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Abstract

The laboratory mouse is the pre-eminent model organism for the dissection of human disease pathways. With the advent of
a comprehensive panel of gene knockouts, projects to characterise the phenotypes of all knockout lines are being initiated.
The range of genotype-phenotype associations can be represented using the Mammalian Phenotype ontology. Using
publicly available data annotated with this ontology we have constructed gene and phenotype networks representing
these associations. These networks show a scale-free, hierarchical and modular character and community structure. They
also exhibit enrichment for gene coexpression, protein-protein interactions and Gene Ontology annotation similarity. Close
association between gene communities and some high-level ontology terms suggests that systematic phenotyping can
provide a direct insight into underlying pathways. However some phenotypes are distributed more diffusely across gene
networks, likely reflecting the pleiotropic roles of many genes. Phenotype communities show a many-to-many relationship
to human disease communities, but stronger overlap at more granular levels of description. This may suggest that
systematic phenotyping projects should aim for high granularity annotations to maximise their relevance to human disease.
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Introduction

With the advent of well-annotated genome sequences for

humans and other mammals the focus of genetic analysis is

turning to the relationship between phenotype and genotype. The

laboratory mouse is central to this analysis because of its ease of

genetic manipulation and short generation time [1]. Mouse

genetics has a history of over 100 years and has accumulated a

large repository of information on mouse genes and the

phenotypes associated with them [2]. As a model organism, the

laboratory mouse benefits from a comprehensive set of gene

function information that it is not possible to obtain in humans and

therefore represents a unique opportunity for more comprehensive

analyses in a mammal. However gaining an overview of gene-

phenotype relationships is difficult using individual database

searches [3]. There is therefore a need to develop a structure

within which these relationships can be investigated in an

integrated way.

Phenotype description in the mouse differs from that in humans

in focusing on individual observable phenotypes rather than

diseases, which are less clear-cut entities [4,5]. A major strength of

mouse phenotype data is the common use of a well-developed

ontology to describe abnormal mouse phenotypes, the Mamma-

lian Phenotype ontology (MP) [6]. This ontology, which is made

up of 10,751 terms and 16 levels (as of 12.11.2010), contains most

of the terms used by mouse geneticists to characterize abnormal

mouse phenotypes. There are currently two major repositories for

mouse phenotype information which hold phenotype information

on genes annotated with MP: the Mouse Genome Database [2],

which collects manually curated annotations for mouse genes, and

EuroPhenome [7], which is a repository of the results of high-

throughput phenotyping screens. A natural way to integrate

phenotype and genotype data is to construct a bipartite graphical

structure consisting of genes and terms from the MP, thereby

linking MP terms by shared genes and genes by shared MP terms,

in a manner analogous to the gene-disease network structure

developed by Goh et al [8] for humans.

Goh et al [8] identified a number of significant features in their

disease-gene network, in particular a tendency for genes

associated with similar disorders to interact at the protein level

and to show coexpression. Following on from this analysis, much

emphasis has been placed on the prediction of gene function

(normally in the form of Gene Ontology (GO) [9] terms),

particularly in the context of genome-wide association studies.

Butte and Kohane [10] related differentially expressed genes to

disease, phenotype, experimental context and environment terms

contained within gene annotations, emphasising the use of MeSH

(Medical Subject Heading) terms to structure unstructured

textual annotations. Disease-gene networks have also been

applied to the problem of prioritising potential disease genes

[11,12,13]. More broadly, Marcotte and co-workers have

developed genome-wide functional gene networks using data

from a variety of species to predict genes associated with

particular phenotypes [14,15,16].
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Network approaches have also been applied in the mouse. A

systematic assessment of methods for predicting mouse gene

function has shown the value of network-based approach in gene

function prediction [17,18]. Guan et al [19] generated a Bayesian

network linking PPI, phenotype, disease, gene expression and

phylogenetic profiles with the aim of functionally linking mouse

genes and predicting gene function and pathway components.

They found a strong dependence between MP phenotype terms

and disease terms and so combined them for use in function

prediction. In an alternative approach to cross-species linking of

phenotype terms, Groth et al developed a text-, rather than

ontology-based approach [20].

Network structures have a range of possible applications beyond

the prediction of gene function. Whereas gene function prediction

is important for the molecular dissection of phenotype and disease,

the initial identification of disease models in the mouse (and other

model organisms) usually starts by the identification of phenotypes

in the model organism which mirror phenotypes associated with

diseases in humans. These are then used as an access point to the

genes and pathways involved in these pathways (forward genetics).

It is therefore important to develop a formal link between

phenotype ontologies and genes in order to characterise the

relationship between phenotypes and their underlying genetics,

and to allow best use to be made of gene annotations arising from

projects, such as EUMODIC (http://www.eumodic.org/), which

aim to systematically phenotype knockouts of every gene in the

mouse genome. In this paper we explore the direct linking of MP

terms to genes. Here we describe a gene-phenotype network

constructed defined using mouse data from the MGD and

Europhenome databases which links genes by shared MP terms

and MP terms by shared genes. We compare the structure of this

network with the human disease network and evaluate its utility for

phenotype prediction and analysis and ontology refinement.

Results

Annotation granularity in the MP Ontology and GO
Unlike the construction of disease-gene bipartite networks [8],

which simply involves linking gene names or identifiers with

disease names, construction of a mouse gene-phenotype network

requires the linking of MP ontology terms to gene names and IDs.

The MP ontology (like other ontologies including the GO [9]) is

structured such that terms have relationships between them so as

to form a directed acyclic graph (DAG), allowing for varying levels

of descriptive granularity. The ontologies are therefore organised

into levels with different degrees of granularity. This introduces an

additional level of complexity into the analysis. We therefore firstly

considered the use of the different granularity levels of MP and

GO ontology terms for annotation in two primary data sources.

The level immediately nearest the root of an ontology’s DAG is

termed level 1. This is the highest level and contains the most

broad, generally descriptive (least granular) terms in the ontology.

Specific (more granular) terms are labelled as lying at increasing

level numbers corresponding to the number of nodes lying above

them in the ontology’s hierarchy. MP (and GO) annotations for

mouse employ mixed levels of ontology terms. We therefore

characterised the most frequent level of annotation used. To do

this for MP terms we used MGD, which contains the largest public

domain corpus of MP annotations. The results are presented in

Figure S1. The MP ontology showed a single peak of most

frequent annotation at level 5. We therefore focussed on MP level

5 in the subsequent analysis and we also considered MP level 8,

after which annotation usage declines sharply, to characterise the

effect of using a more granular level of annotation on the overall

results. These levels also provided a compromise between

granularity and retention of annotations. To inform analysis of

GO terms associated with genes, we also considered the levels of

the three GO sub-ontologies used in gene annotation in Ensembl.

The ‘‘biological process’’ (BP) of the GO also showed a single peak

of most frequent annotation at level 5. However the ‘‘cellular

component’’ (CC) of GO showed two peaks at levels 2 and 5 while

the ‘‘molecular function’’ (MF) of GO has three peaks at levels 2,

4, and 6. We therefore used level 5 of the BP and CC branches of

the GO and level 2 of the MF branch to investigate functional

enrichment of gene communities.

Characterisation of the mouse gene-phenotype network
Global views of the mouse gene-phenotype network (GPN)

constructed using level 5 MP terms and their associated Ensembl

gene identifiers are illustrated in Figure 1. The composition of

these networks depends on whether genes or phenotypes are

considered, the MP level considered, and the cut-off value of the

association weight d used to accept edges into the network (see

Methods for definition of d). Different d cut-offs were applied for

different networks and different ontology levels (see Methods).

Applying these cut-offs greatly reduces the coverage of the gene set

in the network compared to using no cut-off (i.e. dcutoff = 0). We

observed reductions from 4996 to 430 (level 5; dcutoff = 0.009) and

2625 to 378 (level 8; dcutoff = 0.011) for gene networks and from

1269 to 239 (level 5; dcutoff = 0.005) and 512 to 199 (level 8;

dcutoff = 0.002) for phenotype networks.

Figure 1 (A&B) shows the GPN as a gene network linked by

phenotype terms. Figure 1A labels genes with their highest-

scoring level 1 MP term to illustrate clustering of similar

phenotypic outcomes within the network (see Materials and

Methods for a description of the scoring process used to assign

these terms), while Figure 1B is colour-coded according to

communities (clusters) identified by the Newman spectral method

[21]. Figure 1 (C&D) shows this network as a phenotype

network linked by genes. Again, colour-coding is by Level 1 MP

term in Figure 1C and Newman community in Figure 1D.

For both gene and phenotype networks there is a close but not

perfect correspondence between Newman communities and

regions of the graph coloured according to most common Level

1 MP term, suggesting that the GPN has a broadly modular

nature. This is illustrated using a small number of sub-networks of

interest in the Supplementary material (Figure S2). The full

underlying data are presented as electronic supplementary text

(Text S1 & S2). Corresponding networks constructed using Level

8 MP terms are shown in Figure S3.

The correspondence between Newman communities and MP

terms is shown clearly in the heat map representations shown in

Figure 2, which represent Level 1 MP term frequencies across

Newman communities. Some communities, notably communities

0, 5, 2 and 1, and to a lesser extent 4, showed a close mapping to

individual MP terms. Others, however, showed only weak

mappings to single MP terms and some little or no such mapping.

Conversely, ten Level 1 MP terms showed no assignation to

communities. MP Level 1 terms which form discrete communities

are shown in Table S1.

Topological properties of the GPN
Biological networks characteristically have a scale-free and

hierarchical nature [22]. The gene network at level 5, when parsed

using a dcutoff of 0.009, showed both of these properties (Figure 3
A–B). Scale-freeness is indicated by the linear nature of the log-log

plot of P(k) against k (Figure 3A), while hierarchical nature is

indicated by the linear log-log plot of C(k) vs k (Figure 3B) [22].

Mouse Gene-Phenotype Network
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Corresponding figures to Figure 3 (A & B) for the network

constructed using level 8 MP terms are presented in Figure S4.

When no cut-off is applied (dcutoff = 0) the gene networks showed

reduced scale-free character, switching to a mixed degree

distribution type, i.e. containing varying proportions of scale-

freeness and random network character (represented by normally

distributed values of k) (Figure S5, A–B, D–E, G–H). The

network constructed using level 1 MP terms was almost random in

nature. The hierarchical character of the network is retained at

level 1 with dcutoff = 0 but gets progressively lost at lower levels

(Figure S5, C,F,I).

The phenotype network at level 5 also showed a scale-free

character and weak hierarchical character (Fig. 3 C–D). Again,

the log-log plot of C(k) vs k was non-linear, as seen for the gene

network. At dcutoff = 0 the scale-free character was lost as for the

gene network but a weak hierarchical character remained (Figure
S6). A phenotype network constructed for Level 1 MP terms

showed very high connectivity, most likely indicative of extensive

pleiotropy in the system (Figure 1E).

Modularity in the GPN
Visualisation of the level 5 gene network at dcutoff = 0.009 results

in the appearance of visually discernable modules (Figure 1A),

consistent with a functional modularity in the mouse genetic

machinery. Newman’s algorithm [21] identified 10 communities

in the level 5 gene network (Figure 1B) and 8 communities in the

level 8 gene network. MP terms also naturally arrange themselves

into visibly discernible clusters in the level 5 phenotype network

(Figure 1C). In this case Newman’s algorithm gave 7 commu-

nities in the level 5 network (Figure 1D) and 9 communities in the

level 8 network (Figure S3 and Table S1).

To test if the modular character of the gene and phenotype

networks was significantly greater than that of randomly wired

networks we simulated randomly re-wired versions of the networks

that kept the same node degree distribution (n = 1000). The

empirical networks showed significantly higher clustering coeffi-

cients and Newman’s Q values compared to these simulated

networks (p%0.001 in all four cases) (Figure S7). A stringent

threshold on edges (on the order of d$0.005–0.009) is needed to

produce visually or computationally discernible communities in

the mouse GPN (compare, for example, Figures 1C and 1E).

Functional enrichment and phylogenetic profiles of
communities and hubs extracted from the gene network

Goh et al [8] identified significant overrepresentation of

coexpressed genes and gene interactions at the protein level in

disease-associated modules in a human disease-gene network. To

test if the communities in the gene network at dcutoff = 0.009

correspond to components of similar functional modules we tested

them for various measures of functional enrichment. Communities

showed higher co-expression compared to random controls both

for microarray RNA levels (Figure 4A) (p%0.001) and tissue

expression patterns in GXD (Figure 4B) (p%0.001). They also

show increased likelihood of having a physical interaction

(Figure 4C) (p%0.001) and increased GO term annotation

similarity at the relevant level of each sub-ontology (Figure 4D–F)

(p%0.001 for all three branches of the GO).

We hypothesised that genes that are highly connected within

their communities could act as regulators of function. To test this

hypothesis, we took the hub genes (defined as genes having more

connections than shown by 80% of all genes) from the gene

network at level 5 and investigated the overrepresentation of GO

terms within them. We found highly significant overrepresentation

of GO:0016563 ‘‘transcription activator activity’’ (p,0.001) and

weaker overrepresentation of GO:003682 ‘‘chromatin binding’’

(p,0.05), suggesting that highly connected nodes within commu-

nities tend to be involved in transcription regulation.

Functionally related proteins are believed to have correlated

patterns of gain and loss during evolution [23,24]. To test the

hypothesis that the genes in the gene communities identified here

coevolved we constructed phylogenetic profiles for all genes in

mouse using the Ensembl Compara database [25]. Genes within

communities showed a shift to higher correlation of phylogenetic

profiles compared to non-community genes (p%0.001) (Figure
S8) and this effect was stronger for Level 5 than level 8 MP terms.

Level 1 MP Term Enrichment within Gene Communities
If genes within communities tend to be functionally correlated,

we would expect them also to share similar phenotypic outcomes,

represented as MP terms. To test this we examined the numbers of

genes within gene or phenotype networks that shared or did not

share level 1 MP terms, taking into account whether or not they

were members of the same Newman community. Results of these

analyses are summarised in Table 1. Communities generally

showed a modest overrepresentation of genes with the same level 1

MP term. In terms of gross numbers, this excess generally gave rise

to highly significant Chi-squared values.

Comparison of mouse communities to human
communities

To assess the extent to which our communites exhibited overlap

with the communities from [8], we applied Newman’s method to

Goh et al’s human disease gene network and calculated the extent

of overlap between communities in the two networks. The results

of the pairwise comparisons are shown in Figure 5. There are

varying degrees of overlap between the two sets of communities. In

general, the extent of overlap is relatively high if missing data is

taken into account; the highest overlap scores reach approximately

0.6. However about half of the human communities had no

apparent equivalents in the mouse communities, perhaps as a

result of missing data. Comparing community mappings for the

MP level 5 and level 8 networks (Figures 5A & B) shows more

high-overlap matches for the MP level 8 network than for the level

5 network.

Figure 1. Visualisation of Gene and phenotype networks and communities. A) Gene network at MP level 5 using a threshold of
dcutoff = 0.009. Colouring corresponds to the highest-scoring MP term at level 1 in the weighted biadjacency matrix. Vertices with more than one
equally high-scoring term are coloured in light grey. B) Gene network at MP level 5 using dcutoff = 0.009 with colours indicating the communities
extracted with Newman’s spectral method. C) Phenotype network at MP level 5 using dcutoff = 0.005. Colouring shows the most frequent parent MP
term at level 1 if the MP DAG is traversed. Vertices with more than one of these were coloured white. D) Phenotype network at MP level 5 using
dcutoff = 0.005 with colours indicating the communities extracted with Newman’s spectral method. E) Visualisation of the phenotype network at MP
level 1 constructed with no d cut-off (dcutoff = 0). This results in a highly-connected network. A&B: Vertices correspond to genes. Vertex size is
proportional to the sum of scores in the weighted gene6gene adjacency matrix, which corresponds to the amount of association it has with other
genes. Edges are proportional to the strength of association (edge weight in the adjacency matrix). B&C: Vertices correspond to MP terms in the MP.
Vertex size is proportional to the sum of scores in the weighted phenotype6phenotype adjacency matrix.
doi:10.1371/journal.pone.0019693.g001
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The level 5 community that corresponded most closely to a

disease network community was community 6, which comprised

four genes whose orthologues are associated with McKusick-

Kaufman syndrome (MKKS) and the Bardet-Biedl syndrome

(BBS) [26] and showed overrepresentation of the MP terms

‘‘cellular phenotype’’, ‘‘pigmentation phenotype’’, ‘‘muscle phe-

notype’’ and ‘‘nervous system phenotype’’. This overlapped

strongly with community 39 of the disease network, five of whose

components were MKKS/BBS genes, including three MP

community 6 genes (75%). Other MP communities showed

broader mappings to a number of disease communities

(Figure 5), Table 2 presents the most common level 1 MP term

associated with each phenotype community along with the disease

term associated with the most strongly overlapping disease gene

community for the MP Level 5 GPN. There is generally a good

agreement between the two sets of terms. More detailed listings of

gene community memberships for the MP Level 5 network are

given in Dataset S1.

Hierarchical clustering of Level 1 MP terms
Given the relationship we observed between gene function and

MP terms we investigated whether information contained in the

network might be used to add structure to phenotype ontologies.

We carried out clustering of Level 1 MP terms according to shared

genes, assessing the significance of the clusters using approximately

unbiased p-values (AU) [27] (Figure 6). This produced seven

clusters with AU = 1.00 and four additional clusters of AU$0.95

(including one which distinguished all phenotypes from

Figure 2. Mapping of communities to their most probable MP level 1 community based on gene membership overlap. Cells represent
2log(p) where p is the probability of assignment based on overlap of the communities in the gene network with the community membership based
on the most frequent MP level 1 membership. Red areas represent a low value and yellow areas represent high values. Dendrograms on the vertical
axes represent hierarchical clustering using euclidean distances. A) MP level 5 communities; B) MP level 8 communities.
doi:10.1371/journal.pone.0019693.g002

Figure 3. Topological properties of networks gene and phenotype networks at MP level 5. A) Gene network degree distribution and B)
clustering coefficient distribution for the gene network at MP level 5, dcutoff = 0.009. C) Phenotype Network degree distribution and D) clustering
coefficient distribution for the phenotype networks at MP level 5, dcutoff = 0.005. Black lines indicate a line of best fit using linear regression.
doi:10.1371/journal.pone.0019693.g003
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MP:0005394 ‘‘taste/olfaction phenotype’’). As illustrated in

Figure 6 the composition of these clusters was generally in line

with biological intuition.

Discussion

Structural features of the mouse gene-phenotype
network

In order to investigate the relationships between genes and

phenotypes, and in particular the potential for systematic mouse

phenotyping to identify underlying genetic pathways, we con-

structed a bipartite network linking Mammalian Phenotype

ontology terms (MP terms) to associated genes using data from

the Mouse Genome Database [2], which contains manually

annotated data on mouse phenotypes taken predominantly from

the literature, and the EuroPhenome database [7], which is a

database of raw phenotyping data emerging from a number of

systematic phenotyping projects, notably EUMODIC (http://

www.eumodic.org) and assigned MP terms based on significant

deviation of the results of individual tests from results on control

animals [28]. Integration of these diverse data sets was only

possible because of a shared use of the MP for annotation. We

have confined ourselves to phenotype terms and gene identifiers in

this analysis as we wished to study this relationship specifically. We

did not consider individual alleles of genes (or their respective

genetic backgrounds) as our aim was to link genes to phenotypes

via their molecular products. Larger, more complex structures can

be constructed to include gene function information, gene

expression, protein-protein and gene-gene interactions and so on

[17,18,19]. Such structures have been successfully used to predict

some phenotypes resulting from gene perturbations in Saccharomyces

cerevisiae, Caenorhabditis elegans and Arabidopsis thaliana [14,15,16].

Biological networks are typically scale- free and hierarchical

[22]. That is, they contain a higher proportion of highly-connected

nodes than a random network (scale-free) and are composed of

separable modules, or communities (hierarchical). These proper-

ties are also seen in the mouse GPN but they are only seen if a

relatively stringent cutoff is applied to remove weak connections

(d$0.009 for the gene network; d$0.005 for the phenotype

network). If weak connections are included a highly-connected

graph lacking scale-freeness and with little hierarchical structure is

produced. This is consistent with the widely-held view that many

genes are pleiotropic, i.e. have effects on many different

phenotypes. Only by characterising the strongest gene-phenotype

links can we identify a more typical network organisation.

The parameter c, which is the exponent of the relationship

between the probability of observing k connections at a node and

the connection number (P(k)!k{c), is an important property of

biological networks [22]. Networks with values of c below 3 have

been shown to be dominated by hubs and have a high degree of

robustness to loss of individual nodes at random [22]. Both the

phenotype and gene networks derived from the mouse GPN had c
of the order of 1 (see Figure 3), suggesting that both networks are

robust and dominated by highly connected hubs. A further

property of biological networks is that they are hierarchical,

consisting of highly connected modules linked by less connected

nodes [22]. Hierarchical networks are characterised by a linear

relationship of the log-log plot of C(k), the clustering coefficient of

a node, and k, the node degree as seen in Figures 3, S4 and S5
for both the gene and phenotype networks we describe here. We

conclude that both the gene and phenotype networks are

hierarchical in nature when constructed using sufficiently stringent

d cut-offs. It should be noted, however, that we observed that both

the scale-freeness and hierarchical nature of the networks are lost

as lower stringency connections are used, resulting in the limit in a

highly interconnected structure (Figure 1E). This may again

reflect the highly interconnected (pleiotropic) nature of the genetic

networks underlying phenotypes, with many genes contributing,

albeit weakly, to many phenotypic outcomes.

In characterising their human disease-gene network, Goh et al

[8] showed that genes associated with similar disorders show an

increased propensity to mutual physical interactions and gene

coexpression. We investigated whether the gene communities

within the GPN showed similar features by considering gene

coexpression, tissue coexpression patterns in GXD, protein-

protein interaction and GO terms. In all cases we found highly

significant overrepresentation within modules, as would be

expected if the genes associated with particular MP terms were

themselves associated with specific underlying processes that give

rise to abnormal phenotypes when disrupted. We could also show

higher correlations of phylogenetic profiles within communities

than between non-community genes. This suggests that groups of

genes giving rise to particular characteristics of organisms have

coevolved, consistent with the observation that groups of

interacting proteins tend to show coevolutionary patterns of gene

duplication and sequence divergence [24].

As scale-free networks are dominated by hubs, and in particular

in light of evidence of gene coexpression within gene communities,

we characterised the network hubs (defined here as the top 20%

most connected nodes) in terms of their Gene Ontology

annotations. We found a strong overrepresentation of the term

‘‘transcription factor activity’’ in hubs, indicating that the

behaviour of individual communities may be regulated by

particular transcription factors and that these transcription factors

may be responsible for regulating the expression of particular

Table 1. Frequencies with which gene pairs within Newman
communities share level 1 MP terms compared to frequencies
for all genes.

Network
Same within
communities

Same
overall P(Chi Sq, 3dof)

Level 5, Genes 0.64 0.54 %0.001

Level 5, Phenotypes 0.41 0.29 %0.001

Level 8, Genes 0.71 0.72 NS

Level 8, Phenotypes 0.22 0.19 ,0.001

doi:10.1371/journal.pone.0019693.t001

Figure 4. Functional enrichment in Gene networks. A) Coexpression increase measured by Pearson’s correlation coefficient for genes within
communities (red) compared to a random control (black) for the gene network at level 5 shown in Fig. 1 (A&B). B) GXD Tissue expression similarity
increase for genes within communities (red) compared to a random control (black) for the gene network at level 5 shown in Fig. 1 (A&B). The
similarity metric used was Pearson’s correlation coefficient. C) Number of physical protein-protein interactions for genes within communities (red)
compared to a random control (black) for the gene network at level 5 shown in Fig. 1. D–F) GO annotation similarity using the most common level for
each of the GO ontologies for genes within communities (red) compared to a random control (black) for the gene network at level 5 shown in Fig. 1.
The levels used were 5, 5, and 2 for BP, CC and MF respectively. The similarity metric used was the d score obtained using the same method as for the
gene-MP term networks.
doi:10.1371/journal.pone.0019693.g004
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phenotypes. Yu et al [29] have argued that transcription factors

with many target genes tend to be essential genes, while essential

genes tend to be hubs in gene networks [8,30]. Thus high level

phenotypes may be controlled by a subset of transcription factors

which may have multiple targets and be essential. Interestingly,

around one third of gene knockouts in the Knockout Mouse

Project ES cell library characterised so far are embryonic lethal

[1]. It will be interesting to characterise these genes further as the

data set grows.

Gene communities and phenotype diffuseness
Whereas Goh et al [8] selected gene sets based on their disease

annotations we used an objective criterion [21] for identifying

modules within the GPN in this study. A benefit of this approach is

that it avoids ascertainment bias due to lack of data on certain

phenotypic domains, which is a well-known problem of datasets

not derived from systematic phenotyping, such as MGD. A

disadvantage of this approach is that only 10 communities are

observed within the level 5 gene network that roughly correspond

to particular level 1 MP terms, although there are 31 level 1

phenotypes in MP. In particular, whereas ‘‘immune system

phenotype’’, ‘‘hearing phenotype’’ and ‘‘reproductive system

phenotype’’ were always resolved into very tight groups this was

not the case for other terms. Further analysis of the networks (see

Figure 2) suggests that other level 1 phenotypes are more

‘‘diffuse’’ in their distribution across the network.

In comparing our networks with Goh et al’s [8] disease-gene

network we found a number of good correspondences between the

gene sets making up Newman communities in the two networks,

especially at the level of MP term and disease annotations (see

Figure 5; Table 2). The Newman communities in the disease-gene

network do not exactly correspond to diseases but we could

identify the most common disease term for each community and

relate it to the most common MP term in the MP term-gene

networks. This comparison reveals a good match between MP

terms and disease terms (Table 2). The mappings in Table 2 to

some extent resemble the phenologs described by McGary et al

[31]. Phenologs are phenotypes that are considered homologous

between species and defined by groups of orthologues which are

shared between phenotypes in different species. Our mappings

differ from phenologs as they are defined using gene communities

identified objectively in the network rather than sets of genes

annotated to a given phenotype.

The comparison in Figure 5 indicates that although individual

communities may map quite well, MP terms do not map directly

onto individual diseases. This is unsurprising as human diseases

are typically characterised by a constellation of atomic phenotypes

[4]. Mapping between disease terms (or disease endophenotypes)

and MP terms may be possible using networks of this kind

however. In this analysis we identified only ten communities in the

GPN at MP level 5 and eight at MP level 8, whereas many more

could be identified in the disease-gene network. Adding additional

data to the GPN may give rise to more communities, allowing a

closer mapping between mouse and human phenotype sets.

Interestingly, we observed more strong overlaps between pheno-

type and disease communities when we considered level 8 MP

terms than with level 5 MP terms. This deserves further analysis

but may suggest that it will be important to collect granular

phenotype data in systematic phenotyping programmes to allow

linking of individual mouse models to diseases.

The diffuse distribution of many level 1 MP terms in the gene

network (Figure 2) could be due to a number of not necessarily

mutually exclusive factors. It could in part represent the

incompleteness of the data set, both in terms of the genes that

have been characterised (N,5,000 annotated at MP level 5 or

higher) and the amount of phenotype information available for

individual genes – the bulk of the information represented in the

mouse GPN we present here comes from individual, ad hoc studies

which focus not only on individual genes but also on individual

phenotype domains, meaning that much phenotypic information

is likely to be missing from the data set. To eliminate this

incompleteness there is a strong argument for collecting systematic

phenotype data on as many mouse genes as possible [1] at as high

a granularity as possible.

Two other causes might contribute to the relative diffuseness of

many level 1 MP terms in the mouse GPN. Firstly, it might reflect

the more highly pleiotropic nature of these phenotype classes. If

this were the case it would suggest that forward genetic approaches

which make use of these more diffuse phenotypes will have more

difficulty in identifying consistent sets of underlying genes (e.g.

pathways). For some of the level 1 MP terms that do not associate

strongly with gene communities this seems reasonable – for

example ‘‘growth/size phenotype’’, ‘‘lethality-postnatal’’, ‘‘lethal-

ity-postnatal’’ or ‘‘life-span-post-weaning/aging’’. Other catego-

ries, however, might be expected to have a clear genetic basis, for

example ‘‘taste/olfaction phenotype’’ or ‘‘touch/vibrissae pheno-

type’’. These latter classes however have the fewest genotype

Table 2. Relationship between Level 1 phenotype terms
associated with gene communities in the Level 5 network and
the disease term associate with the most strongly overlapping
disease gene network.

Level 5
Community No MP term

Disease term of most
similar disease
community

0 Homeostasis/metabolism Diabetes mellitus

1 Immune system Severe combined
immunodeficiency

2 Hearing/vestibular/ear Deafness

3 Pigmentation/cellular/muscle Atopy, Ataxia

4 Skeleton Holoprosencephaly

5 Reproductive system Fanconi anemia

6 Nervous system Bardet-Biedl syndrome

7 Renal/urinary system Hypertension

8 Tumorigenesis Colon cancer

9 Cardiovascular system Hypertension

doi:10.1371/journal.pone.0019693.t002

Figure 5. Mapping of MP and human disease communities to show the signifiance level of their gene membership overlap. Cells on
the heatmap represent the significance of the overlap of the communities in the GPN and the disease-gene network. The intensities correspond to
2log(p) where p is the probability of the observed overlap under the null hypothesis of random assignment of genes to communities. Dark areas
have the highest values of 2log(p) while white areas represent a low value. Numbers along the x-axis are the reference numbers of the Newman gene
communities identified in the disease-gene network and numbers on the y-axis are the reference numbers of the Newman communities identified in
the GPN. A) MP level 5 communities; B) MP level 8 communities.
doi:10.1371/journal.pone.0019693.g005
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annotations in the MGI database (143 and 546 genotypes

respectively on 27.07.10) so it is possible that they had too few

connections to form significant communities in the GPN.

A third source of the diffuseness of many level 1 MP terms

across the GPN could be the structure of the MP ontology itself, as

it could reflect a lack of alignment between the phenotypes

represented at high levels of the ontology and underlying genetic

processes. The high level terms in the MP reflect mouse biologists’

intuitive views of the categories into which phenotypes should be

grouped. This does not necessarily bear any relationship to the

underlying processes giving rise to these phenotypes. Level 1 MP

terms which are diffuse on the mouse GPN might then be

unnatural groupings in the sense that they do not reflect

underlying processes. Perhaps, for example, the lower level terms

that make them up should be split into more than one higher level

term.

What might an ontology that more closely aligned phenotypes

to genetics look like? As a first attempt to address this we clustered

level 1 MP terms by the proportion of the underlying genes they

share. The result of this is illustrated in Figure 6. This structure

contains a number of groupings of Level 1 terms not present in the

ontology itself. These high-level clusters are generally consistent

with biological intuition, suggesting that such an approach might

be of value in giving a more realistic structure to high level MP

terms.

Conclusions
We have shown that constructing a mouse gene-phenotype from

published data allows us to identify functional modules related to

high-level phenotype terms in the Mammalian Phenotype

ontology. This supports the hypothesis that the mammalian

genome is organised into interconnected modules of physiological

and cellular function that have a direct read-out at the phenotype

level. This in turn indicates that systematic phenotyping in mouse

and other model organisms [1,32] has the potential to identify

protein complexes, coexpressed sets of genes or molecular

pathways underlying many phenotypes.

Our findings are mirrored in studies on other model organisms

such as that by Gunsalus et al in C. elegans [33] in which

phenotypic similarity of RNAi knockdowns of cellular defects in

early embryogenesis correlated positively with GO term sharing.

In the same study, phenoclusters of genes with correlated

Figure 6. Hierarchical clustering of MP level 1 phenotypes according to gene commonality. Using the biadjacency matrix of genes6MP
terms at level 1, a dendrogram was made using 1-cor() as a distance and average linkage as the agglomerative hierarchical clustering method
(nnbootstrap = 16104). Values in red indicate the approximately unbiased (AU) values associated with the cluster.
doi:10.1371/journal.pone.0019693.g006
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phenotype profiles were constructed and intra-phenocluster pairs

were found to be functionally enriched in specific GO functions,

displayed enriched amounts of physical protein-protein interac-

tions, and showed enriched expression correlation. A combined

network of phenotypic similarity, expression similarity and

protein-protein interaction parsed for retention of only edges

with two or more types of function gave topological clusters that

predicted shared GO terms with high specificity. Eight out of ten

proteins with unknown function that were experimentally

checked for localisation were consistent with the predicted

function. Studies in human cells such by Fuchs et al [34], in

which genes were clustered by high-throughput cellular mor-

phology screens, also provided phenotypic clusters that were

predictive of gene function and could be used to identify specific

functions for several genes.

In yeast, the model organism for which the largest number of

genetic interactions have been studied, comprehensive interaction

networks were made using a synthetic genetic array that

automated the isolation of double mutants [35]. The density of

the resulting interaction map mirrors our results, in which the gene

networks of phenotypic similarity are very densely connected for

high levels of the MP, suggesting greater connectivity which

transcends physical interactions [35]. Genes connected inside this

yeast gene network often shared GO term annotations and the

network could be used to predict protein-protein interactions.

In this study, a number of high-level terms in the MP show a

diffuse distribution across the network, suggesting that systematic

phenotyping may find it more difficult to identify underlying

pathways for these classes of phenotype than for less diffuse

phenotype classes. This is a particular issue for high throughput

phenotyping programmes such as EUMODIC [1] which seek to

relate phenotype to gene function. The diffuseness of phenotypes

could have a number of causes, including limited or biased data

sets, the general pleiotropy of genes underlying some of these

phenotypes or malformed ontologies. The first two of these issues

can be addressed by systematic phenotyping, which can add

missing genes, especially for under-studied phenotypes, and add

additional phenotypes to individual genes, increasing our under-

standing of pleiotropy. To address the third aspect it is possible

that a reconfigured phenotype ontology, based on the GPN and

specifically designed for phenotyping experiments, will be needed.

We illustrate a possible approach to producing a phenotype

ontology structure that more closely reflects the underlying genetic

architecture.

Comparing communities between MP networks and the human

disease gene network shows that there is a many-to-many

relationship between the two types of community. However there

appears to be a closer relationship between phenotype and disease

communities if more granular levels of the MP are used, suggesting

that high throughput phenotyping should aim for the most

granular possible phenotype annotations to maximise their utility.

Materials and Methods

Gene-phenotype association datasets
Gene-phenotype associations and the MP ontology OBO file

were downloaded from MGI [2] via the ftp site on 10.2.2010. The

downloaded files were: ftp://ftp.informatics.jax.org/pub/reports/

MPheno_OBO.ontology and ftp://ftp.informatics.jax.org/pub/

reports/MGI_PhenoGenoMP.rpt.

The MGI_PhenoGenoMP.rpt file, containing the lowest-level

available annotations, was parsed to produce a non-redundant

bipartite graph of gene-phenotype associations. Gene-phenotype

associations obtained from Europhenome were sourced from a

custom-made report of Europhenome gene IDs to MP term links

extracted on 19.1.2010. This was also parsed with the files

provided to produce a non-redundant bipartite graph of gene-

phenotype associations. The two lists were amalgamated to form a

single bipartite edge list of genes to Ensembl IDs. The MP terms

‘‘no phenotypic analysis’’, ‘‘normal phenotype’’, ‘‘no abnormal

phenotype detected’’, ‘‘phenotypic reversion’’, ‘‘reversion by

mitotic recombination’’, ‘‘reversion by viral sequence excision’’

were excluded from the analysis since they were not considered to

convey useful information. Gene dosage was disregarded such that

if either a heterozygote or a homozygote showed a phenotype, the

gene was considered to be associated with the MP term. The MGI

marker IDs and other IDs were converted to Ensembl IDs using

the Ensembl Perl API. Absence of annotation to an MP term could

have two possible causes: either no data has been recorded to

support a given annotation or, because MP does not allow for

annotation of normal phenotypes, they may have been absent but

not annotated. These two states were not distinguished during the

construction of the gene-phenotype network as the relevant

information is not available.

The GO OBO file was downloaded from the GO website on

10.2.2010. The downloaded file was: http://www.geneontology.

org/ontology/obo_format_1_2/gene_ontology.1_2.obo. Gene-GO asso-

ciations were downloaded from Ensembl using the Ensembl

Perl API. OBO files were parsed with a Perl script to give

computational representations of the DAG and the subsequent

analysis of term inheritance.

Construction of gene networks and MP term networks
We mapped all MP terms in the MGI MGI_PhenoGenoMP.rpt

report to their levels in the MP hierarchy. To accommodate mixed

ontology level annotations we elected to focus our analysis on the

most commonly used level of annotation, which was level 5, and

an arbitrarily chosen lower level, level 8, for more granular

annotation.

Gene-phenotype data matrices
A weighted measure of phenotype propensity was used so as to

produce a weighted biadjacency matrix of genes and phenotypes.

This matrix is dependent on the data and the phenotype ontology

structure. Phenotypes were allocated a granularity weight such

that a phenotype was considered more granular if there are more

annotated nodes below it in the ontology. This was

gj~
1

njz1

where gj denotes granularity of phenotype j and nj denotes the

number of terms below term j in the ontology that are annotated

data set.

The weighted gene6phenotype biadjacency matrix B was

calculated by considering the association of a gene with a

phenotype as

bij~
X
k[Tij

gk

Where Tij are all the terms annotated for gene i that are children

nodes of term j at any level below term j. This was done by using

the raw gene-phenotype edge list and converting the MP term

annotation to the desired level and adding the gj weights for each

gene. Cases where MP terms contained multiple parents therefore

produced multiple annotation contributions at higher levels.
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Association metric for genes and phenotypes
The pairwise association of two genes i1 and i2 for a particular

phenotype j was defined as

pi1i2 j~wilcox:test(fbi1 j ,bi2jg,frest of jg)

ci1i2 j~
pi1i2 j ai1 jw0 ai2 jw0

0 otherwise

(

Where Wilcox.test() is a two-sample Wilcoxon test. The values

from the tests were corrected using the fdrtool package in R [36].

A final score di1i2, for two genes was defined as:

di1 i2~
1

jPj
X

j

ci1 i2j

This is the average value of d over all phenotypes at that level. It

gives a score in the interval [0,1] and served as a metric for gene

associations for all gene pairs. The score was calculated for all gene

pairs and thus produced a i6i matrix that represented the

weighted adjacency matrix for the gene network.

Transposing the matrix A to give AT gave the biadjacency

matrix with genes as features of phenotypes. Repeating the

procedure gave the weighted adjacency matrix for the phenotype

network.

Parsing of networks
To obtain only the strongest associations, the edge list of the

gene and phenotype networks obtained from the two methods

described above were parsed using at a particular d-value

obtained by inspection of the distribution of d-values in the

network’s edges.

Community extraction from networks
Communities were extracted from networks using Newman’s

spectral method [21]. A C program was adapted from one

provided by the author and this adapted program was incorpo-

rated into the analysis pipeline.

Hubs and hub GO enrichment
Hubs were defined as nodes with a degree in the top 20% of the

node degree distribution in the network that they came from. We

used a one-tailed Fisher’s exact test comparing the GO terms in

each community compared with the appropriate background. The

background was taken to be all the genes in MGI for the

appropriate level, in this case, level 5. The p-values were corrected

using the fdrtool function from the fdrtool package in R [36] for

each category.

Gene expression enrichment
Expression data was obtained from the genome-wide micro-

array analysis of Zhang et al. [37] and from GXD [38,39]. The

microarray files were parsed and the correlation matrix was

calculated. The GXD expression data was taken from a custom

made report in the form of a binary (0,1) matrix of genes6tissues

IDs and a list of tissue ID names.

To represent the associations within communities, a vector was

made that consisted of the union of all pairwise gene associations

within communities for each community. The background control

was based on random re-sampling of gene communities of the

same size sampled randomly from the appropriate original

network’s gene set (nbootstrap = 1000). A two-sampled Wilcoxon

test was used on the two vectors by applying the Wilcox.test()

function in R.

Protein-protein interactions
Physical protein-protein interactions (PPI) were taken from

IntAct [40], Biogrid [41], MIPS [42] and DIP [43]. The files down-

loaded were: ftp://ftp.ebi.ac.uk/pub/databases/intact/current/

psimitab/intact.txt, http://www.thebiogrid.org/downloads/data

sets/NCBI.tab.txt and http://mips.gsf.de/proj/ppi/data/mppi.gz.

All files were downloaded on 10.2.2010. The DIP data was

downloaded manually on 22.4.2009.

The Biogrid file was parsed for physical interactions. The

physical interaction experimental systems retained were: ‘‘Affinity

Capture-MS’’, ‘‘Affinity Capture-RNA’’, ‘‘Affinity Capture-West-

ern’’, ‘‘Co-fractionation’’, ‘‘Co-localization’’, ‘‘Co-purification’’,

‘‘FRET’’, ‘‘Two-Hybrid’’, ‘‘Biochemical Activity’’, ‘‘Co-crystal

Structure’’, ‘‘Far Western’’, ‘‘Protein-peptide’’, ‘‘Protein-RNA’’,

‘‘Reconstituted Complex’’.

The protein IDs were converted to Ensembl gene IDs using files

obtained from Ensembl using the Perl API. The separate PPI edge

lists were amalgamated to form a single PPI network.

A random control of the number of PPIs in communities was

obtained by simulating random communities as previously

described for the gene expression enrichment analysis. The

numbers of interactions in random communities were amalgam-

ated to produce a control compared to the real amount with a one-

sampled Wilcoxon test.

GO annotation similarity enrichment
Pairwise GO similarity scores for genes were obtained by using

the adjacency matrix of the level containing the most annotations

and which would provide a compromise between granularity and

amount of annotations. The chosen levels were 5 for BP, CC and

level 2 for MF. The score d was calculated from the biadjacency

matrix for all gene pairs in an adjacency matrix as described for for

the gene expression enrichment analysis.

Treatment and control vectors were obtained as described

previously and a two-sampled Wilcoxon test was used as before to

obtain significance.

Phylogeny data
Phylogenetic data was taken from the Ensembl Compara

database using the Perl API. The data from Ensembl gene tree

objects were parsed to put them in the form of a gene6species

matrix where the elements are integers denoting the copy

number of the genes present in the species. Substituting the row

names of this matrix (Ensembl tree IDs) for mouse genes gave

the required phylogenetic profile matrix for mouse. The

correlation matrix was calculated to obtain all pairwise gene

correlations.

Treatment and control vectors for communities were obtained

from this matrix as previously described.

Assignment of gene communities to highest scoring MP
level 1 groups

The assignment of gene communities to groups defined by

highest scoring MP level 1 phenotypes was done by calculating the

p-value for the probability of each community containing the

overlap with each group defined by highest-scoring MP level 1

phenotype. All pairwise comparisons were made. The probability

mass function that describes the probability of getting z elements

in the intersection set Z is
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where

C~A\B

Aj j~a, Bj j~b, Cj j~c

And we sample X from A of size x and a sample Y from B of size y

such that

X(A

Y(Y

Z~X\Y

Xj j~x, Yj j~y, Zj j~z

The cumulative distribution function (CDF) is

P(Dƒz)~CDF (X ; a,b,c,x,y)~
XX

z~0

P(z; a,b,c,x,y)

The probability of observing a value as least as extreme as the

observed value is therefore given by

P D§zð Þ~PVal z; a,b,c,x,yð Þ~1� CDF z� 1; a,b,c,x,yð Þ

which gives the p-value as required. For graphical purposes the

quantity 2log(p) was used as this allows easier differentiation of p-

values. Because community sizes were small in this case, this

probabilistic metric could be calculated but it was computationally

intractable for larger data sets.

Comparison of mouse communities to human
communities

Data from Goh et al were downloaded from http://www.pnas.

org/content/suppl/2007/05/03/0701361104.DC1/01361Table2.

pdf

Newman’s spectral method was applied to extract the

communities. An all-against-all comparison of the communities

was computed using a metric of overlap, p, such that

p~

z
x
zz

y

2

where z is the amount of genes overlapping in the two

communities, x is the amount of genes in the first community

and y is the amount of genes in the second community. This is the

average of the fraction of common elements for each set.

Clustering of high-level phenotypes
The gene6phenotype biadjacency binary matrix A described

above for MP level 1 annotations was used to cluster the

phenotypes using the Parpvclust package in R [44], which uses

R’s hclust function to carry out agglomerative hierarchical

clustering. This package calculates approximately unbiased (AU)

bootstrapping to assess the uncertainty in the clustering. The

distance method used was 1-cor(), where cor() is the correlation

operator in R, which calculated Pearson correlation coefficients.

The average linkage method was used and nboot = 16104.

Supporting Information

Figure S1 Probability mass for the frequency of annotations at

different levels of the MP in the amalgamated list of gene-

phenotype associations from MGI and Europhenome and the

three GOs in Ensembl.

(TIFF)

Figure S2 Details of example gene communities: A) Community

2 in the MP level 5 gene network. This community visually

corresponds to the community that is frequently annotated with

the granularity level 1 MP term ‘‘hearing/vestibular/ear pheno-

type’’ [MP:0005377] and is highly enriched in the GO terms

‘‘mechanoreceptor differentiation’’ [GO:0042490] and ‘‘sensory

perception’’ [GO:0007600]. B) Community 5 in the MP level 8

gene network. This community visually corresponds to the

community that is frequently annotated with the granularity level

1 MP term ‘‘hematopoietic system phenotype’’ [MP:0005397] and

is highly enriched in the GO terms ‘‘erythrocyte homeostasis’’

[GO:0034101]. Details of example phenotype communities: C)

Example of a phenotype community at level 5, illustrating a

community of phenotypes related to diabetes (in blue). D) Example

of a phenotype community at level 8 illustrating a community pf

phenotypes related to reproductive system abnormalities (in

green).

(TIFF)

Figure S3 Gene and phenotype networks at MP level 8.

Attributes are as in Fig. 1 A–D.

(TIFF)

Figure S4 Topological analysis plots of level 8 networks, with

cut-off. A)–B) Gene network degree distribution and clustering

coefficient for the gene network at MP level 8, dcutoff = 0.011. C)–

D) Phenotype Network degree distribution and the clustering

coefficient distribution for the phenotype network at level 8,

dcutoff = 0.002. Black lines indicate a line of best fit using linear

regression.

(TIFF)

Figure S5 Topological analysis plots of level 5 gene networks,

with no d cut-off. A–B) Gene network degree distribution and C)

clustering coefficient distribution for the gene network at MP level

1, dcutoff = 0. D–F) The same quantities for MP level 5. G–I) The

same quantities for MP level 8. Black lines indicate a line of best fit

using linear regression.

(TIFF)

Figure S6 Topological analysis plots of phenotype networks with

no cut-off. A–B) Gene network degree distribution and C)

clustering coefficient distribution for the gene network at MP

level 5, dcutoff = 0. D–F) The same quantities for MP level 8.

(TIFF)
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Figure S7 Modularity in the gene and phenotype networks. A)–

B) Average clustering coefficient and Newman’s modularity (Q) for

randomly re-wired networks (blue) and the corresponding gene

network at MP level 5 shown in Fig. 4.dcutoff = 0.011. The random

networks retain the same degree distribution as the empirical gene

network. C)–D) Average clustering coefficient and Newman’s

modularity (Q) for randomly re-wired networks (blue) and the

corresponding phenotype network at MP level 5 shown in Fig.

dcutoff = 0.005.

(TIFF)

Figure S8 Phylogenetic profile correlation in communities.

Shown are probability densities for genes within communities

(red) compared to a random control (black) for the gene networks

presented in the text at level 5 (A) and 8 (B).

(TIFF)

Text S1 Edge list for the gene network at MP level 5 and with

dcutoff = 0.009.

(TXT)

Text S2 Edge list for the phenotype network at MP level 5 and

with dcutoff = 0.005.

(TXT)

Table S1 Top level MP terms that can form discrete

communities, form communities which fall below the stringency

cut-off (P,0.0001), or do not form communities. Communities are

assessed within the phenotype networks constructed at MP levels 5

and 8, respectively.

(PDF)

Dataset S1 The first worksheet shows the compositions of

Newman communities detected in the GPN at MP level 5 and in

the disease-gene network (showing both human gene composition

and mouse orthologue composition). The second worksheet shows

the genes in the GPN communities that overlap with members of

disease-gene communities, and the disease-gene communities they

are members of.

(XLSX)
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