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1  | INTRODUC TION

Predation and the recognition of predation risk can be powerful 
selective forces, capable of shaping interactions within and among 
predators and prey as they seek to gain advantage in this lethal con-
test (Dawkins & Krebs, 1979; Genovart et al., 2010). Antipredator 

adaptations are diverse, including changes in gross morphology (e.g., 
shell thickening in mussels, Cheung, Lam, Gao, Mak, & Shin, 2004), 
behavioral plasticity (e.g., varying antipredator behaviors depend-
ing on predator–prey syntopy in mosquito larvae, Roux, Diabaté, 
& Simard, 2013), and alterations in life- history strategy (e.g., pro-
duction of diapausing eggs and males in Daphnia	 spp.,	 Ślusarczyk,	
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Abstract
Alarm signals released after predator attack function as reliable public information 
revealing areas of high risk. The utility of this information can extend beyond species 
boundaries,	benefiting	heterospecifics	capable	of	recognizing	and	responding	appro-
priately to the signal. Nonmutually exclusive hypotheses explaining the acquisition of 
heterospecific reactivity to cues suggest it could be conserved phylogenetically fol-
lowing its evolution in a common ancestor (a species- level effect) and/or learned 
during periods of shared risk (a population- level effect; e.g., shared predators). Using 
a laboratory- based space- use behavioral assay, we tested the response of sea lam-
prey (Petromyzon marinus) to the damage- released alarm cues of five confamilial 
(sympatric and allopatric) species and two distantly related out- groups: a sympatric 
teleost (white sucker Catostomus commersonii) and an allopatric agnathan (Atlantic 
hagfish Myxine glutinosa).	We	found	that	sea	 lamprey	differed	 in	their	response	to	
conspecific and heterospecific odors; exhibiting progressively weaker avoidance of 
cues derived from more phylogenetically distant confamilials regardless of current 
overlap in distribution. Odors from out- groups elicited no response. These findings 
suggest that a damage- released alarm cue is at least partially conserved within the 
Petromyzontidae	and	that	sea	lamprey	perceives	predator	attacks	directed	to	closely	
related taxa. These findings are consistent with similar observations from gastropod, 
amphibian and bony fish taxa, and we discuss this in an eco- evo context to provide a 
plausible explanation for the acquisition and maintenance of the response in sea 
lamprey.
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1999),	 each	of	which	 is	 costly	 to	 produce	 (Taylor,	 Balph,	&	Balph,	
1990). One set of conditions that can lead to the evolution of such 
defenses stems from the threat of predation, if it can be accurately 
assessed and individuals subsequently avoid capture (Lima & Dill, 
1990; Sih, 1985). One such tactic, predator detection warnings, 
can be relatively fine- tuned. For example, certain primates produce 
distinct alarm calls in response to aerial versus terrestrial threats, 
allowing for application of the most effective antipredator tactic 
(Seyfarth, Cheney, & Marler, 1980). Recent studies have revealed 
predator recognition and subsequent alarm calls in birds to be even 
more	 nuanced,	 incorporating	 information	 relating	 to	 predator	 size	
(Templeton, Greene, & Davis, 2005) and the distance between pred-
ator and prey (Leavesley & Magrath, 2005).

Aquatic animals are also under strong selection pressure to ac-
curately assess predation risk in a variety of contexts and evolve 
suitable	 morphological,	 behavioral,	 and	 life-	history	 traits	 (Brown,	
Rive,	Ferrari,	&	Chivers,	2006;	Chivers,	Zhao,	Brown,	Marchant,	&	
Ferrari,	 2008;	 Ferrari,	 Messier,	 &	 Chivers,	 2008;	 Helfman,	 1989;	
Kepel	 &	 Scrosati,	 2004;	 McCarthy	 &	 Fisher,	 2000).	 However,	 in	
water, public information regarding predation risk often takes the 
form of damage- released alarm cues; chemicals involuntarily leaked 
into the environment following injury that elicit antipredator re-
sponses	in	conspecifics	(Acquistapace,	Calamai,	Hazlett,	&	Gherardi,	
2005;	Barreto	et	al.,	2013;	Chivers	&	Smith,	1998;	Ferrari,	Elvidge,	
Jackson,	Chivers,	&	Brown,	 2010;	Kicklighter,	Germann,	Kamio,	&	
Derby, 2007; Mathuru et al., 2012; Smith, 1992). Alarm cues are 
expressed by major aquatic taxa from both freshwater and marine 
environments,	 including	echinoderms	(Hagen,	Anderson,	&	Stabell,	
2002; Majer, Trigo, & Duarte, 2009), mollusks (Daleo et al., 2012; 
Dalesman,	 Rundle,	 &	 Cotton,	 2007;	 Wood,	 Pennoyer,	 &	 Derby,	
2008),	 crustaceans	 (Hazlett,	 2011),	 arachnids	 (Persons,	 Walker,	
Rypstra, & Marshall, 2001), acarids (Grostal & Dicke, 1999), insects 
(Gall	 &	 Brodie,	 2009;	 Llandres,	 Gonzálvez,	 &	 Rodríguez-	Gironés,	
2013),	and	fishes	(Brown,	Ferrari,	&	Chivers,	2011).	Damage-	released	
alarm cues also mediate learned predator recognition, including the 
relative	 level	 of	 risk	 posed	 by	 individual	 predator	 species	 (Brown	
& Chivers, 2005; Chivers & Smith, 1998; Gherardi, Mavuti, Pacini, 
Tricarico,	&	Harper,	2011;	Wudkevich,	Wisenden,	Chivers,	&	Smith,	
1996),	 changes	 in	 the	 relative	 threat	 through	ontogeny	 (Johnston,	
Molis, & Scrosati, 2012), and the labeling of risky habitats (Chivers 
& Smith, 1998).

If the threat of predation is shared across taxonomic boundar-
ies, and heterospecifics are capable of “eavesdropping,” a selection 
advantage	 is	 conferred	 to	 those	 species	 capable	 of	 recognizing	
and responding to the risk communications of sympatric species 
(Magrath,	Haff,	McLachlan,	&	Igic,	2015).	Several	aquatic	taxa	avoid	
heterospecific alarm cues, often exhibiting a decline in the inten-
sity of antipredator behavior with increasing phylogenetic distance 
between the individual attacked and the individual perceiving that 
event	 (Dalesman	 et	al.,	 2007;	 Hazlett	 &	 McLay,	 2005;	 Mitchell,	
Cowman, & McCormick, 2012; Schoeppner & Relyea, 2009). One 
explanation	for	this	pattern	is	that	individuals	innately	recognize	the	
damage- released alarm cues of closely related taxa because they 

were present in a common ancestor (i.e., are chemically similar). The 
most parsimonious view of the evolution of this phenomenon is that 
alarm cues initially evolved to provide separate fitness- enhancing 
functions	 (e.g.,	 immunity,	 Chivers,	Wisenden	 et	al.,	 2007;	 Chivers,	
Zhao, & Ferrari, 2007) and had no association with predation events 
specifically.	 However,	 during	 an	 attack,	 these	 and	 other	 chemical	
compounds may be perceived together as a mixture that is capable of 
providing both an indication of predation and the identity of the spe-
cies	 involved	 (Faulkner	 et	al.,	 2017;	Wisenden,	 2015).	 Presumably,	
over evolutionary time, gradual changes to these chemical com-
pounds responsible for initiating antipredator behaviors result in 
only partial recognition of the cue, regardless of whether both spe-
cies continue to overlap spatially and share predators. This explana-
tion has been previously referred to as the “phylogenetic- relatedness 
hypothesis” (Schoeppner & Relyea, 2009). Alternatively, the pattern 
may be related to shared ecology. If two distantly related yet sym-
patric	taxa	share	certain	predators,	then	one	may	learn	to	recognize	
the alarm cue of the other—regardless of how long ago they shared 
a common ancestor—if they can associate that cue with a predation 
event. This socially acquired predator avoidance ability is widespread 
among vertebrates (Griffin, 2004) and has been referred to as the 
“ecological- coexistence hypothesis” (Schoeppner & Relyea, 2009).

Lampreys and hagfishes represent the oldest extant members of 
the vertebrate lineage, with a divergence time from gnathostomes 
estimated at 615 million years before present (MY, range = 391–550, 
Blair	&	Hedges,	2005;	dos	Reis	et	al.,	2015;	Hedges,	2001;	Kuraku	&	
Kuratani, 2006). Due in part to their comparatively simplistic verte-
brate anatomy and physiology, lampreys—and sea lamprey (Petromyzon 
marinus) in particular—have become established model organisms in a 
variety	of	scientific	disciplines	(Docker	et	al.,	2015;	Green	&	Bronner,	
2014). One aspect of sea lamprey biology that has garnered substan-
tial interest is the means by which chemical cues and pheromones 
operate	 to	 complete	 the	multistaged	 life	 cycle	 (Buchinger,	 Siefkes,	
Zielinski,	 Brant,	 &	 Li,	 2015).	 Three	 such	 systems	 are	 known.	 First,	
subadults migrate into rivers to locate suitable larval rearing habitat 
before spawning, attracted to odors emitted from larvae as a byprod-
uct	of	 their	 feeding	 (Bjerselius	et	al.,	2000;	Fine	&	Sorensen,	2010;	
Meckley,	Wagner,	&	Luehring,	2012;	Wagner,	Twohey,	&	Fine,	2009).	
Second, because movements during this period are restricted to 
hours	of	darkness,	predator	detection	via	vision	is	negated.	However,	
lampreys are still successfully attacked by a range of generalist pred-
ators during the spawning migration (Cochran, 1986, 2009; Roffe & 
Mate,	1984;	Sepulveda,	Rutz,	 Ivey,	Dunker,	&	Gross,	2013;	Sjöberg,	
1985, 1989). The presence of a damage- released alarm cue and as-
sociated	antipredator	behavior	has	been	 recognized	 in	 sea	 lamprey	
(Imre,	Di	Rocco,	Belanger,	Brown,	&	Johnson,	2014;	Wagner,	Stroud,	
& Meckley, 2011). Sea lamprey reduce exposure to predation risk by 
spatially avoiding the source of the signal (when associated with an 
area of the stream) or by accelerating its upstream movement to re-
duce	 the	 time	 in	 the	 risky	area	 (Bals	&	Wagner,	2012;	Hume	et	al.,	
2015; Luhring et al., 2016). Finally, sexually mature females are further 
drawn to specific spawning sites by the presence of a sex pheromone 
emitted by mature males (Siefkes, Scott, Zielinski, Yun, & Li, 2003).
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Despite	 a	 higher	 fitness	 cost	 to	 hybridization	 as	 phylogenetic	
distance increases (Piavis et al., 1970), many lampreys share nests 
during	reproduction	 (Hume,	Adams,	Mable,	&	Bean,	2013	and	ref-
erences therein). Although reproductive opportunity is not shared 
across lamprey species, there is substantial overlap between them 
in the habitat requirements of both larvae (Dawson, Quintella, 
Almeida,	Treble,	&	Jolley,	2015)	and	adults	 (Johnson,	Buchinger,	&	
Li, 2015). Lampreys should, therefore, exploit publically available 
information relating to habitat quality regardless of the originating 
species. Indeed, sea lamprey are attracted to both heterospecific 
larval	 (Fine,	Vrieze,	&	Sorensen,	2004)	and	adult	odors	 (Buchinger	
et al., 2016) during their reproductive migration, because the cues 
represent honest signals of rearing and spawning habitat quality 
that are less costly to pursue compared with direct evaluation of 
stream	habitats	(Wagner	et	al.,	2009).	Additionally,	cross-	reactivity	
to damage- released compounds from two lamprey species (silver 
lamprey Ichthyomyzon unicuspis;	 Bals	&	Wagner,	 2012;	 and	Pacific	
lamprey Entosphenus tridentatus;	Byford,	Wagner,	Hume,	&	Moser,	
2016) has been reported, suggesting this may also be a trait shared 
by	all	northern	hemisphere	lampreys	(Petromyzontidae)	that	would	
enable the avoidance of predators currently attacking any lamprey 
species.

The relationship between phylogenetic relatedness and response 
to	heterospecific	alarm	cues	is	unknown	in	lampreys.	However,	the	
observed sea lamprey attraction response to larval odors was not 
weaker for a more distant relative (Fine et al., 2004), suggesting 
shared ecology (spawning and larval habitat requirements) may be 
sustaining the heterospecific reactivity observed in sea lamprey. 
Therefore, we examined the behavioral response of sea lamprey to 
damage- released odors extracted from five other species of lamprey 
from North America and two distantly related taxa, Atlantic hagfish 
(Myxine glutinosa) and white sucker (Catostomus commersonii). Only 
sea lamprey derived from a single Laurentian Great Lakes population 
were used as respondents, enabling control of any effect of prior 
experience or learning that may occur in respondents collected from 
areas differing in natural predation pressure (e.g., Dalesman et al., 
2007). Four of the species of lampreys tested are sympatric with sea 
lamprey in the Great Lakes, as are white sucker, and the additional 
species of lamprey and Atlantic hagfish have allopatric distributions. 
Consistent with the ecological- coexistence hypothesis that a migrat-
ing lamprey should avoid all cues pertaining to lamprey- specific at-
tack, we predicted that sea lamprey would avoid the extracted alarm 
cues from all lamprey species equally, but ignore odors from the out- 
groups. Alternatively, if the phylogenetic- relatedness hypothesis ap-
plies, we expected the intensity of avoidance of extracted lamprey 
alarm cues would diminish with phylogenetic distance.

2  | MATERIAL S AND METHODS

2.1 | Animal collection and alarm cue extraction

We	obtained	wild	specimens	of	six	species	of	 lamprey	for	extract-
ing alarm cues and a single hagfish and teleost species for use as 

out- groups. All lamprey species and the teleost were captured 
during their annual spring spawning migrations. Sea lamprey were 
collected from the Cheboygan River, Michigan during May 2017. 
Chestnut lamprey Ichthyomyzon castaneus	collected	in	the	St.	Joseph	
River, Michigan; silver lamprey I. unicuspis from the Peshtigo River, 
Wisconsin;	 northern	 brook	 lamprey	 I. fossor from Canada Creek, 
Michigan; and American brook lamprey Lethenteron appendix were 
collected	from	Betsie	River,	Michigan,	all	in	April–May	2016.	Pacific	
lamprey E. tridentatus were obtained from the lower Columbia River, 
Washington	 in	 April	 2015.	 Atlantic	 hagfish	M. glutinosa were ob-
tained	 from	Huntsman	Marine	 Science	Centre,	 St.	 Andrews,	New	
Brunswick,	Canada	during	summer	2013,	and	a	single	white	sucker	
C. commersonii	was	collected	in	the	Black	Mallard	River,	Michigan	in	
May	2017.	All	carcasses	were	kept	frozen	at	−20°C	prior	to	extrac-
tion.	All	extractions	took	place	between	May	and	June	2017,	with	
the exception of Atlantic hagfish extracted in 2014 and Pacific lam-
prey	extracted	in	April	2015.	Long-	term	storage	(>3	years	at	−20°C)	
of damage- released odor extracted in this manner does not reduce 
its	efficacy	in	behavioral	assays	(J.	B.	Hume,	unpublished	data).

Because	the	species	used	in	this	experiment	differ	substantially	
in	body	size,	the	mass	of	a	single	male	sea	lamprey	(255	g	wet	weight)	
carcass	was	used	to	standardize	the	mass	of	tissue	extracted	from	
all species, to ensure similarity across whole- body extracts. Due to 
their	larger	size,	only	single	sea	and	Pacific	lamprey	carcasses	were	
used, whereas approximately five silver lamprey carcasses were 
used, eight chestnut lamprey, 130 northern brook lamprey, and 150 
American brook lamprey. A single white sucker carcass was used to 
extract odors and approximately four Atlantic hagfish carcasses.

Odor extractions for all carcasses and the behavioral assay fol-
lowed	 the	protocol	 first	outlined	 in	Bals	 (2012)	and	established	 in	
the	literature	in	Bals	and	Wagner	(2012).	Briefly,	1	L	capacity	71/60	
Soxhlet	apparatuses	(Ace	Glass	Inc.,	Vineland,	New	Jersey)	with	at-
tached water- cooled Allihn condensers and 1 L solvent reservoirs 
were	heated	by	a	hemispherical	mantle	to	75–80°C.	One	liter	of	sol-
vent	(50:50	weight/weight	of	200-	proof	ethyl	alcohol	and	deionized	
water) was added to the solvent reservoir. Lastly, 255 g of tissue (ei-
ther a single carcass or carcasses) was added to the extractor body. 
Extractions were fully cycled three times each. Extracts were then 
strained	and	held	at	−20°C	prior	to	experimental	use.

2.2 | Experimental apparatus

Given their nocturnal habits during spawning migration, all behavioral 
trials using sea lamprey took place at night (2200–0300 hr) from 22 
June	2017	to	30	June	2017.	Trials	were	conducted	at	the	U.S.	Geological	
Survey’s	 Hammond	 Bay	 Biological	 Station	 (HBBS,	 Millersburg,	
Michigan, USA) within two concrete raceways (20 × 1.84 m) parti-
tioned into an upstream area for holding animals (7.5 m long), an ex-
perimental arena (5.0 m), and tailrace section (7.5 m) with mesh barrier 
screens (Figure 1). Immediately, upstream of each experimental arena, 
and downstream of the inflow, collimators were positioned to produce 
laminar	flow	and	discrete	odor	plumes.	Lake	Huron	water	was	drawn	
in	 through	 an	 offshore	 intake	 pump	 (temperature	 12.7–15.5°C)	 and	
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supplied to each raceway continuously. Discharge was maintained 
between 9 and 10 L/s. Although adult sea lamprey can perceive long 
wavelength light (Morshedian et al., 2017), infrared lamps do not alter 
their natural behavioral tendencies in captivity. Therefore, both ex-
perimental arenas were monitored by infrared- sensitive video cameras 
(Axis Communications; Q1604 Network Camera) positioned above the 
center	of	 the	arena,	 in	conjunction	with	 two	 infrared	 lights	 (Wildlife	
Engineering;	 Model	 IRLamp6).	 Both	 camera	 feeds	 were	 observable	
from another area using video monitors, and trial footage was pre-
served	on	digital	media	(1	TB	Western	Digital,	My	Passport	Ultra	HD)	
for future analysis.

Stimulus odors (alarm cue and ethanol control) were applied 
to one side of a raceway via peristaltic pumps (MasterFlex model 
7533- 20) at a rate of at 20 ml/min from the upstream end of each 
experimental	arena,	15.2	cm	from	either	the	left	or	right	side.	Before	
applying extracted odors to the raceways, 8 ml of extracted odor 
(or	ethanol	control)	was	combined	with	392	ml	of	Lake	Huron	water	
drawn from raceways into 500 ml Erlenmeyer flasks and stirred 
continuously using a 2- cm- long magnetic stir bar and associated stir 
plate (Cole- Parmer). Combining raceway water with extracted odors 
resulted in a final dilution of 1 μl/L, capable of eliciting strong repel-
lency	in	conspecific	and	heterospecific	trials	(Bals	&	Wagner,	2012).	
Cross- contamination of alarm cues between species was prevented 
using separate pumps, tubing, glassware, and stir bars for all stimuli.

2.3 | Experimental animals

Male sea lamprey (359–589 mm TL, mean = 485 mm; 90–432 g, 
mean	=	246	g)	were	obtained	by	U.S.	Fish	and	Wildlife	Service	staff	
during	an	annual	sea	lamprey	monitoring	program	in	May	and	June	
2017. These lamprey were actively migrating to spawning grounds 
in	 two	 rivers	 flowing	 into	 Lake	 Huron	 (Cheboygan	 and	 Ocqueoc	
Rivers, Michigan) and another into Lake Michigan (Carp Lake River, 
Michigan) when they were intercepted. During their spawning mi-
gration, both sea lamprey sexes exhibit the same response to con-
specific	 alarm	 cue	 (Bals	 &	 Wagner,	 2012).	 However,	 behavioral	

response diminishes with sexual maturation in female sea lamprey 
(Bals	&	Wagner,	2012),	 thus	we	used	only	males	as	behavioral	 re-
spondents.	Sea	lamprey	were	transported	to	HBBS,	separated	into	
same- sex groups via external characteristics (Siefkes et al., 2003) 
and	held	 in	1,000	L	tanks	receiving	water	drawn	from	Lake	Huron	
(100% exchange every 2 hr). Experimental animals were observed 
daily for normal activity levels. Only those individuals without sign 
of external injury or disease were selected for trials, and every in-
dividual was used only once. Animal handling and experimentation 
protocols were approved by Michigan State University Institutional 
Animal Care and Use Committee, and conducted under the permit 
AUF 01/14- 007- 00.

2.4 | Experimental trials

At approximately 1700 hr each day of trials, five groups of sexually 
immature male sea lamprey (10 individuals per group) were held in 
cages within the upstream portion of each raceway. At 2200 hr, a 
trial commenced when a holding cage was moved downstream into 
the center of the experimental arena of a raceway and sea lamprey 
released from the cage. Each trial lasted 30 min in total, consisting of 
a 10- min prestimulus period and a 20- min stimulus period. The pres-
timulus period started when six or more sea lamprey were seen to be 
exploring the experimental arena. During a stimulus period, one of 
eight stimuli, or a solvent control, was pumped into one side of each 
raceway. Ten replicates of each odor were conducted. To control for 
any effect of raceway identity or odor application side, stimuli were 
pumped into raceways on alternate sides as well as alternated across 
replicates within each raceway. After each trial concluded, the total 
length (mm) and wet weight (g) of each individual sea lamprey used 
were recorded.

2.5 | Data analysis

The position of an individual sea lamprey’s head was determined 
every 30 s from the beginning of each trial. An animal’s position 

F IGURE  1 Plan	view	of	laboratory	space-	use	assay.	Sea	lamprey	were	acclimated	in	holding	cages	(HC)	within	the	upstream	section	
(leftmost) before being moved downstream into the experimental arena. Stimulus odors were applied via one of two peristaltic pumps. 
The experimental arena itself was demarcated into four equal sections using a white base and contrasting tape to enable easy detection of 
experimental subjects on infrared- sensitive cameras positioned overhead
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was assigned to the stimulus (ethanol control or alarm cue applica-
tion side) or nonstimulus side of either raceway. To allow for the 
distribution	of	 sea	 lamprey	 to	 stabilize	 following	 introduction	of	
stimulus odors, only the final 10 min of the stimulus period was 
used in data analysis. The proportion of animals positioned on 
the stimulus side was then calculated for each trial and treatment 
means plotted. Proportional data were arcsine- transformed prior 
to statistical analysis. To confirm there was no effect of raceway 
identity or side of the raceway receiving a stimulus odor on the 
distribution of sea lamprey during the stimulus period, a gener-
alized	linear	model	(GLM)	containing	“stimulus	identity”	(extracts	
from American brook, chestnut, northern brook, Pacific, sea and 
silver lampreys, Atlantic hagfish and white sucker, and ethanol), 
“raceway identity,” and “application side” as fixed effects was con-
ducted. “Stimulus identity” was found to have a statistical effect 
(F8,81 = 9.7, p < .001) on the distribution of animals, whereas there 
was no effect of either “raceway identity” (F1,89 = 0.49, p = .508) 
or “application side” (F1,89 = 0.27, p = .142). Therefore, “raceway 
identity” and “application side” were both excluded from further 
consideration.

A subsequent GLM was used to determine whether the distribu-
tion of animals during trials resulted from behavioral responses to 
either alarm cue odors or an ethanol control. Arcsine- transformed 
proportions of sea lamprey on the stimulus side were held as the 
response variable, while “stimulus identity” was a fixed factor, and 
water temperature and discharge were used as covariates. Dunnett’s 
t tests were conducted post hoc and used to identify statistically 

significant differences in the proportion of animals on the stimulus 
side in the presence of alarm cue extracts versus the ethanol con-
trol. Lastly, the relationship between the proportions of animals on 
the stimulus side and divergence times between all odor- extracted 
species and sea lamprey was resolved using linear regression. 
Divergence times were derived from TimeTree (Kumar, Stetcher, 
Suleski,	&	Hedges,	2017)	and	Bartels,	Docker,	Fazekas,	and	Potter	
(2012).	All	statistical	analyses	were	performed	in	IBM	SPSS	Statistics	
(v. 24) at α = 0.05 and graphed using SigmaPlot (v. 12).

3  | RESULTS

A univariate GLM indicated there were statistically significant differ-
ences in the distribution of sea lamprey on the stimulus side between 
treatment groups (F10,89 = 8.8, p < .001). These differences were due 
to “stimulus identity” (F8,89 = 10.8, p < .001), and not either “water 
temperature” (F1,89 = 0.66, p = .42) nor “discharge” (F1,89 = 0.541, 
p = .564). Relative to an ethanol control, the odor extracts of sea and 
chestnut lampreys (Dunnett’s t test, p < .001), silver lamprey (p < .01), 
and northern and American brook lampreys (p < .05) altered spatial 
use in the raceway, such that statistically significantly lower propor-
tions of sea lamprey respondents were positioned on the stimulus side 
in the presence of those odors (Figure 2). Extracts from Pacific lam-
prey (Dunnett’s t test, p = .151), white sucker (p = .983), and Atlantic 
hagfish (p = 1) did not have a statistically significant effect on the dis-
tribution of sea lamprey in raceways, relative to the ethanol control.

F IGURE  2 Phylogeny of species whose chemical cues was extracted in this study and behavioral response of sea lamprey (Petromyzon 
marinus)	to	those	odors.	The	chronogram	(left)	indicates	estimated	time	of	divergence	(derived	from	TimeTree	and	Bartels	et	al.,	2012)	
between the common ancestor of sea lamprey, chestnut (Ichthyomyzon castaneus), silver (I. unicuspis), northern brook (I. fossor), American 
brook (Lethenteron appendix), and Pacific lampreys (Entosphenus tridentatus); sympatric white sucker (Catostomus commersonii) that share 
predators, allopatric Atlantic hagfish (Myxine glutinosa) that do not, as well as an ethanol control. Ages are estimated at millions of years 
before present (MY). The mean proportion (±SE) of sea lamprey detected on the stimulus side is shown on the right. Responses marked with 
an asterisk indicate a statistically significant difference from an ethanol control (*p < .05, **p < .01, ***p < .001; GLM with Dunnett’s t test, 
α = .05). N = 10 for each bar. The observed proportions are shown, but analysis was conducted on arcsine- transformed data

**

*

***

***

Ethanol

P. marinus

I. castaneus

I. unicuspis

I. fossor

L. appendix

E. tridentatus

M. glutinosa

C. commersonii

0.1 0.30.2 0.4 0.5

*

Time before present (MY) Proportion on stimulus side

615 471 16 8-7
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Sea lamprey responded most strongly to conspecific extracted 
odor, with the lowest proportions of animals recorded on the stim-
ulus side among treatments (mean ± SE, 0.18 ± 0.03, range 0.06–
0.35). Chestnut (mean ± SE, 0.21 ± 0.02, range 0.1–0.37), silver 
(mean ± SE, 0.24 ± 0.02, range 0.14–0.33), and northern brook lam-
preys (mean ± SE, 0.27 ± 0.01, range 0.21–0.33) elicited a clear, but 
weaker, response from sea lamprey respondents. American brook 
(mean ± SE, 0.31 ± 0.04, range 0.06–0.49) and Pacific lampreys 
(mean ± SE, 0.32 ± 0.02, range 0.17–0.37) provoked a weaker still 
response, but which was very similar in magnitude between both 
species and lower than out- groups. The extracted odors of white 

sucker (mean ± SE, 0.43 ± 0.05, range 0.19–0.76) and Atlantic hagfish 
(mean ± SE, 0.45 ± 0.03, range 0.31–0.57) provoked little to no be-
havioral response from sea lamprey, as indicated by the proportion 
of sea lamprey on the stimulus side in the presence of those odors. 
The magnitude of responses to these latter two odors appeared to 
be as repellent as an ethanol control (mean ± SE, 0.47 ± 0.04, range 
0.3–0.68).

Estimated divergence times between taxa used in this study 
are	 summarized	 in	 Table	1.	 A	 statistically	 significant	 relation-
ship was found between the mean proportion of sea lamprey 
positioned on the stimulus side and how distantly related sea 

TABLE  1 Estimates	of	divergence	times	(MY)	and	credibility	intervals	between	lampreys	(Petromyzontiformes,	Petromyzon marinus), 
gnathostomes (Catostomidae, Catostomus commersonii), and hagfishes (Myxiniformes, Myxine glutinosa). Also shown are divergence 
estimates between sea lamprey (Petromyzon spp.) and silver, chestnut and northern brook lampreys (Ichthyomyzon spp.), American brook 
lamprey (Lethenteron spp.), and Pacific lamprey (Entosphenus spp.). Estimates are derived from TimeTree based on multiple molecular studies 
as indicated

Divergence event

Divergence time

Number of molecular studiesEstimate Credible interval

Petromyzontiformes	vs	Catostomidae 615 524–706 7a–g

Petromyzontiformes	vs	Myxiniformes 471 391–550 4h,i

Petromyzon vs Lethenteron 16 11–21 1i

Petromyzon vs Entosphenus 16 11–21 1i

Petromyzon vs Ichthyomyzon 7–8 n/a 1j

aWray,	Levinton,	and	Shapiro	(1996).
bOtsuka and Sugaya (2003).
cBlair	and	Hedges	(2005).
dRoelents et al. (2010).
eChen,	Zou,	Yang,	and	He	(2012).
fLicht et al. (2012).
gdos Reis et al. (2015).
hHedges	(2001).
iKuraku and Kuratani (2006).
jBartels	et	al.	(2012).

F IGURE  3 Relationship between the behavioral response of sea lamprey (Petromyzon marinus) and the estimated divergence time 
between the common ancestor of sea lamprey and odor- extracted species. Shapes represent the untransformed mean (±SE) proportion of 
sea	lamprey	detected	on	the	stimulus	side	when	exposed	to	chemical	cues	derived	from	members	of	the	family	Petromyzontidae	(hollow);	
Atlantic hagfish (Myxine glutinosa) and white sucker (Catostomus commersonii) (filled). The reference line on the y- axis indicates the mean 
response of sea lamprey to an ethanol control
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lamprey (Petromyzon spp.) are from other odor- extracted spe-
cies (Figure 3). This relationship explained 80.6% of the variance 
between stimulus odors (R2 = 0.806, F1,6 = 24.96, p = .002). As 
phylogenetic distance increased between sea lamprey and het-
erospecifics, the strength of avoidance of those extracted odors 
weakened.

4  | DISCUSSION

The strength of response to damage- released alarm cues declined 
in close association with increasing phylogenetic distance be-
tween sea lamprey and other lamprey species from which alarm 
cues	were	derived.	By	testing	alarm	cues	of	representatives	from	
50%	of	 Petromyzontidae	 genera,	 including	 the	most	 basal	 sister	
group (Ichthyomyzon–Petromyzon, Gill, Renaud, Chapleau, Mayden, 
& Potter, 2003), our results suggest that the components of the 
damage- released alarm cue in sea lamprey are at least partially 
conserved within the northern hemisphere lampreys. Notably, 
American brook lamprey and Pacific lamprey are equally distantly 
related to sea lamprey (diverged 16 MY) yet elicited a similar 
magnitude of alarm response—despite the fact American brook 
lamprey is sympatric with sea lamprey but Pacific lamprey is not. 
Previous studies have demonstrated that during their spawning 
migration, sea lamprey are capable of detecting and responding 
to	 the	 damage-	released	 alarm	 cue	 of	 dead	 heterospecifics	 (Bals	
&	Wagner,	 2012;	 Byford	 et	al.,	 2016),	 and	 our	 data	 are	 consist-
ent with and extend those findings. In addition, this study also 
represents the first reporting of an alarm response by sea lam-
prey to the damage- released alarm cue of nonparasitic lampreys 
(American and northern brook lampreys), species that remain resi-
dent in natal streams and do not undertake extensive movements 
between larval rearing and adult spawning habitats (Malmqvist, 
1980).	While	sea	lamprey	in	this	study	responded	strongly	to	the	
alarm cues of conspecific and heterospecific lampreys by avoid-
ing the odor plume, they did not react to the odor of a distantly 
related yet sympatric species (white sucker C. commersonii), an al-
lopatric species (Atlantic hagfish M. glutinosa), nor ethanol control. 
Our findings support the phylogenetic- relatedness hypothesis of 
cue similarity.

Recognition of another species’ alarm calls/cues is expected to 
endow “eavesdroppers” with a substantial fitness advantage if an 
associated antipredator response reduces the risk of predation or 
improves the chance of escape (Lima & Dill, 1990; Magrath et al., 
2015). Thus, the ability of lampreys to detect heterospecific damage- 
released alarm cues would be strongly advantageous in both larval 
and adult life stages. During the spawning migration, when subadults 
are confined by the river channel and driven to move upstream by 
the need to spawn, lampreys risk persistent exposure to a gauntlet of 
diurnal and nocturnal predators and suffer high rates of mortality as a 
consequence (Cochran, 1986, 2009; Roffe & Mate, 1984; Sepulveda 
et	al.,	 2013;	 Sjöberg,	 1985,	 1989).	 However,	 in	 the	 absence	 of	 vi-
sual predator recognition (e.g., in darkness), lampreys would benefit 

substantially	from	recognizing	and	avoiding	areas	where	predators	
are targeting lampreys, which could be perceived by the presence 
of confamilial alarm cues (Friesen & Chivers, 2006; Kicklighter et al., 
2007;	 Wisenden,	 Vollbrecht,	 &	 Brown,	 2004).	 Exposure	 to	 the	
damage- released cue during their spawning migration in natural set-
tings invokes antipredator behaviors in sea lamprey that are similar 
to	the	avoidance	of	the	cue	in	laboratory	assays	(Di	Rocco,	Johnson,	
Brege,	Imre,	&	Brown,	2016;	Hume	et	al.,	2015).	Further,	they	appear	
capable of modulating their response to the alarm cue in a threat- 
sensitive manner during migration, depending on the environmental 
context where the cue is perceived and its spatial extent (Luhring 
et al., 2016). This strongly suggests migratory sea lamprey that rec-
ognize	 damage-	released	 alarm	 cues	 released	 from	 the	 victims	 of	
predator attack flexibly respond to that information in varying con-
texts to manage the risk of predation.

Sea lamprey do not home to natal streams in order to reproduce 
(Moser, Almeida, Kemp, & Sorenson, 2015) and have a tendency to 
overlap spatially with multiple resident and migratory lamprey spe-
cies across their extensive geographic distribution (Renaud, 2011). 
They may even do so in response to a phylogenetically conserved 
migratory- pheromone produced by all larval lampreys (Fine et al., 
2004). Mature sea lamprey also respond to additional pheromones 
that guide the spawning migration of heterospecific lampreys 
(Buchinger	et	al.,	2016).	Together,	this	overlap	in	cues	would	contrib-
ute to the spawning of several lamprey species in the same area as 
a	consequence	of	similar	habitat	preferences	(Johnson	et	al.,	2015)	
and the subsequent deposition of larvae of multiple lamprey species 
in syntopic rearing habitats (Dawson et al., 2015). Thus, the preda-
tors of lamprey larvae are shared as well (Cochran, 2009). Larval sea 
lamprey are able to detect and respond to damage- released alarm 
cues by exhibiting reduced drift rates in the presence of the cue, indi-
cating	the	cue	operates	throughout	ontogeny	(Wagner,	Kierczynski,	
Hume,	 &	 Luhring,	 2016).	 Furthermore,	 there	 is	 no	 evidence	 of	
life- stage- specific alarm cues in sea lamprey as has been reported 
in	 juvenile	 damselfish	 (Lönnstedt	 &	McCormick,	 2011;	Mitchell	 &	
McCormick,	 2013;	 but	 see	Horn	&	Chivers,	 2017).	 Instead,	 larvae	
respond	to	the	adult	alarm	cue	(Wagner	et	al.,	2016)	and	adults	re-
spond	to	the	larval	alarm	cue	(Bals	&	Wagner,	2012).	Thus,	it	appears	
likely that heterospecific cross- reactivity in alarm cues is retained 
during the larval life stage.

Chemical compounds that could function as damage- released 
alarm cues in aquatic environments are varied in their structure 
and	source	(Acquistapace	et	al.,	2005;	Brown,	Adrian,	Smyth,	Leet,	
&	 Brennan,	 2000;	 Campbell,	 Coppard,	 D’Abreo,	 &	 Tudor-	Thomas,	
2001;	Derby	&	Aggio,	2011;	Døving,	Hamdani,	Höglund,	Kasumyan,	
&	 Tuvikene,	 2005;	Howe	&	 Sheikh,	 1975;	Kelly,	 Adrian,	&	Brown,	
2006; Zimmer et al., 2006). There is a paucity of evidence to support 
the idea that any of these compounds evolved primarily to function 
as an alarm cue, either to preferentially benefit close kin (Russell, 
Kelley, Graves, & Magurran, 2004) or to attract secondary preda-
tors	to	disrupt	the	initial	predation	event	(Chivers,	Brown,	&	Ferrari,	
2012). Therefore, the function of these compounds as alarm cues 
likely evolved secondarily as an honest signal of predation when 
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presented alongside additional chemical compounds (e.g., the odor 
or predators themselves), producing a chemical mixture that can-
not	be	manipulated	to	the	benefit	of	predator	over	prey	(Bradbury	
& Vehrencamp, 2000; Guilford & Dawkins, 1991). Among fishes, 
chemical compounds functioning as alarm cues may have evolved 
primarily as antimicrobial and UV protective compounds and con-
tained	 in	epidermal	cells	 (Chivers,	Wisenden,	et	al.,	2007;	Chivers,	
Zhao,	 et	al.,	 2007;	 Faulkner	 et	al.,	 2017;	 Halbgewachs,	 Marchant,	
Kusch, & Chivers, 2009). Damage to the epidermis of these fish 
during an attack would release these chemicals into the environment 
and become available to receivers. If fish alarm cues contain, even in 
part, those compounds intimately linked with immune function then 
shifts in niche use following divergence could result in changes to 
the chemical structure as a function of exposure to novel immune 
challenges	(Mitchell	et	al.,	2012).	However,	the	rate	of	change	may	
be slow due to the need to maintain a stable immune system; thus, 
confamilial species may release similar compounds during predator- 
induced epidermal damage. Similar, but different, compounds func-
tioning as a damage- released alarm cue in heterospecifics could still 
be detected by receivers but elicit a weaker response compared to 
the compounds released from conspecifics due to a change in the 
mixture of chemicals present. This is similar to the “blend hypothe-
sis”	of	insect	sex	pheromones	(e.g.,	Baker	&	Cardé,	1979),	whereby	
the full blend of chemicals acting as a pheromone is more attractive 
to mates than any individual component alone or in combination. 
Individual larval sea lamprey odor components, or combinations of 
them, fail to elicit as strong an attractive response to migrating sub-
adults compared to the full odor (Meckley et al., 2012). If lamprey 
alarm cues evolved in a similar manner, this could explain the ob-
served decline in strength of aversion by sea lamprey in this study to 
damage- released alarm cues between more distantly related species.

The sea lamprey alarm cue response is elicited from tissue 
throughout	the	body,	yet	is	stronger	when	derived	from	the	skin	(Bals	
&	Wagner,	2012),	suggesting	the	cue	is	aggregated	there	but	perhaps	
synthesized	elsewhere.	Initially,	only	members	of	the	fish	superorder	
Ostariophysi were thought to possess a damage- released alarm cue 
stored	in	epidermal	club	cells	(Pfeiffer,	1977).	However,	club	cell	ho-
mologs that exhibit antipredator responses of a similar nature have 
now been identified in several non- Ostariophysi lineages (Chivers 
et al., 2012; Ferrari et al., 2010), including those lacking homologous 
club cells entirely (e.g., Salmonidae; Smith, 1992), or during ontoge-
netic	stages	where	club	cells	are	not	present	(Carreau-	Green,	Mirza,	
Martínez,	&	Pyle,	2008).	Lamprey	skin	contains	no	club	cells;	instead,	
it contains skein cells (possibly responsible for structural support), 
granular	cells,	and	mucus	cells	(Rodríguez-	Alonso,	Megías,	Pombal,	&	
Molist, 2017). These groups of epidermal cells are also found in hag-
fishes	and	teleosts	 (Spitzer	&	Koch,	1998;	Rodríguez-	Alonso	et	al.,	
2017; D. Fudge, personal communication, 2014). Through ontogeny, 
the epidermis of lampreys increases in thickness, from the pro- larval 
stage to the spawning migration (Lethbridge & Potter, 1980, 1981), 
and in sea lamprey, specifically, this is principally due to an increase 
in	the	number	of	mucus	cell	 layers	 (Rodríguez-	Alonso	et	al.,	2017).	
The mucus cell layers of sea lamprey during the spawning migration 

consist of three discrete types based on a differentiation process as 
they migrate from the base to the surface of the epidermis: basal, 
midepidermal, and superficial (Downing & Novales, 1971a, 1971b, 
1971c;	Rodríguez-	Alonso	et	al.,	2017).	Only	superficial	mucus	cells	
located in the upper layers of the epidermis contain sialic acid and 
a variety of other glycoconjugates similar to those of the mucus it-
self	(Rodríguez-	Alonso	et	al.,	2017).	These	compounds	provide	pro-
tection and defense against pathogens for both teleosts (Esteban, 
2012; Sarasquete et al., 2001) and lampreys (Tsutsui, Nakamura, & 
Watanabe,	2007).	Although	 the	adaptive	 immune	systems	of	gna-
thostomes and lampreys- hagfishes were acquired separately during 
evolution	 (Rast	 &	 Buckley,	 2013),	 they	 exhibit	 profound	 similari-
ties (Docker, 2015). It is possible, therefore, that damage- released 
alarm cues in lampreys evolved principally for protection against 
water- borne pathogens, as has been suggested for teleosts (Chivers, 
Wisenden	et	al.,	2007;	Chivers,	Zhao,	et	al.,	2007).

For those species capable of eavesdropping on public information 
pertaining to predation, the extensive overlap in ecology of larval 
and adult lampreys represents an opportunity to gain a selective ad-
vantage. A shared immune function of damaged- released alarm cues 
among lamprey species may be one mechanism by which the process 
of drift in these chemical cues has slowed over long periods of evo-
lutionary time. To ensure that sea lamprey do not represent a “spe-
cial case” among lampreys, future studies should test whether other 
species exhibit the same relationship in their responses to conspecific 
and heterospecific alarm cues. Furthermore, if the magnitude of those 
responses among lampreys is found not to correlate with life- history 
strategy (e.g., a strong response is present in non- migratory lam-
preys), then this would confirm that ecology alone cannot predict the 
presence–absence	 of	 alarm	 cues	within	 the	 Petromyzontidae	more	
broadly.
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