be approximated using a second-degree Taylor series [45]. Further,
summation is a useful mechanism to train the ensemble model. Let Φj = {i | t(bi) = j

}
be

an occurrence set of leaf j with the fixed structure t(b). The Equation (5) is used to calculate
the optimum weights Θj

∗ of leaf j using first and second gradient orders of loss function
and also the optimum value of associated loss function OXGB

∗.

Θj
∗ = −

rj

sj + η
, and OXGB

∗ = −0.5 ∗∑ξ

j=1

(
∑i∈Φj

rj

)2

∑i∈Φj
si + η

+ ηξ (5)

The first and second gradient orders of the loss function, OXGB are ri and si, respec-
tively. Further, OXGB can be used to discover the quality score for t. The lower the score,
the more accurate the model. Because computing all the tree topologies is impossible, a
greedy approach is employed to tackle the issue, starting with only one leaf and repeatedly
extending paths to the tree.

After splitting, let ΦL and ΦR be the occurrence sets of the left and right nodes,
respectively. If the original set is Φ =

ΦL ∪ ΦR, the loss reduction following the split, OXGB_split will be as presented in
Equation (6).

OXGB_split = 0.5 ∗
[{

∑
i∈ΦL , ΦR

(
(∑i ri)

2

∑i si + η

)}
− (∑i∈Φ ri)

2

∑i∈Φ si + η

]
−ϕ (6)

where the first term depicts the summation of score associated with left and right leaf,
second term depicts the score associated with the original leaf, i.e., leaf before the splitting
operation is performed and ϕ is the regularisation term on additional leaf that will be used
further in the training process. In practice, this approach is commonly used to evaluate
split candidates. During splitting, the XGB model employs many simple trees, as well as
the leaf node similarity score.

3.3. Imputation

Utilising the trained ensemble model, the missing values are imputed for the test
dataset. The test data is represented as DM×N , which has M instances and N attributes,
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with Q being the attribute with at least one missing value. The dataset is pre-processed
in the same fashion as in the first phase of the proposed model, with the exception that
there will only be three columns since the actual value is to be anticipated, resulting in a
two-dimensional matrix of the form presented in Equation (7).

Pq
test =

{
Pred1test

m,q , Pred2test

m,q , Pred3test

m,q

}
, m = {1, 2, . . . , M}, q ∈ Q (7)

where, Pred1test
m,q , Pred2test

m,q , and Pred3test
m,q are the value of qth attribute of mth sample, imputed

by the base predictors, i.e., simple mean, KNN, and iterative imputer, respectively.
The missing value within every feature may be simply inferred using equation (2) with

the support of trained ensemble models. Let Yq denote the vector holding the anticipated
values of the proposed ensemble model’s qth XGB regressor, as shown in Figure 5.

Using the anticipated set of vectors, Y1 ,Y2 , . . . , Yq (as presented in Equation (8)), the
missing values are imputed in test dataset D.

D[m][q] =
{
Yq[m], i f D[m][q] = nan

D[m][q], otherwise
(8)

where m = {1, 2, . . . , M}, q = {1, 2, . . . , Q}, nan = missing value or empty. Algorithm 1
presents procedure of proposed ensemble model. The algorithm has been partitioned into
three sections, i.e., variable declaration, generation of training dataset, then training the
model and applying trained model to the testing dataset.

• In the first section (variable declaration), all the required datasets and matrices have
been initialised.

• In the second section, the algorithm performs two sequential tasks.

a. The first task involves generation of training dataset using three imputation
strategies, i.e., simple imputation, kNN imputation, and iterative imputation;
after applying imputation method on the training dataset, the resultant dataset
is stored in Pred1, Pred2, and Pred3, respectively. Now, for each attribute index
present in Q, a corresponding matrix Pq is formed that comprises of four at-
tributes (simple, kNN, iterative, and actual). The first three attribute elements
are represented by vector B denoting the values of qth attribute’s elements im-
puted by simple imputation, kNN imputation, and iterative imputation method,
and the fourth attribute element is represented by vector A, denoting the known
value of qth attribute’s elements.

b. The second task involves the training of a regressor model (XGB) using gen-
erated training dataset. The vectors B and A are passed into XGBRegressor
method for training the model and the trained resultant regressor associated
with the qth attribute is represented by reg[q].

• In the third section, the algorithm performs three sequential tasks.

a. The first task involves the preprocessing of the testing dataset as done in pre-
vious section and transform testing dataset representation into Pq

test matrix
associated with each missing valued attribute (q). Pq

test matrix comprises of
three attribute elements represented by vector Btest denoting the values of qth at-
tribute’s elements imputed by simple imputation, kNN imputation, and iterative
imputation methods.

b. The second task involves the prediction of missing values in testing dataset
using trained regressor models (XGB) reg[q] associated with each missing valued
attribute (q). The predicted values are stored in a vector Yq

c. Lastly, the third task involves the substitution of imputed results of missing
values associated with qth attribute as stored in Yq into the actual dataset D.
After substitution, the dataset is completed, and no missing value is present
in it.
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Algorithm 1 Proposed Ensemble Model

D: testing dataset, Q: dataset with imputed instances
Q: indexes of attributes having at least one MV.
Dtrain: dataset with training instances.
Dtrainmv : dataset with training instances having randomly assigned MVs.
reg[q]: regressor model associated with qth feature

#Generating training Dataset and training the Model
Pred1 = SimpleImputer(Dtrainmv , strategy = ‘mean’)
Pred2 = kNNImputer(Dtrainmv , NN = 5)
Pred3 =IterativeImputer(Dtrainmv , max_itr = 5)
for qth in Q:

Pq[0] = Pred1[q], Pq[1] = Pred2[q], Pq[2] = Pred1[q], Pq[3] = Dtrain[q]
B = (Pq[0], Pq[1], Pq[2])
A = (Pq[3])

reg[q] = XGBRegressor()
reg[q].fit(B,A)
reg[q].predict(B)

#Applying trained ensemble models on D
Pred1test

= SimpleImputer(Dtrainmv , strategy = ‘mean’)
Pred2test

= kNNImputer(Dtrainmv , NN = 5)
Pred3test

= IterativeImputer(Dtrainmv , max_itr = 5)
for qth in Q:

Pq
test[0] = Pred1test

[q], Pq
test[1] = Pred2test

[q], Pq
test[2] = Pred3test

[q]
Btest = (Pq

test[0], Pq
test[1], Pq

test[2])
Btest = Btest[D[q].isna().index]
Yq = reg[q].predict(Btest)
i = −1
for j in D[q]:

if D[q][j] = nan:
D[q][j]= [i++]

4. Experiments and Results

The experimental environment was a PC with an Intel(R) Core(TM) i3-6006U CPU @
2.00 GHz running the Windows 10 operating system with 11.9 GB RAM. This research
utilised XGB, Support Vector, and Random Forest Regressor to quantify the accuracy of the
decision support system provided after imputing the missing values through the underlying
imputation approach to assess the proposed ensemble imputation technique with a simple
mean, kNN, and multiple imputation methodologies. Table 1 lists the configurations of
the three regressors and four imputation techniques. Further, the experiments are also
conducted on the dataset by simply dropping the missing value to assess its effects on
prediction in comparison to the proposed ensemble method.

Table 1. Configurations of regressors and imputation techniques.

Regressor/Imputation Methods Configurations

XGB Regressor max_depth = 10
Support Vector Regressor Kernel = rbf, C = 1.5

Random Forest max_depth = 5
K Nearest Neighbour Imputation K = 5

Multiple Imputation max_itr = 5
Simple Imputation strategy = ‘mean’

Proposed Ensemble Model Imputation NA
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4.1. Real Time Dataset

This research utilised the real-time COVID-19 epidemic dataset [46], which included
missing values with varying missing percentages, and varying quantities of characteristics
and occurrences for the experimentation. This real-time dataset contains information on
the COVID-19 epidemic in the United States, with records from 3142 US jurisdictions from
the start of the epidemic (January 2020) through June 2021. This information refers to
different publicly accessible databases and encompasses the everyday count of COVID-19
confirmed incidence and mortality, as well as 46 other attributes that could affect pandemic
trends, such as each county’s demographic, spatial, environmental, traffic, public health,
socioeconomic compliance, and political characteristics. The underlying dataset constitutes
750,938 records and 58 attributes, among which 12 attributes hold missing values. A total
of 10K records are chosen randomly from the original dataset for model training. Further,
three varying sizes (5K, 10K, and 20K records) of the dataset are chosen randomly for
testing the proposed model. The randomly chosen test data is statistically analysed to
quantify the missing values present, as depicted in Table 2. Moreover, missing values are
observed in each attribute (i.e., 12 attributes holding missing values) for every varying size
test dataset as presented in Table 3 and Figure 6.

Table 2. Instances holding one or more missing values in test dataset.

Test Dataset Size
Number of Instances
Holding One or More

Missing Values

Frequency of
Non-Missing Values

Frequency of
Missing Values

5000 3458 279,877 10,123
10,000 6961 559,955 20,045
20,000 13,857 1,120,278 39,722
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Table 3. Attribute-wise missing values for varying size test datasets.

Attributes Name 5K
Records

10K
Records

20K
Records

social_distancing_total_grade 868 1682 3315
social_distancing_visitation_grade 2176 4369 8681

social_distancing_encounters_grade 870 1688 3315
social_distancing_travel_distance_grade 860 1682 3310

daily_state_test 905 1791 3572
precipitation 1727 3456 6836
temperature 2368 4704 9330

ventilator_capacity_ratio 102 201 400
icu_beds_ratio 100 200 401

Religious_congregation_ratio 3 7 13
percent_insured 1 3 6

deaths_per_100000 143 262 543

4.2. Regressor Models

For determining the performance of the proposed ensemble framework, the authors
have selected three regression models, i.e., Support Vector Regressor (SVR), Random Forest
Regressor (RFR), and eXtreme Gradient Boost Regressor (XGBR). These regression models
are built to check the performance of different missing data-handling methodologies dis-
cussed in the paper (i.e., proposed ensemble imputation method, simple mean imputation
method, kNN imputation method, and iterative imputation method). The covid_19_deaths
attribute is chosen as the target attribute to train and test these models because it has no
missing values and it also happens to be the target variable in the dataset [46]. The regressor
models are briefly illustrated as follows:

1. eXtreme Gradient Boost Regressor (XGBR): XGBoost is a tree-based enactment of
gradient boosting machines (GBM) utilised for supervised machine learning. XG-
Boost is a widely used machine learning algorithm in Kaggle Competitions [47] and
is favoured by data scientists as its high execution speed beats principal computa-
tions [37]. The key concept behind boosting regression strategy is the consecutive
construction of subsequent trees from a rooted tree such that each successive tree
diminishes the errors of the tree previous to it so that the newly formed subsequent
trees will update the preceding residuals to decrease the cost function error. In this
research, the XGB Regressor Model has a maximum tree depth of 10, and L1 and L2
regularisation terms on weights are set as default, i.e., 0 and 1, respectively.

2. Random Forest Regressor (RFR): Random Forest is an ensemble tree-based regression
methodology proposed by Leo Breiman. It is a substantial alteration of bootstrap ag-
gregating that builds a huge assemblage of contrasting trees, and after that aggregates
them [48]. A random forest predictor comprises an assemblage of unpremeditated
regression trees as the base

{
Ti
(
A, Ψj,Di

)}
, where Ψ1, Ψ2, . . . , Ψj, are independent

and identically distributed (IID) outcomes of a randomising variable Ψ and j ≥ 1.
An aggregated regression estimate is evaluated by combining all these random trees
by using formula Ti(A,Di) = EΨ

[
Ti
(
A, Ψj,Di

)]
, where EΨ denotes expectation w.r.t.

with the random variable conditionally on A and the dataset Di. In this research,
the maximum depth of RFR tree is tuned to 5, and other parameters, such as the
minimum sample split and the number of trees, are kept as the default, i.e., 2 and
1000, respectively.

3. Support Vector Regressor (SVR): Support Vector Machine (SVM) used for regression
analysis is named as support vector regressor (SVR) [49]. In SVR, the input values are
mapped into a higher-dimensional space by some non-linear functions called kernel
functions [50,51] so as to make the model linearly separable for making predictions.
The SVR model is trained by a structural risk minimisation (SRM) principle [52]
to perform regression. This minimises the VC dimension [53] as a replacement for
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minimising the mean absolute value of error or the squared error. In this research,
SVR uses the radial basis function as kernel and a regularisation parameter (C) of 1.5.

4.3. Evaluation Metrics

An evaluation is a common method of determining a model’s performance. After impu-
tation of the missing values, this research employed eXtreme Gradient Boost, Support Vector
Machine, and Random Forest regressors to determine the desired values, with mean absolute
error (as depicted in Equation (9)) and mean squared error (as depicted in Equation (10)) used
to assess correctness where aimputed and aactual are the imputed and actual value for p records.

mean absolute error =
∑

p
i=1

∣∣ai
imputed − ai

actual
∣∣

p
(9)

mean squared error =
∑

p
i=1

(
ai

imputed − ai
actual)2

p
(10)

4.4. Results

As stated above, experiments are conducted using three regressors, i.e., XGB Regressor,
Support Vector Regressor (SVR), and Random Forest Regressor (RFR), for varying sizes of
test data (i.e., 5000, 10000, and 20,000 records) employing four imputation methods (i.e.,
proposed ensemble, iterative, kNN, and simple mean) and simply dropping the instances
holding missing values. The results obtained are presented in Table 4 and Figure 7 in terms
of two evaluation metrics, i.e., mean absolute error and mean squared error.

Table 4. Results obtained for varying size test dataset.

Test Dataset
Size

Imputation
Method

Mean Absolute Error Mean Squared Error

XGB SVR RFR XGB SVR RFR

50
00

R
ec

or
ds

Proposed 60.81 202.01 112.8 8266.08 69,611.7 23,966
Iterative 78.48 200.03 147.63 12,261.7 68,882.8 38,878.3

KNN 82.3 201.91 147.15 12,972.8 69,768.5 37,811.4
Simple Mean 79.78 197.48 146.88 12,197.3 68,160.8 37,889.9

Dropping 68.08 197.37 145.84 8406.14 64,981.4 35,744.9

10
,0

00
R

ec
or

ds

Proposed 54.06 194.73 115.98 6046.26 63,853.1 23,256.3
Iterative 72.84 196.45 145.58 10194 66,607.9 37,104.7

KNN 75.58 198.2 148.12 11,154 67,537.5 38,554.6
Simple Mean 73.36 192.69 146.96 10,372.3 65,122.9 38,134.9

Dropping 68.08 197.37 146 8406.14 64,981.4 35,805.3

20
,0

00
R

ec
or

ds

Proposed 49.38 188.31 113.57 4473.7 59,422.4 23,298.4
Iterative 72.69 192.51 145.98 9462.76 63,737.1 37,942.4

KNN 75.01 193.38 145.21 9881.5 63,836.4 37,135.2
Simple Mean 74.07 189.46 146.65 9695.8 62,288.6 37,528.1

Dropping 68.08 197.37 146.02 8406.14 64,981.4 35,825.6

To generalize the evaluation metrics for comparison, in each regression model authors
have normalised the resultant value of all underlying imputers with respect to the resultant
value of the proposed ensemble model as devised in Equations (11) and (12).

(mean absolute error normalized)regressor =
(mean absolute error )imputationMethod

(mean absolute error )proposedMethod
(11)

(mean squared errornormalized)regressor =
(mean squared error)imputationMethod

(mean squared error)proposedMethod
(12)
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where, imputation method ε {Iterative, KNN, Simple Mean, Dropping Instances} and
regressor ε {XGB, RFR, SVR}. If the normalised value is obtained as 1, the performance of
the underlying imputation technique is identical to the proposed ensemble model. Further,
if the normalised value is greater than 1, the corresponding imputation approach outper-
forms the proposed ensemble model; otherwise, the underlying imputation technique
underperforms in comparison to the proposed ensemble model. The observed normalised
values are presented in Table 5.
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There are two key conclusions based on the experimental comparison for the proposed
ensemble model presented in Table 5 and the graphical analysis illustrated in Figure 8.

• It has been discovered that primitive imputation strategies, such as iterative, kNN, and
simple mean imputation do not perform well when imputing the missing values of
huge datasets. When the imputed dataset is submitted to XGB regressor and random
forest regressor to assess target values, dropping the records with missing values
appears to be highly promising, as demonstrated in Table 5. On the contrary, while
making predictions through a support vector regressor, dealing with a large dataset
containing comparatively more missing values, dropping the missing values is not
recommended. However, when the dataset is small and has fewer missing values,
dropping the records holding missing values is the best option, as predicted by all
three regression models.

• When working with a small dataset with fewer missing values, all imputation tech-
niques produce similar outcomes when predicted by the SVR Model. On the contrary,
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in the case of regressor models XGB and RFR, significant variations in the performance
of various imputation techniques are observed. The results achieved indicate that the
proposed ensemble model outperforms all mentioned primitive imputation techniques
when dealing with both large and small datasets by producing the lowest values for
mean absolute and mean squared errors. The performance of kNN, iterative, and
simple mean imputation to impute missing values individually has been observed to
underperform compared to the technique of dropping the records holding missing
values. However, the suggested ensemble imputations model outperformed all four
scenarios, as validated by the three underlying regression models.

Table 5. Normalised results obtained for varying size test dataset.

Test Dataset
Size

Imputation Method
Mean Absolute Error Mean Squared Error

XGB SVR RFR XGB SVR RFR

50
00

R
ec

or
ds

Iterative 0.775 1.010 0.764 0.674 1.011 0.616
KNN 0.739 1 0.767 0.637 0.998 0.634

Simple Mean 0.762 1.023 0.768 0.678 1.021 0.633
Dropping 0.893 1.024 0.773 0.983 1.071 0.67

10
,0

00
R

ec
or

ds

Iterative 0.742 0.991 0.797 0.593 0.959 0.627
KNN 0.715 0.982 0.783 0.542 0.945 0.603

Simple Mean 0.737 1.011 0.789 0.583 0.981 0.610
Dropping 0.794 0.987 0.794 0.719 0.983 0.650

20
,0

00
R

ec
or

ds

Iterative 0.679 0.978 0.778 0.473 0.932 0.614
KNN 0.658 0.974 0.782 0.453 0.931 0.627

Simple Mean 0.667 0.994 0.774 0.461 0.954 0.621
Dropping 0.725 0.954 0.778 0.532 0.914 0.650
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5. Discussion

After analysing the evaluation metrics generated by three regressor models, it has been
found that the proposed ensemble strategy is the most suitable option for the imputation of
missing values. The imputed dataset produced by the Proposed Ensemble approach when
passed to XGB Regressor for performance evaluation results in the least mean absolute
error, i.e., 60.81, 54.06, and 49.38, and least mean squared error, i.e., 8266.08, 6046.26, and
4473.7, in all three test cases considered. Similarly, when the same dataset is passed to the
RFR model, the model gives the least mean absolute error, i.e., 112.8, 115.98, and 113.57,
and the least mean squared error, i.e., 23,966, 23,256.3, and 23,298.47, in all three test cases
considered. However, when the same imputed dataset is passed to the SVR Model, then
in one of the test cases, i.e., with 20,000 records, it gives the least mean absolute error of
188.31, and in two cases, i.e., with 10,000 and 20,000 records, it gives least means squared
error of 63,853.1 and 59,422.4, respectively, as represented in Figure 8.

For the comparison of state-of-the-art missing value-handling strategies such as simple
imputation, kNN imputation, iterative imputation, and dropping the missing value con-
tained instances method, normalised error results have been calculated using Equations (11)
and (12) with respect to the proposed imputation method as depicted in Table 5. It has
been observed that the approach of dropping the instances with missing values is the
closest missing value handling method to the proposed ensemble model as it results in the
normalised error estimate in the range of 0.7 and 1.0 in all three considered test cases. But
the method reduces the dataset size, thus it should not be preferred for large and crucial
datasets.

On the other hand, among simple mean, kNN, and iterative methods, iterative impu-
tation is closest to the proposed imputation method having a normalised MAE of 0.775,
0.742, and 0.679 in the three considered test cases, i.e., 5000, 10,000, and 20,000 records,
respectively, and a normalised MSE of 0.593 and 0.473 in two test cases, i.e., 10,000 and
20,000 records, respectively, as computed by XGB Regressor Model. On the contrary, the
simple mean imputation method is closest to the proposed imputation method having
a normalised MAE 1.023, 1.011, and 0.994 and a normalized MSE 1.021, 0.981, and 0.954
in the three considered test cases, i.e., 5000, 10,000, and 20,000 records, respectively, as
predicted by the SVR Model and a normalised MAE and normalised MSE of 0.768 and
0.678 as predicted by RFR and XGB Model. Similarly, the kNN imputation method closest
to the proposed imputation method having a normalised MAE 0.782 in one test case, i.e.,
20000 records, and a normalised MSE of 0.634 and 0.627 in the two considered test cases,
i.e., 5000 and 20,000 records, respectively, as predicted by RFR Model. Hence it can be said,
when the dataset size is small and has fewer missing values, dropping the records holding
the missing values seems the most suitable approach, as predicted by almost all three re-
gression models, and with a large dataset size the simple mean, kNN, and iterative method
give equivalent results in most of the cases but could not match with the performance of
the proposed ensemble strategy as estimated by considered regressor models.

In current research, authors are focused on establishing an ensemble technique for
missing value imputation employing mean value, kNN, and iterative imputation tech-
niques. However, in the near future, authors aim to extend the current research on the
below-listed limiting parameters of the proposed model.

• Functionally dependent domain: Current research is not exploiting the functional
dependencies present in the dataset for identification of missing values. The authors
target to employ the devised ensemble strategy on other healthcare datasets includ-
ing genomics-based and specific disease diagnosis-based, which may include the
significance of attribute’s functional dependencies.

• Intelligent selection of base predictors: The base predictors chosen in the proposed
model are fixed and thus do not consider other base predictors available. The authors
intend to develop a system for intelligent selection and hybridisation of the different
base estimators on the basis of attributes, for instance, domain dependency; categorical
data must be addressed by classification-based machine learning models and contin-
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uous data must be addressed by regression machine learning models. Further, the
multiple stacking approach can be integrated for the meta learners in the proposed
ensemble approach, wherein the XGB model can be replaced with the kNN-based
deep learning methods when handling complex healthcare datasets which can help in
producing much better outcomes and can be more reliable in terms of performance.

6. Conclusions

To efficiently model computer systems to aid in medical decision-making, clean and
reliable data is essential, yet data in medical records is usually missing. Leaving a consider-
able amount of missing data unaddressed frequently results in severe bias, which leads to
incorrect conclusions being reached. In the current research work, an ensemble learning
framework is introduced that (1) can handle large numbers of missing values in medical
data, (2) can deal with various datasets and predictive analytics, and (3) considers multiple
imputer values as base predictors, utilising them to construct new base learners for the
entire ensemble that result in maximum correlation value with respect to the negative
gradient of the loss function. The performance of the proposed ensemble method has been
evaluated compared to three commonly used data imputation approaches (i.e., simple
mean imputation, k-nearest neighbour imputation, and iterative imputation) and a basic
strategy of dropping records containing missing values in the experiments conducted.
Simulations on real-world healthcare data with varying feature-wise missing frequencies,
number of instances, and three different regressors (eXtreme gradient boosting regres-
sor, random forest regressor, and support vector regressor) revealed that the proposed
technique outperforms standard missing value imputation approaches.
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