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differentiation and nodal stage of
cervical cancer: a pilot study
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Abstract
Background: Texture analysis in oncological magnetic resonance imaging (MRI) may yield surrogate markers for tumor

differentiation and staging, both of which are important factors in the treatment planning for cervical cancer.

Purpose: To identify texture features which may predict tumor differentiation and nodal status in diffusion-weighted

imaging (DWI) of cervical carcinoma

Material and Methods: Twenty-three patients were enrolled in this prospective, institutional review board

(IRB)-approved study. Pelvic MRI was performed at 3-T including a DWI echo-planar sequence with b-values 40, 300,

and 800 s/mm2. Apparent diffusion coefficient (ADC) maps were used for region of interest (ROI)-based texture analysis

(32 texture features) of tumor, muscle, and fat based on histogram and gray-level matrices (GLM). All features con-

founded by the ROI size (linear model) were excluded. The remaining features were examined for correlations with

histological differentiation (Spearman) and nodal status (Kruskal–Wallis). Hierarchical cluster analysis was used to iden-

tify correlations between features. A P value< 0.05 was considered statistically significant.

Results: Mean age was 55 years (range¼ 37–78 years). Biopsy revealed two well-differentiated, eight moderately

differentiated, two moderately to poorly differentiated tumors, and five poorly differentiated tumors. Six tumors

could not be graded. Lymph nodes were involved in 11 patients. Three GLM features correlated with the differentiation:

LRHGE (%¼ 0.53, P¼ 0.03), ZP (%¼ –0.49, P< 0.05), and SZE (%¼ –0.51, P¼ 0.04). Two histogram features, skewness

(0.65 vs. 1.08, P¼ 0.04) and kurtosis (0.53 vs. 1.67, P¼ 0.02), were higher in patients with positive nodal status. Cluster

analysis revealed several co-correlations.

Conclusion: We identified potentially predictive GLM features for histological tumor differentiation and histogram

features for nodal cancer stage.

Keywords

Cervical cancer, texture features, texture analysis, apparent diffusion coefficient (ADC), diffusion-weighted imaging

(DWI)

Date received: 3 August 2017; accepted: 8 August 2017

Introduction

Invasive carcinoma of the uterine cervix (cervical
cancer) is the fourth most common cause of death by
cancer in the Western world and the second most
common cause of death in the developing world (1).
In Europe, recent widespread adaptations of human
papillomavirus (HPV) vaccination and HPV-screening
programs have greatly contributed to decrease the
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incidence of invasive cervical cancer (2). For affected
patients, accurate staging and tumor grading has led
to more efficient therapies with better outcomes and
reduced side effects: while patients with low-grade and
locally confined tumors (Fédération de Gynécologie et
d’Obstétrique [FIGO] stages IB1 and IIA1) may be
amenable to surgical resection alone, advanced and
poorly differentiated tumors require combined radio-
chemotherapy (3). Magnetic resonance imaging
(MRI) offers individualized assessment for affected
patients, since it not only provides detailed anatomical
information but also extracts functional information,
e.g. via dynamic contrast-enhanced or diffusion-
weighted imaging (DWI).

Texture analysis is a mathematical–statistical
procedure to extract objective and quantitative param-
eters (texture features) from given images (4). It was
proposed and established in the second half of the
last century, but only in recent years has it been used
to characterize and measure tissue heterogeneity in
medical images. Texture analysis may detect subtle,
sub-resolution changes in tumor morphology—changes
otherwise not visible to the radiologist’s eye.

From any medical image, which is essentially a
matrix of gray levels, a variable number of features
can be extracted and mined for associations with clin-
ical data and other biomarkers. This methodology has
recently been coined as the ‘‘radiomics’’ approach. In
their landmark paper, Aerts et al. (4) have found many
features which could be used as surrogate markers for
underlying gene expression patterns as well as relevant
clinical outcome data. Furthermore, some texture fea-
tures correlate consistently with biological tumor traits
across different cancers and studies: for example, malig-
nant adnexal masses exhibit high intratumoral entropy
and benign masses exhibit low intratumoral entropy
(5), whereas in prostate carcinoma, a positive correl-
ation between entropy and the histological Gleason
grade was shown (6). In both of these studies, texture
analysis was performed on DWI, which conveys infor-
mation about the tissue cellularity.

Since DWI has already been shown to be useful in
diagnostic imaging of cervical carcinoma (7), the study
of texture features may add additional diagnostic value
and has yet to be examined. Thus, the purpose of this
study was to identify texture features in DWI which
may predict differentiation and nodal status of cervical
carcinoma.

Material and Methods

Patients

This prospective clinical study was approved by the
institutional review board (IRB). Oral and written

consent was obtained from all patients. Twenty-three
female patients (mean age¼ 55 years; age range¼ 37–
78 years) with biopsy-proven cervical carcinoma in the
years 2014–2015 were enrolled. None of the patients
had received prior treatment. Clinical FIGO stage
was obtained from the electronic patient record.

Histopathological analysis

Histopathological specimens were assessed by an
experienced gynecological pathologist for tumor type
and differentiation (G1–G3). Additionally, all cases
were reviewed at the weekly multidisciplinary tumor
board together with gynecologists and radiologists.

Imaging protocol

All examinations were performed on a clinical 3-T MRI
scanner (Achieva 3.0 T TX, Philips Healthcare, Best,
The Netherlands), using a 16-channel matrix torso coil.
Patients had to fast 6 h before the examination. A total
of 20mg hyoscine butylbromide (Buscopan, Boehringer
Ingelheim, Germany) were administered as an intra-
muscular injection immediately before scanning to
reduce bowel peristalsis. Diffusion datasets of the
pelvis were acquired with a single-shot spin-echo
echo-planar imaging (SS SE EPI) sequence in axial
orientation (20 slices) to include the entire cervical can-
cer using the following b-values: 40, 300, 800 s/mm2

averaged in three orthogonal directions. Sequences
were acquired in free-breathing. Fat suppression was
used by spectral presaturation with inversion recovery
(SPIR). Apart from the DWI sequence, anatomical T1-
weighted (T1W) and T2-weighted (T2W) sequences
were acquired as part of the clinical scan protocol
(Table 1). Apparent diffusion coefficient (ADC) maps
were automatically computed from the DW images
using a mono-exponential decay model. This model
assumes that the increasing signal loss with increasing
b-values is only attributable to molecular diffusion.
Even though it ignores other effects, such as micro-
vascular perfusion at low b-values, the ADC is the
most commonly used DWI-derived parameter in the
clinical routine. The ADC correlates inversely with cel-
lularity, i.e. a lower ADC usually corresponds to an
increase in cells per volume.

Texture analysis

Texture analysis was performed in MATLAB (v2016b,
The MathWorks Inc., Natick, MA, USA) with a rou-
tine based on the works of Vallières et al. (8). For the
quantitative analysis, polygonal region of interest
(ROI) outlines of the tumor were drawn. The ROI
was then copied (to retain the same size and shape) in
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the subcutaneous fat and in the gluteus maximus
muscle. ROI definition was performed on the slice of
the ADC map depicting the largest tumor diameter in
axial orientation. Absence of frank susceptibility or
movement artifacts was verified for all b-values. ROI
definition was performed by a PGY-3 radiology resi-
dent (ASB) and a board-certified radiologist with seven
years of experience in genitourinary imaging (EYPL) in
consensus. An exemplary ROI definition is shown in
Fig. 1. For qualitative verification of significant differ-
ences, texture feature maps of significantly discrimina-
tive features were computed using a 5� 5 pixel sliding
patch over the whole slice, with the texture feature
value of the 25 pixels assigned to the central pixel of
the patch.

ROI contents were normalized between the mean
and three standard deviations (m� 3s). This procedure
minimizes intra- and interscanner effects in MRI tex-
ture analysis (9,10). Afterwards, 32 texture features
were computed (Table 2). The four first order features
were derived from the histogram, whereas the 28 higher
order features were obtained from the gray-level co-
occurrence matrix (GLCM), the gray level run length
matrix (GLRLM), or the gray-level size-zone matrix
(GLSZM). Fig. 2 illustrates this procedure. In compari-
son to first order features, where a lot of the spatial
information was lost through the transformation of
gray levels into counts in the histogram, GLCM,
GLRLM, and GLSZM features contain more informa-
tion about the distribution of gray values since they

Fig. 1. Exemplary ROI definition in a 43-year-old patient with a G2 squamous cell carcinoma of the cervix (FIGO stage IB2,

T3aN1M0). The ROIs are color coded for better visibility: Blue¼ tumor, red¼ gluteal muscle, yellow¼ subcutaneous fat. The latter

two ROIs are copies of the first one, identical in shape and size.

Table 1. Summary of the MRI protocol.

Sequences T2W TSE T2W SPAIR T2 TSE T2W TSE DWI

CE T1W-

THRIVE

Plane Sagittal Coronal Axial Oblique axial Axial 3D

TR/TE (ms) 4000/80 3500/80 2800/100 2800/100 2000/54 03.01.04

Turbo factor 30 21 12 14 NA NA

Field of view (mm) 240� 240 j

230� 230

402� 300 j

220� 220

406� 300 j

370� 203

Matrix size 480� 298 j

352� 300

787� 600 j

316� 311

168� 124 j

248� 134

Slice thickness (mm) 4 4 4 4 4 1.5

Intersection gap (mm) 0 0 0 0 0 0

Bandwidth (Hz/pixel) 230 186 169 162 15.3 724

NEX 2 1 1 1 2 1
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account for the location of each voxel with regard to
the neighboring voxels. The four first order features
describe various properties of the histogram: Variance
is defined as the spread of values around the mean,
kurtosis is the ‘‘peakedness’’ or ‘‘flatness’’ of the
histogram and skewness is a measure of asymmetry.
Lastly, entropy is a measure of uncertainty in the
image voxels. Though some of the higher order fea-
tures’ names sound ‘‘intuitive,’’ such as ‘‘contrast’’ or
‘‘homogeneity,’’ none resemble an intuitive pattern (11)
(intuitive in this context meaning readily distinguish-
able by the human reader). The mathematical definition
of each feature is beyond the scope of this paper but
can be found in the works of Dasarathy and Holder for

the GLCM (12), Mary M. Galloway for the GLRLM
(13), and Thibault for the GLSZM (14).

Statistical analysis

Statistical analysis was performed using R v. 3.3.1. (R
Foundation for Statistical Computing, Vienna,
Austria). Continuous data were expressed as
mean� standard deviation (SD) if normal distribution
could be assumed or otherwise as median and inter-
quartile range (IQR). Categorical data were given in
absolute counts. In a first step, a one-way analysis of
variance (ANOVA) of a linear model was performed in
all tissues to assess the influence of the ROI size on each

Table 2. Texture features and abbreviations.

Histogram-derived GLCM GLRLM GLSZM

Variance Contrast Short run emphasis (SRE) Small zone emphasis (SZE)

Skewness Correlation Long run emphasis (LRE) Large zone emphasis (LZE)

Kurtosis Energy Gray-level non-uniformity (GLN) Gray-level non-uniformity (GLN)

Entropy Homogeneity Run length non-uniformity (RLN) Zone-size non-uniformity (ZSN)

Run percentage (RP) Zone percentage (ZP)

Low gray-level run emphasis (LGRE) Low gray-level zone emphasis (LGZE)

High gray-level run emphasis (HGRE) High gray-level zone emphasis (HGZE)

Short run low gray-level emphasis (SRLGE) Small zone low gray-level emphasis (SZLGE)

Short run high gray-level emphasis (SRHGE) Small zone high gray-level emphasis (SZHGE)

Long run low gray-level emphasis (LRLGE) Large zone low gray-level emphasis (LZLGE)

Long run high gray-level emphasis (LRHGE) Large zone high gray-level emphasis (LZHGE)

Gray-level variance (GLV)

Zone size variance (ZSV)

GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size-zone matrix.

Fig. 2. Schematic of feature extraction from an exemplary ROI. The first order features are directly derived from the histogram of

the ROI content, while the higher-order features are computed from the respective gray-level matrices.
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feature. A P value< 0.01 in any of the tissues was
considered significant for this first step. Confounded
features identified in this step were excluded from fur-
ther analysis. The remaining features, as well as raw
ROI size, were examined for correlation with the histo-
logical grade, type, and the FIGO stage with
Spearman’s rho. Differences in the groups with and
without lymph node metastases were assessed with a
Kruskal–Wallis test. A P value< 0.05 was considered
statistically significant. Lastly, hierarchical cluster ana-
lysis was used to identify redundant features.

Results

Patients

There were eight patients with a FIGO stage I tumor,
ten patients with a stage II tumor, and five patients
with a stage III tumor. Only two patients had a well
differentiated tumor (G1, low-grade), eight tumors
were moderately differentiated (G2, intermediate
grade), two were moderately to poorly differentiated
(G2–3, intermediate to high grade), and five were
poorly differentiated (G3, high-grade). Grading was
not possible in six tumors (GX). Ten patients had a
squamous cell carcinoma, four patients had an ade-
nosquamous carcinoma, and nine patients had an
adenocarcinoma. Eleven patients had cancer spread
to the pelvic lymph nodes confirmed on imaging, of
which three also had affected para-aortic lymph
nodes. Surgical lymph node dissection was only per-
formed in three patients negative on imaging, which
was confirmed by histology. Image acquisition and
post-processing were successfully completed for all
patients.

MRI tumor characteristics

Median ROI size was 219 pixels (range¼ 50–1809
pixels), median tumor volume measured on the sagit-
tal T2 slices was 46.5 mL (range¼ 0.3–335.4mL).
Correlation between ROI size and volumetric tumor
measurement was excellent (R¼ 0.92, P< 0.001). The
tumors usually presented as hyperintense masses in
the T2W sequences and hypointense on the ADC
map compared to the surrounding cervix tissue.
There were no significant artifacts in the tumor
areas, nor macroscopic areas of necrosis. All tumors
were clearly demarcated. Mean ADC values
(�10�3mm2/s) were 1.01 for adenocarcinoma and
0.99 for adenosquamous and squamous cell carcin-
omas with no significant differences between the
three types. Also, no correlation could be established
between mean ADC and either tumor grade
(P¼ 0.65) or FIGO stage (P¼ 0.52).

Texture analysis

There was no correlation between raw ROI size and
tumor grade (P> 0.5) or type (P> 0.6). Texture
features were successfully computed for all patients
and tissues. ANOVA revealed multiple features corre-
lating with the ROI size in muscle, fat and tumor tissue
shown in Table 3. In summary, the following features
appeared not to be systematically influenced by the
ROI size in any of the three tissues: variance, skewness,
kurtosis, entropy, contrast (GLCM), correlation
(GLCM), homogeneity (GLCM), SRE (GLRLM),
LRE (GLRLM), RP (GLRLM), LGRE (GLRLM),

Table 3. One-way ANOVA (P values) of all tissues with the ROI

size.

Tumor Muscle Fat

Variance 0.03 < 0.01 0.16

Skewness 0.49 0.94 0.63

Kurtosis 0.82 0.12 0.78

Entropy 0.85 0.80 0.77

Contrast (GLCM) 0.93 0.98 0.95

Correlation (GLCM) 0.01 < 0.01 0.11

Energy (GLCM) 0.85 0.97 0.10

Homogeneity (GLCM) 0.03 0.35 0.07

SRE (GLRLM) 0.85 0.76 0.11

LRE (GLRLM) 0.95 0.84 0.24

GLN (GLRLM) < 0.01 < 0.01 < 0.01

RLN (GLRLM) < 0.01 < 0.01 < 0.01

RP (GLRLM) 0.97 0.80 0.12

LGRE (GLRLM) < 0.01 0.42 0.55

HGRE (GLRLM) 0.86 0.65 0.33

SRLGE (GLRLM) 0.01 0.42 0.55

SRHGE (GLRLM) 0.86 0.54 0.24

LRLGE (GLRLM) < 0.01 0.43 0.57

LRHGE (GLRLM) 0.75 0.74 0.24

SZE (GLSZM) 0.99 0.69 0.04

LZE (GLSZM) 1.00 0.88 0.66

GLN (GLSZM) 0.06 0.02 0.06

ZSN (GLSZM) 0.93 0.68 0.02

ZP (GLSZM) 0.98 0.77 0.06

LGZE (GLSZM) 0.01 0.47 0.50

HGZE (GLSZM) 0.95 0.41 0.26

SZLGE (GLSZM) < 0.01 0.47 0.58

SZHGE (GLSZM) 0.95 0.39 0.36

LZLGE (GLSZM) 0.01 0.47 0.64

LZHGE (GLSZM) 0.85 0.77 0.68

GLV (GLSZM) 0.02 0.09 0.31

ZSV (GLSZM) < 0.01 < 0.01 0.05

Confounded features are highlighted in italics (P< 0.01).

Becker et al. 5



HGRE (GLRLM), SRLGE (GLRLM), SRHGE
(GLRLM), LRHGE (GLRLM), SZE (GLSZM),
LZE (GLSZM), GLN (GLSZM), ZSN (GLSZM), ZP
(GLSZM), HGZE (GLSZM), SZHGE (GLSZM),
LZHGE (GLSZM), and GLV (GLSZM)

Of these 24 features, only three (LRHGE, SZE, ZP)
correlated significantly with tumor differentiation
(%¼ 0.53, –0.49, and –0.51; P< 0.05, all P values
given in Table 4), while none correlated with histo-
logical subtype or FIGO stage. Two first-order features
(skewness and kurtosis) were significantly higher in
patients with lymph node metastasis (0.65 vs. 1.08,
P¼ 0.04 and 0.53 vs. 1.67, P¼ 0.02). However, in clus-
ter analysis, the three features, ZP, SZE, and LRHGE,
exhibited significant correlations with each other as did
skewness and kurtosis, graphically summarized in the
correlation matrix in Fig. 3. This left LRHGE and
kurtosis as two independent markers for tumor differ-
entiation and the presence of lymph node metastasis,
respectively. Notably, entropy was independent of most
other features and its correlation with tumor

differentiation was almost statistically significant
(P¼ 0.05), as depicted in the boxplot in Fig. 4 and
illustrated in the ‘‘Entropy-map’’ in Fig. 5.

Discussion

In the present study, we explored the diagnostic value
of texture features in DWI of cervical cancer. Skewness
and kurtosis differed significantly in patients with pelvic
lymph node metastasis as compared to lymph node
negative patients. Moreover, we found three gray-
level matrix-derived features that correlate with the
tumor cell differentiation grade.

First order features contain important information
about underlying biological changes: in one of the few
prospective studies on DWI texture features, skewness
and kurtosis were found to have the potential to pre-
dict chemotherapy response in peritoneal cancer (15).
Though in cervical cancer the N-stage has no influence
on the clinical FIGO staging, the pelvic and para-aortic
lymph node status is an important independent prog-
nostic factor, particularly in early-stage disease (16).
In addition, the presence of lymph node metastases is
an important finding that will alter management for the
individual patient (17). Higher skewness or kurtosis in
the main tumor may thus prompt meticulous inspec-
tion of the pelvic and paraaortic lymph nodes for pos-
sible cancer spread (18). In heterogeneous tumors,
areas of lower ADC (¼higher cellularity) often repre-
sent small subpopulations of increasingly dedifferen-
tiated cells. It may be speculated that when these
subpopulations grow larger, the skewness and kurtosis
of the histogram rise and the risk of lymph node metas-
tasis increases.

The histological grading is an important prognostic
factor (19) which may initiate sooner or more aggres-
sive treatment for the individual patient. In the brain,
texture features were also found to correlate with the
dedifferentiation of gliomas (20). Furthermore, we
found that the entropy exhibited near-significant cor-
relation with the histological grade. This is especially
interesting since this feature was identified as a surro-
gate marker in other studies: Kierans et al. have found
that malignant adnexal masses have lower entropy than
benign ones (5), and Wibmer et al. were able to dem-
onstrate a correlation between the Gleason grade
in prostate carcinoma and entropy (6). However, in
the latter study the entropy was computed from the
GLCM and not from the ADC map; therefore,
the results may not be directly comparable. In a
murine osteosarcoma model, entropy correlates with
apoptosis and cell death (21), meaning that entropy
conveys meaningful underlying biological information
not only across different entities of cancer but also
across different species.

Table 4. Spearman correlation testing (P values) of the relevant

features.

Feature

Tumor

grade

Tumor

type

FIGO

stage

Variance 0.17 0.08 0.32

Skewness 0.56 0.68 0.68

Kurtosis 0.93 0.20 0.78

Entropy 0.05 0.69 0.95

Contrast (GLCM) 0.27 0.19 0.21

Correlation (GLCM) 0.07 0.17 0.28

Homogeneity (GLCM) 0.11 0.40 0.42

SRE (GLRLM) 0.08 0.78 0.57

LRE (GLRLM) 0.06 0.45 0.45

RP (GLRLM) 0.07 0.49 0.50

LGRE (GLRLM) 0.23 0.70 0.84

HGRE (GLRLM) 0.39 0.69 0.58

SRLGE (GLRLM) 0.34 0.80 0.78

SRHGE (GLRLM) 0.67 0.68 0.59

LRHGE (GLRLM) 0.03 0.34 0.41

SZE (GLSZM) 0.04 0.92 0.56

LZE (GLSZM) 0.06 0.58 0.49

GLN (GLSZM) 0.10 0.60 0.69

ZSN (GLSZM) 0.05 0.90 0.54

ZP (GLSZM) < 0.05 0.73 0.48

HGZE (GLSZM) 0.69 0.91 0.66

SZHGE (GLSZM) 0.22 0.85 0.63

LZHGE (GLSZM) 0.09 0.43 0.31

GLV (GLSZM) 0.08 0.98 0.84
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Fig. 3. Correlation matrix of the texture features, showing significant co-correlations of several features (ordered by hierarchical

clustering for better visibility): For example, ZP and SZE (6th and 7th from the bottom) correlate positively with each other, and

negatively LRHGE (5th from the top). These three features may thus reflect the same (unknown) underlying biological difference.

Fig. 4. Boxplot of two texture features which independently correlate with tumor differentiation: LRHGE (%¼ 0.53, P¼ 0.03) and

entropy (%¼ 0.49, P¼ 0.05).

Becker et al. 7



Unexpectedly, texture analysis did not allow for dif-
ferentiation of the histological tumor type. Given the
relatively small sample size used in this pilot study, it
would be premature to draw any conclusion from this
negative finding; however, it is possible that ultimately
other imaging markers may be superior to texture fea-
tures for prediction of the histological type (such as
perfusion parameters obtained by dynamic contrast-
enhanced MRI (7) or intravoxel incoherent motion
imaging (22)). Although the dominant factors for
patient management are FIGO-stage, histological dif-
ferentiation and nodal status, the histological subtype is
also an independent predictor for outcome and
treatment response (23). Furthermore, there was no sig-
nificant correlation with the FIGO stage. This suggests
that in the underlying cohort, the tumor texture
characteristics were not dependent on the tumor size.
It does, however, not mean that there is no tumor het-
erogeneity but rather that in this small cohort, tumor
heterogeneity was not significantly different in differ-
ent tumor sizes. It has been previously reported that
tumor heterogeneity in FDG uptake is correlated

with tumor size and cervical stromal invasion (24).
One further reason for this discrepancy might be the
differences in the used biomarker. FDG measures the
metabolic uptake of glucose, whereas DWI is a marker
of cell density. From previous studies, a significant cor-
relation between ADC values and tumor differentiation
of cervical cancer was reported (25). As the parametrial
invasion limits the success of a surgical treatment, the
latter distinction is of great clinical importance.
Ultimately, like the reading of a radiologist, texture
analysis should encompass all sequences. However, as
long as their use is still in a preliminary experimental
stage, it is important to examine them separately and
thoroughly.

Our study has several limitations which need to be
stated. First, as a pilot study our cohort was rather
small. As already broached above, this could have
obscured possible correlations. Second, we only per-
formed texture analysis on a single slice which may
not capture the most representative portion of the
tumor. Unfortunately, this was a technical necessity
because DWI is usually not acquired with isotropic

Fig. 5. Calculated entropy-maps of two patients: 46-year-old patient with a well-differentiated (G1) squamous cell carcinoma (top)

exhibiting comparably low intratumoral entropy compared to a 52-year-old patient with a poorly differentiated (G3) adenocarcinoma

(bottom).
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voxel size, and 3D texture analysis would have required
interpolation between the single slices, which would
have influenced the texture features in an unpredictable
way. Therefore, we think working with the original
data is superior to analyzing data with an artificially
introduced confounder. Third, we only analyzed the
ADC maps and not the original image data. Our
reason for this is that the choice of the b-value has
been shown to confound texture analysis on DW
source images, but the features seem more resilient on
the computed ADC maps (26).

In conclusion, we have identified texture features
which may potentially predict histological tumor differ-
entiation and nodal cancer stage. Further research will
be necessary to verify our preliminary findings in a larger
cohort.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received the following financial support for the
research, authorship, and/or publication of this article: This
research was partially supported by the General Research

Fund, Hong Kong (no. 17119916) and by the clinical research
priority program molecular imaging network Zurich (KFSP
MINZ).

References

1. Torre LA, Bray F, Siegel RL, et al. Global cancer statis-

tics, 2012. CA-Cancer J Clin 2015;65:87–108.
2. Ronco G, Dillner J, Elfström KM, et al. Efficacy of HPV-

based screening for prevention of invasive cervical cancer:

Follow-up of four European randomised controlled trials.

Lancet 2014;383:524–532.

3. Koh W-J, Greer BE, Abu-Rustum NR, et al. Cervical

cancer. J Natl Compr Canc Ne 2013;11:320–343.

4. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding

tumour phenotype by noninvasive imaging using a quan-

titative radiomics approach. Nat Commun 2014;5:4006.

5. Kierans AS, Bennett GL, Mussi TC, et al.

Characterization of malignancy of adnexal lesions using

ADC entropy: Comparison with mean ADC and qualita-

tive DWI assessment. J Magn Reson Im 2013;37:164–171.
6. Wibmer A, Hricak H, Gondo T, et al. Haralick texture

analysis of prostate MRI: Utility for differentiating non-

cancerous prostate from prostate cancer and differentiat-

ing prostate cancers with different gleason scores. Eur

Radiol 2015;25:2840–2850.

7. Lee EYP, Hui ESK, Chan KKL, et al. Relationship

between intravoxel incoherent motion diffusion-weighted

MRI and dynamic contrast-enhanced MRI in tissue per-

fusion of cervical cancers. J Magn Reson Imaging 2015;42:

454–459.

8. Vallières M, Freeman C, Skamene S, et al. A radiomics

model from joint FDG-PET and MRI texture features

for the prediction of lung metastases in soft-tissue sar-

comas of the extremities. Phys Med Biol 2015;60:5471.
9. Collewet G, Strzelecki M, Mariette F. Influence of MRI

acquisition protocols and image intensity normalization

methods on texture classification. Magn Reson Imaging

2004;22:81–91.
10. Mayerhoefer ME, Szomolanyi P, Jirak D, et al. Effects of

MRI acquisition parameter variations and protocol het-

erogeneity on the results of texture analysis and pattern

discrimination: An application-oriented study. Med Phys

2009;36:1236–1243.

11. Tamura H, Mori S, Yamawaki T. Textural features cor-

responding to visual perception. IEEE T Syst Man Cyb

1978;8:460–473.
12. Dasarathy BV, Holder EB. Image characterizations

based on joint gray level—run length distributions.

Pattern Recog Lett 1991;12:497–502.
13. Galloway MM. Texture analysis using gray level run

lengths. Comput Vision Graph 1975;4:172–179.
14. Thibault G, Fertil B, Navarro C, et al. Texture

indexes and gray level size zone matrix application to

cell nuclei classification. Int J Pattern Recogn 2009;27:

1357002.
15. Kyriazi S, Collins DJ, Messiou C, et al. Metastatic ovar-

ian and primary peritoneal cancer: Assessing chemother-

apy response with diffusion-weighted MR

imaging—value of histogram analysis of apparent diffu-

sion coefficients. Radiology 2011;261:182–192.
16. Inoue T, Morita K. The prognostic significance of

number of positive nodes in cervical carcinoma stages

Ib, IIa, and IIb. Cancer 1990;65:1923–1927.
17. Michel G, Morice P, Castaigne D, et al. Lymphatic

spread in stage Ib and II cervical carcinoma: Anatomy

and surgical implications. Obstet Gynecol 1998;91:

360–363.

18. Lin G, Ho K-C, Wang J-J, et al. Detection of lymph node

metastasis in cervical and uterine cancers by diffusion-

weighted magnetic resonance imaging at 3T. J Magn

Reson Imaging 2008;28:128–135.
19. Prempree T, Patanaphan V, Sewchand W, et al.

The influence of patients-age and tumor grade on the

prognosis of carcinoma of the cervix. Cancer 1983;51:

1764–1771.
20. Skogen K, Schulz A, Dormagen JB, et al. Diagnostic

performance of texture analysis on MRI in grading cere-

bral gliomas. Eur J Radiol 2016;85:824–829.
21. Foroutan P, Kreahling JM, Morse DL, et al. Diffusion

MRI and novel texture analysis in osteosarcoma xeno-

transplants predicts response to anti-checkpoint therapy.

PloS One 2013;8:e82875.

22. Lee EYP, Yu X, Chu MMY, et al. Perfusion and diffu-

sion characteristics of cervical cancer based on intraxovel

incoherent motion MR imaging-a pilot study. Eur Radiol

2014;24:1506–1513.
23. Shimada M, Nishimura R, Nogawa T, et al. Comparison

of the outcome between cervical adenocarcinoma and

squamous cell carcinoma patients with adjuvant

Becker et al. 9



radiotherapy following radical surgery: SGSG/TGCU
intergroup surveillance. Mol Clin Oncol 2013;1:780–784.

24. Chung HH, Kang SY, Ha S, et al. Prognostic value of

preoperative intratumoral FDG uptake heterogeneity in
early stage uterine cervical cancer. J Gynecol Oncol 2016;
27:e15.

25. Liu Y, Ye Z, Sun H, et al. Grading of uterine cervical

cancer by using the ADC difference value and

its correlation with microvascular density and vas-
cular endothelial growth factor. Eur Radiol 2013;23:
757–765.

26. Becker AS, Wagner MW, Wurnig MC, et al. Diffusion-
weighted imaging of the abdomen: Impact of b-values
on texture analysis features. NMR Biomed 2017;30:
e3669.

10 Acta Radiologica Open


	XPath error Undefined namespace prefix
	XPath error Undefined namespace prefix

