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Abstract

The effect of cancer therapies is often tested pre-clinically via in vitro experiments, where the post-treatment viability of the
cancer cell population is measured through assays estimating the number of viable cells. In this way, large libraries of
compounds can be tested, comparing the efficacy of each treatment. Drug interaction studies focus on the quantification of
the additional effect encountered when two drugs are combined, as opposed to using the treatments separately. In the
bayesynergy R package, we implement a probabilistic approach for the description of the drug combination experiment,
where the observed dose response curve is modelled as a sum of the expected response under a zero-interaction model and
an additional interaction effect (synergistic or antagonistic). Although the model formulation makes use of the Bliss
independence assumption, we note that the posterior estimates of the dose–response surface can also be used to extract
synergy scores based on other reference models, which we illustrate for the Highest Single Agent model. The interaction is
modelled in a flexible manner, using a Gaussian process formulation. Since the proposed approach is based on a statistical
model, it allows the natural inclusion of replicates, handles missing data and uneven concentration grids, and provides
uncertainty quantification around the results. The model is implemented in the open-source Stan programming language
providing a computationally efficient sampler, a fast approximation of the posterior through variational inference, and
features parallel processing for working with large drug combination screens.
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Introduction
In pre-clinical cancer drug sensitivity screening, the effective-
ness of compounds is tested in vitro on cell lines or samples
derived from patients. The response of those cell lines or patient-
derived samples to a treatment is measured with dose–response
experiments, in which cells have been exposed to a range of drug
concentrations over a period of time. The output is typically a
measure of cell viability or other type of cell count obtained from
single-drug experiments, which are used to model the response
by fitting a parametric log-logistic model to the concentration–
response curve, e.g.

h(x| l, s, m) = l +
(
1 − l

)
1 + 10s(x−m)

, x ∈ R, (1)

where x denotes the log10 drug concentration, as it is assumed
throughout the paper. We utilize a three parameter log-logistic
curve rather than the more common four parameter version,
fixing the upper asymptote to one. Working with properly nor-
malized viability measurements, this simply reflects that at very
low levels of concentration, there is completely unhindered cell
growth. Positive values of the slope parameter s are associated
with measuring inhibition of cell viability. The parameter l con-
trols the lower asymptote, or the maximum efficacy of the drug.
Some anti-cancer drugs are cytostatic rather than cytotoxic,
leading to a plateau effect in the dose–response curve. The
lower asymptote captures this potential diminishing return of
increased drug concentration. The inflection point of the curve,
m, corresponds to the concentration of the compound needed to
induce a response equal to 50% of the maximum response and is
commonly referred to as ‘half-maximal effective concentration’
(or EC50), a popular measure of efficacy of the compounds.

In drug combination studies, more than one compound is
tested at the same time, with the aim of finding more effective
treatments. In particular, one is interested in identifying drug
combinations that are either ‘synergistic’ or ‘antagonistic’. An
interaction between two drugs resulting in a combined effect
greater than expected is called synergistic, whereas an effect
lower than expected is called antagonistic. The expected com-
bined effect of two drugs hinges on an assumption of how
the two drugs might behave jointly, having only been observed
individually. Several such assumptions exist, each having its
own underlying pharmacological reasoning. Starting from these
assumptions, the output of drug combination experiments can
be modelled using suitable mathematical models with the aim of
quantifying the interaction component. Building on work dating
back to the first half of the 20th century [see, for instance, 1, 2],
the literature on the topic has developed widely in recent years
[see 3–5,for reviews on the topic].

Several software packages for analysing drug sensitivity data
exist, notably the R software packages drc for single drug data
[9] and SynergyFinder for drug combination studies, for which a
standalone web application is also available [6, 10]. In addition,
standalone software such as Combenefit [7] has been utilized to
quantify interaction effects in high-throughput drug combina-
tion experiments, where thousands of experiments are analysed
simultaneously. See Table 1 for a concise comparison of features
available in bayesynergy, SynergyFinder 2.0 and Combenefit.

A common drawback of all classical drug interaction
models implemented in these packages is that they interpret
any deviation of the observed data from the expected non-
interaction model as interaction, i.e. as evidence for synergistic
or antagonistic effects. Therefore, these models do not allow for

heterogeneity in the data, for measurement errors or for any
other biological or technical variation, which are commonplace
in high-throughput data, and important to account for (Figure 1).
A notable exception is the work of [11], where a framework
accounting for experimental noise is developed, making a
connection to the variance of the negative controls, but it only
models the experiments pointwise, not considering the full
dose–response surface. Although SynergyFinder 2.0 can provide
estimates of uncertainty to reflect variability between replicates,
it does not account for the full uncertainty in the underlying
viability experiment, as represented by the positive and negative
controls, see the Supplementary Material S7 for an example.

To overcome these problems, the R package bayesynergy
implements a statistical model for studying the interaction
between two drugs, where the drug combination surface is
modelled using a flexible Bayesian approach. This formulation
allows for proper inclusion of data variability, uses replicate
measurements when available, and naturally handles missing
data and uneven concentration grids. The bayesynergy package
implements an extension of the model developed in [12],
where the drug response surface is interpreted as the result
of a stochastic model, able to discriminate between its zero-
interaction and interaction parts. Although the zero-interaction
part is given a parametric model, corresponding to the product of
the dose–response curves estimated for each drug individually,
the interaction part is modelled in a non-parametric fashion
using a Gaussian Process (GP).

Model
The main focus in drug–response studies is the dose–response
function, f (x), that maps drug concentration x to a measure
of cell survival, e.g. the percentage of cells still viable after
treatment. Utilizing the percentage of survival, it is assumed that
f only takes values in the interval (0, 1), the boundary reflecting
complete cell death or complete cell survival.

From this function, numerous summary measures can be
derived, for example, the half-maximal inhibitory concentration
(EC50) or the drug sensitivity score (DSS) [13], both attempting to
quantify a compound’s efficacy. In drug combination studies, x =
(x1, x2) denotes the pair of concentrations of the two drugs being
combined, and it is assumed that the drug response function can
be decomposed as:

f (x) = p0(x) + �(x), (2)

where p0(x) is the non-interaction effect, and �(x) is the inter-
action effect. Although the drug response function cannot be
directly observed, experimenters can obtain noisy evaluations
of it through, e.g. cell viability assays.

The non-interaction effect p0 encodes an assumption on how
the drugs would behave together, if they truly did not interact.
For this term, we assume a Bliss independence model [2], which
corresponds to a probabilistic independence assumption on the
joint effect. That is, if we interpret the log-logistic curves from
Equation (1) as probabilities of a cell’s viability at concentration
x of a drug, the joint probability of a cell’s ability to proliferate at
concentration x takes the following form:

p0(x) = h(x1| l1, s1, m1)h(x2| l2, s2, m2), (3)
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Table 1. Comparison of features implemented in the bayesynergy, SynergyFinder 2.0 and Combenefit software packages

Software Replicates Missing data Uncertainty quantification Prediction Reference model

bayesynergy � � � � Blissa

SynergyFinder 2.0 [6] � χb �c χb Multiple
Combenefit [7] � χ χ χ Multiple

a Estimates for other reference models can be calculated from the posterior distribution, see Supplementary Material S4. b Implemented via integration with the
DECREASE [8] software. c Requires three replicates at each concentration; uncertainty is only considered pointwise. See Supplementary Material S7 for an example.

Figure 1. This figure illustrates the importance of correctly accounting for uncertainty when estimating synergy. The panel on the left illustrates a monotherapy

experiment, where three replicates have been utilized to estimate the parameters of the log-logistic curve. Because of the inherent heterogeneity of cell growth,

replicates gives rise to slightly different viability measurements, yielding an uncertainty band around the estimated function. Consider now extending the monotherapy

experiment by adding a small fixed concentration of a second drug. In the panel on the right, a second curve is added in red, which illustrates a hypothetical dose

response curve from this combination experiment that might be observed if the two drugs interact. Imagine one only has measured a single data point from the

combination experiment, denoted in the figure by the black dot. Because of the uncertainty bands around the curves, it is not possible to confidently conclude that the

point is generated from either the red or the blue curve.

where li, si, mi for i = 1, 2 are the individual parameters for the
two drugs being combined, introduced in (1).

The interaction effect � captures any additional effect of the
two drugs in combination that is not captured under the non-
interaction assumption by p0. In order to ensure the flexibility of
the drug response function, this term is given a zero-mean GP
prior [14]. A GP is a stochastic process, any finite realization of
which is distributed as a multivariate normal. That is, if

z(x) ∼ GP
(
0, κ(x, x′)

)
, (4)

then

[z(x1), . . . , z(xn)]T ∼ MVN (0, K) , (5)

where the entries of the covariance matrix are Kij = κ(xi, xj). The
function κ(·, ·) is called the kernel, or covariance function, and
encodes the smoothness on the final function. We will assume
a stationary kernel that only depends on the distance between
covariates, such that:

κ(x, x′) = c
(‖x − x′‖) , (6)

for some function c(·).
Furthermore, to ensure that the resulting dose–response

function only takes values within the interval (0, 1), the GP is

bounded via a transformation function:

�(x) = −p0(x)

1 + exp
[
b1z(x) + log

(
p0(x)

1−p0(x)

)]

+ 1 − p0(x)

1 + exp
[
−b2z(x) − log

(
p0(x)

1−p0(x)

)] . (7)

The purpose of this transformation is to squeeze the underlying
GP, which takes values in R, into the interval (−p0(x), 1 − p0(x)).
This ensures that the final dose–response function has the cor-
rect bounds. The function is also both continuous and differen-
tiable, which simplifies posterior inference with the Hamiltonian
Monte Carlo sampler. We show in Supplementary Material S3
how the transformation can be derived from a shifted and scaled
hyperbolic tangent. The parameters (b1, b2) are not directly inter-
pretable, but help keep the model identifiable by imposing b1 �=
b2 through separate continuous prior distributions.

In addition to giving the correct bounds for the dose–
response function, the transformation function acts to provide a
slightly conservative prior distribution on �(x). The underlying
GP has mean zero so that substituting z(x) = 0 in the equation
above yields �(x) = 0, ensuring that as the underlying GP reverts
to its prior in absence of data, the dose–response function will
revert to the non-interaction assumption. This reflects our belief
that true interaction is a rare occurrence, and we build the model
with minimal bias towards it. However, due to the non-linear
transformation function, in terms of prior expectation, we only
have E [�(x)

∣∣ x] ≈ 0. See the supplementary material for more
details.

Observation model

Cell viability is typically measured in vitro using various cellular
assays. In these assays, viability is determined indirectly by
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measuring a marker associated with cell viability (e.g. ATP levels)
and comparing these to measurements taken from negative
and positive controls. Once properly normalized, these measure-
ments can be thought of as evaluations of the underlying dose–
response function f . However, due to technical and biological
noise sources, it is not uncommon to get viability measurements
outside of the interval (0, 1). To minimize the influence of noise
on the output, experiments are frequently performed including
replicate observations. In order to take this into account we
assume:

yijr = f (xij) + εijr, (8)

where xij = (
x1i, x2j

)
denotes the concentration pairs used in

the drug combinations, where measurements are indexed by
i = 1, . . . , n1 and j = 1, . . . , n2, while the subscript r = 1, . . . , nrep

denotes the replicates. The noise term ε captures the measure-
ment error around the dose–response curve, and is given a zero-
mean normal distribution, independent across replicates, with a
heteroscedastic variance:

Var
[
εijr

] = σ 2 (
f (xij) + λ

)
. (9)

A similar structure was used in [15] directly, from a log-
transformation, and in [16] indirectly, through modelling
the raw fluorescent intensity output from the plate reader.
The heteroscedastic structure arises from the normalization
procedure itself. Positive controls typically have much lower
variance than the negative controls, i.e. it is much easier to
establish when most of the cells are dead, rather than alive.

In the positive controls, a cytotoxic compound has been
added to ensure complete cell death. The variance across mea-
surements from these controls reflect a baseline level of techni-
cal noise, i.e. measurement noise introduced by the instrument
itself. In the negative controls, cells are allowed to proliferate
freely, not experiencing inhibitory effects from chemical com-
pounds. The variation across the negative controls reflects the
heterogeneity of cell growth, in addition to the underlying level
of technical noise. Coupling these controls to the dose–response
function f , the positive controls reflect the case where all the
cells are dead, i.e. f = 0, whereas the negative controls provide
the case where all cells are still alive, i.e. f = 1.

Letting the dose–response function vary from f (x) = 1, the
setting of the negative controls, to f (x) = 0, the setting of
positive controls, σ 2 can be thought of as the overall biological
heterogeneity, whereas λ is added as an offset, for the technical
noise. We add λ inside the parenthesis, to be multiplied by σ 2 as
it is more robust against model misspecification. The parameter
λ is not given a prior distribution, but must be set by the user to
reflect the data at hand. Letting σ 2

+ and σ 2
− denote the variances

of the positive and negative controls, respectively, the value of λ

can be set empirically as:

λ = σ̂ 2
+

σ̂ 2−
, (10)

where σ̂ 2
+ and σ̂ 2

− are estimates obtained from the positive and
negative controls. Ideally, we would like to set λ equal to the
ratio between the technical noise and biological heterogeneity,
but we do not have access to the biological heterogeneity directly.
These quantities should be familiar to experimenters working

with these data, as they are key ingredients in calculating quality
control measures of the assay, such as the Z-prime factor [17].

A full model specification, with all prior distributions can
be found in the Supplementary Material. The prior choices are
inherently linked to the drug concentration ranges we see in
cancer drug screens. Concentrations are typically given in micro-
molars and are equally spaced out on the log10 scale. A typical
range of concentrations in a large drug combination screen
would be from as low as 10−6μM (picomolar) to as high as
103μM (millimolar), for which the prior distributions should be
sufficiently calibrated.

Note that while viability measurements outside the (0, 1)
interval are allowed through the observation model, the dose–
response function f (·) itself is forced to stay inside this interval.
That is, the model assumes that any measurements outside
(0, 1) are due to technical error or growth-related stochasticity
as captured by the noise term εijr in Equation (8). This reflects
an assumption that none of the drugs boost viability signifi-
cantly above the levels of the negative controls. Although in our
experience the vast majority of drugs have either a negative
effect, or no effect at all on cell viability, we cannot exclude
the possibility that certain compounds may promote cell pro-
liferation compared with the negative controls. When using
bayesynergy, one should be aware that this could confound
the analysis, obscuring drug-induced cell proliferation effects
relative to background noise. The user is notified if observations
far exceed what would be expected from the observation model,
and can thus be removed if deemed as outliers.

Implementation
The model is implemented using the R interface of the Stan
programming language [18, 19]. Posterior samples are obtained
using Markov Chain Monte Carlo (MCMC), specifically a version
of Hamiltonian Monte Carlo called the ‘No U-Turn Sampler’
(NUTS) [20]. In addition, Stan provides an algorithm for vari-
ational inference called Automatic Differentiation Variational
Inference (ADVI) [21], which provides a quick approximation to
the posterior distribution.

GPs can be computationally expensive in a fully Bayesian
setting, with n data points requiring the Cholesky decomposition
of an n×n matrix at each step of the sampling scheme. Thanks to
the grid structure in drug combination experiments, we can sig-
nificantly speed things up. Following the Stan implementation
given in [22], we start by writing the kernel function of the GP as:

κ(x, x′) = κ(x1, x′
1)κ(x2, x′

2), (11)

where κ(x1, x′
1) and κ(x2, x′

2) denotes kernel functions defined on
the pairwise individual drug concentrations. From this structure,
the covariance matrix K from Equation (5) can be written as a
Kronecker product, K = σ 2

f Kx1 ⊗Kx2 , where Kx1 is an n1 ×n1 matrix
with entries {Kx1 }ij = κ(x1i, x1j), and similarly for the n2 ×n2 matrix
Kx2 .

By utilizing the following property:

chol(Kx1 ⊗ Kx2 ) = chol(Kx1 ) ⊗ chol(Kx2 ), (12)

the calculation of the GP only requires the Cholesky decomposi-
tion of the two smaller matrices Kx1 and Kx2 of dimension n1 × n1

and n2 ×n2, respectively. Samples from the GP are obtained using
a latent formulation, where we first create an n2 × n1 matrix V
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Figure 2. Various experimental designs common in drug combination experiments. The disconnected first row and column indicates values of the monotherapies,

with concentrations increasing along the rows and columns as indicated in (a). The inside of the matrix corresponds to the combination measurements, where a blue

colour indicates that the viability has been observed for this location, whereas grey indicates combinations that are missing. Various patterns of missingness give rise

to a fully observed (a), line (b), cross (c), diagonal (d) or shifted design (e).

whose entries are standard normal latent variables, and create
the matrix Z as:

Z = σf (Lx2 VLT
x1

), (13)

where Lx1 and Lx2 are the Cholesky decompositions of Kx1 and Kx2 ,
respectively. This ensures that vec(Z), where vec() denotes the
operator that creates a column vector by stacking the columns
together, has the required multivariate normal distribution with
the specified Kronecker covariance structure.

Missing data

The fast speed-ups offered by the covariance structure requires
a full matrix of latent factors Vij, one for each combination of
drug concentrations, but crucially it does not require an observed
viability score at each location. In real datasets, there are many
reasons why we might not have access to a full grid of viability
scores, or an equal number of replicates at each location. Most
commonly, resource constraints prohibit a full exploration of the
dose combination landscape, some researchers opting for sparse
designs, where only some of the concentration combinations are
actually observed.

Some typical designs are visualized in Figure 2. In the first
panel (A), we see the ‘full’ design, where every combination
of monotherapy concentration has also been observed for the
combinations. This is the ideal setting that very often is not
achieved in real datasets. The next two panels (B and C) show
the designs where one or both drugs are fixed at a single con-
centration—we call these the ‘line’ or ‘cross’ design, respectively.
These have been employed successfully in experiments using
patient-derived samples where the number of cells available
are limited, e.g. on leukaemia [23]. The next panel (D) denotes
the ‘diagonal’ design, promoted in [8], who propose a machine
learning algorithm for imputing the full matrix.

The last panel (E) shows the situation where the monother-
apy experiments have been performed at a different concentra-
tion grid than the combination experiment—we denote this the
‘shifted’ design. This is the design utilized in [24], one of the
publicly available datasets for drug combinations. The panel also
shows a common situation where a single observation has been
removed, possibly after being deemed an outlier. Finally, there is
a concentration of drug 2 (a row) that has no observations at all,
neither for the monotherapy nor for the combination. Essentially
a prediction task, this is simply handled as another instance of
missing data. This is useful, if one wishes to compute the dose–
response function on a finer grid of concentrations, or outside
the range of the data.

The implementation supports any pattern of missing data
and provides posterior estimates of the dose–response function
f , evaluated at every combination of concentrations x it is given.
Missing entries are imputed through the sampling process and
provided with full uncertainty quantification. Because of this
flexibility, multiple instances of the same experiment from dif-
ferent screens can be analysed jointly, even if they have perhaps
been performed using different experimental designs. In Sup-
plementary Material S6, we show how the designs in Figure 2
influence the estimation uncertainty. A more detailed analysis
of various designs can be found in [8].

Large drug combination screens

In the setting of large drug combination screens, where thou-
sands of experiments need to be pushed through an analysis
pipeline, computational speed can quickly become a significant
bottleneck. The bayesynergy package contains functionality for
parallel processing in the setting of large screens and provides
automatic error checking and retries in the case of poor model
fits. The user is given various flags to indicate whether an
experiment needs closer inspection, e.g. to correct an error in
the input format, and failed experiments can be easily fed back
into the pipeline again. See the bayesynergy package vignette for
more details on how to diagnose warnings and error messages.

The computational time of a single experiment depends
on the number of unique combination of concentrations, the
pattern of missing data and the number of replicates. Though
the Kronecker-structured covariance matrix speeds things up
significantly, the computation time of individual experiments
can be further improved by using variational inference. The
ADVI algorithm provides an approximation to the full posterior
distribution and gives a rough estimate of the model parameters,
often orders of magnitude faster than full posterior sampling via
the NUTS algorithm. In our experience, the variational approx-
imation is relatively accurate as an initial exploration of large
datasets, and it is able to identify interesting experiments, e.g.
those with large synergistic regions. These experiments can then
be followed up by running the more expensive NUTS algorithm
for full posterior sampling.

Posterior summaries
Given an input of viability scores and drug concentrations, the
bayesynergy package provides inference for the joint posterior
distribution of all model parameters, either by generating sam-
ples from the posterior distribution using the NUTS sampler or
by approximate inference via the variational inference algorithm
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Figure 3. Given an input of nrep incomplete dose–response matrices (a), perhaps with different patterns of missingness, the bayesynergy function returns niter samples

from the posterior dose–response function f (b), split into its non-interaction (c) and interaction (d) parts, each evaluated on the complete set of inputs.

ADVI. From these, we construct samples from the posterior dose–
response function f , and its constituent parts p0 and �, evaluated
at every combination of the drug concentrations given as input
(Figure 3). From these matrices, further summary measures of
drug response can be quantified.

Summarizing the drug response into a single number is
useful when comparing different treatment options, or as input
to other algorithms, e.g. for prediction purposes. Because of
the measurement error inherent in cell viability screens, these
summaries are themselves quite noisy, and care must be taken
when comparing values across cell samples. The uncertainty
in summary statistics can be gathered using, e.g. 95% credible
intervals (CIs), to better discern true synergistic effects from
background noise.

From the posterior samples of the dose–response function,
we produce a number of summary measures, each with corre-
sponding uncertainty. From the monotherapy curves, in addition
to the EC50 parameter m, we compute the DSS, which is normal-
ized to the drug concentration range. That is, we define the DSS
of a single drug as the area above the monotherapy curve:

DSS0(hi) =
∫ b

a
1 − h(xi|li, si, mi)dxi i = 1, 2, (14)

where a = min (xi) and b = max (xi). We further normalize
this measure to the concentration range and multiply by 100 to
obtain a percent value between zero and 100:

DSS(hi) = 100
DSS0(hi)
(b − a)

. (15)

Note that our definition of the DSS differs from the original mea-
sure developed in [13] by having different integration limits. In
the original formulation of the DSS, the lower limit of integration
is set as the point where the monotherapy curve crosses a ‘min-
imum activation threshold’, e.g. 90% viability. This is to ensure
that the signal in the monotherapy data can be clearly differen-
tiated from the background noise. In bayesynergy, this uncer-
tainty is directly included in the model and handled through
the variance of the posterior distributions; thus, we keep the
integration limits fixed as above. This also has the advantage
of making our DSS more easily comparable with the efficacy
measures for combination experiments defined below.

For the drug combinations, we produce various efficacy mea-
sures, including a two-dimensional version of the DSS, called the
residual volume under the surface (rVUS), introduced in [12]. The
basic building block for these measures is the ‘volume under the

surface’ (VUS), defined by the double integral:

VUS0(f ) =
∫ b

a

∫ d

c
f (x1, x2)dx2dx1, (16)

where the integration limits are given by the minimum and
maximum drug concentrations, i.e. a = min (x1), b = max (x1),
c = min (x2) and d = max (x2). This value is further normalized
by:

VUS(f ) = 100
VUS0(f )

(b − a)(d − c)
, (17)

to obtain a percentage value between 0 and 100. From this we
construct the measure of efficacy, rVUS as

rVUS(f ) = 100 − VUS(f ), (18)

which can be interpreted as the percentage of a hypotheti-
cal ‘maximum efficacy’ that the drug combination can achieve
over the combined concentration range. Similarly, we compute
this efficacy measure for the non-interaction surface to obtain
rVUS(p0). By comparing rVUS(f ) with rVUS(p0), or even to the
individual DSS(hi), i ∈ {1, 2}, one can compare the efficacy of the
combined experiment with single drug efficacies. To evaluate
the interaction effect between the drugs directly, instead of their
overall efficacy, we compute the VUS(�) value. This measure is
comparable with how, e.g. SynergyFinder computes their syn-
ergy score averaged across the concentration ranges. However,
this surface can be complex, with local regions of synergy and
antagonism that can cancel each other out when taking the
integral. Therefore, we also compute measures of synergy and
antagonism separately. More specifically, we define

�+(x) = max{0, �(x)}
�−(x) = min{0, �(x)},

as the positive and negative parts of �, respectively. We then
compute VUS(�+) and VUS(�−) as measures of antagonistic and
synergistic efficacy. These measures are directly interpretable as
percentage points of efficacy lost or gained due to antagonism or
synergy.

Finally, in order to make comparisons of synergistic effects
across experiments, we can compute a standardized synergy
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score by standardizing the mean VUS(�−) value by its SD:

Synergy Score = mean(VUS(�−))
SD(VUS(�−))

. (19)

An ‘Antagonism Score’ is defined similarly. These scores can
be used to rank experiments by synergy (or antagonism), while
at the same time taking into account varying levels of uncer-
tainty. They can also be used as input in other algorithms in a
downstream analysis, e.g. for prediction purposes.

In this section, we have provided several natural posterior
summaries that are useful to summarize evidence in a drug com-
bination screen. Depending on the user’s goals, other summaries
measures could also be of interest. For example, if the drug com-
bination matrix is very sparse, e.g. consisting of only a few points,
taking the integral across the whole surface would introduce a
lot of noise in the final estimate of synergy. It might be more
sensible then to define synergy by the pointwise mean of the
interaction surface evaluated at only these observed points. The
benefit of a fully Bayesian model is that the user can create their
own posterior summaries to fit their analysis needs. Any derived
quantity based on the posterior samples will by construction
have the correct uncertainty attached to it. Although we have
focussed on measures of efficacy, the user could for example
design measures of potency, if that is of interest.

Synergy classification

It is often of interest to identify an experiment as synergistic,
antagonistic or as having no interaction. This is often achieved
through a thresholding procedure. Across a large screen, synergy
scores are standardized and a cutoff is set, defining everything
in an interval around zero as non-interactive, and everything
outside as either synergistic or antagonistic. For example in
the DrugCombDB [25], a large database collecting drug combi-
nation data from multiple sources, the quartiles are used to
classify combinations, meaning that 25% of the experiments
are classified as synergistic, 25% as antagonistic and 50% as no
interaction.

These thresholding procedures are prone to misclassifying
experiments, because they do not account for the underlying
uncertainty. There could be experiments classified as syner-
gistic, that in reality have an effect that is not separable from
the background noise. Similarly, experiments with a small syn-
ergistic region, clearly differentiated from the noise, might be
classified as having no interaction due to the effect size being too
small. From a Bayesian perspective, concluding that an experi-
ment has an interaction effect or not can be decided by the Bayes
factor [26] comparing the two models

M0 : f (x) = p0(x)

M1 : f (x) = p0(x) + �(x),

that is, one model where the dose–response function only con-
tains the non-interaction assumption, and the other where the
interaction term is included. In bayesynergy, the calculation
of the Bayes factor is available directly from the main function
call and utilizes the bridgesampling package [27]. We outline in
Supplementary Material S5, how the Bayes factor can be used for
synergy classification.

Figure 4. The dataset from [24] is given in a ‘shifted’ format, where the

monotherapy experiment and combination experiment has been performed on

two distinct concentration grids.

An example workflow for a drug combination
screen
To illustrate a typical analysis workflow of the bayesynergy

package, we utilize a subset of the data provided by [24]. The full
dataset contains 38 compounds screened pairwise in 583 com-
binations across 39 cancer cell lines. From this dataset, we select
six breast cancer cell lines for further investigation, yielding 3498
experiments to analyse. Each experiment usually contains 160
observations from the dose–response function, calculated on a
eight unique concentrations for the single drugs, and a 4 × 4
grid for the combinations. With the combination concentrations
slightly shifted, this yields a 12×12 grid of possible combinations
for the full grid, of which typically only 32 are actually observed
(Figure 4). Finally, these observations are made with different
numbers of replicates, single drug viabilities usually replicated
six times and combination viabilities four.

Using the built-in function for analysing large drug combi-
nation screens, synergyscreen, we combine parallel processing
and variational approximation to fit the model to each experi-
ment. For the 3498 experiments, the whole process took approx-
imately 2 h on a 2,2 GHz Dual-Core Intel Core i7 computer, using
four threads, at an average of 2 s per experiment. Extrapolating
from this runtime, it would take approximately 13 h to run the
full screen on all 39 cell lines, using the same machine. Since the
implementation is highly parallel, the computation time can be
decreased by increasing the number of compute cores.

This data frame can be plotted to give a quick overview of
the interesting combinations. Figure 5 gives an overview of the
drug combinations for the six breast cancer cell lines. Both the
synergy and antagonism scores from Equation (19) are computed
for each drug combination, and then averaged separately across
the cell lines and coloured to indicate the top synergistic and
antagonistic combinations. The upper red triangle highlights the
most antagonistic combinations in the data, whereas the lower
blue indicates the most synergistic ones. In this way, the user
will quickly be guided towards top synergistic and antagonistic
combinations. The size of the dots indicate the median average
deviation, high values of which represent drug combinations
that show very selective interaction, perhaps only in a single cell
line.



8 Ronneberg et al.

Figure 5. The output of synergyscreen can be plotted to get a quick overview of the drug screen. In this figure, both synergy and antagonism scores have been averaged

across the six breast cancer cell lines in [24], to produce a pairwise plot of the interaction in all combinations. The upper red triangle show antagonism scores, whereas

the lower blue contains synergy scores. The size of the dots is proportional to the median average deviation (MAD), large values of which indicate that the combination

achieves divergent scores across the cell lines.

From the plot, several combinations appear interesting for
further analysis. The drugs BEZ-235 and MK-8669 are both mTOR
inhibitors, with BEZ-235 being a dual mTOR/PI3K inhibitor and
produce synergistic signals across a wide range of combinations.
Other drugs are more selective, only interacting with a few oth-
ers. For example, the DNA-damaging agent Gemcitabine shows
strong interaction only with MK-8776, a selective Chk1 inhibitor.
When combined, these drugs produce a strong synergistic effect
in three of the six breast cancer cell lines, which all have TP53
mutations. MK-8776 is known to enhance the rate of cell death
induced by chemotherapy agents including gemcitabine [28];
the treatment combination has been tested in a phase I trial
[29]. The combination of Chk1 inhibition and DNA-damaging
treatment can achieve selectivity towards p53-deficient cancer
cells by synthetic lethality [30].

Detailed single experiment analysis

Inspecting this combination further, we find that it is most
synergistic in the OCUBM cell line, the variational approximation
reporting a point estimate of -12.28 (VUS(�−)) and a synergy
score of -5.24, indicating an effect far above the estimation
uncertainty. We run the full MCMC algorithm for this experiment
to obtain 4000 samples from the posterior distribution, which
can be further processed and used to calculate summary statis-
tics and produce various plots. Table 2 shows posterior means,

95% CIs and the effective sample size for a subset of parameters
in the model in addition to the summary measures derived
in the previous section, whereas Figure 6 shows some of the
plots produced for this particular experiment. From the table,
parameter estimates for the two monotherapy curves can be
examined, and the model fit can be inspected in (A) and (B) of the
figure. With nine replicates at each location, the monotherapy
parameters are very well estimated, with small CIs and high
effective sample size. In the figure, the heteroscedastic nature
of the observation model also becomes clearly visible. From the
samples of the dose–response function as in Figure 3, summary
measures of efficacy are computed and reported in Table 2. The
DSS scores have rather sharp posteriors, being a bit more precise
for gemcitabine, reflecting the overall certainty in the parameter
estimates. The DSS score for gemcitabine is estimated at 45.9
with a 95% CI (42.5,49.1), whereas MK-8776 has a DSS score of
20.7 (16.7,24.8), indicating a lower efficacy compared with gem-
citabine. The monotherapy curve of MK-8776 appears to plateau
at around 60% viability (posterior mean of l2 at 0.64), which could
indicate that the drug has saturated its target (Chk1).

For the overall efficacy, rVUS(f ) is estimated at 53.38% of
the maximum available volume, with a 95% CI (37.2,72.6). Of
this effect, synergy (VUS(�−)) accounts for about 25 percentage
points, 95% CI (-43.5,-11.8), whereas there is nearly no antago-
nistic effect at all (posterior mean of VUS(�+) at 0.9). Note that
the final estimate of synergy obtained by full MCMC sampling
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Table 2. Table showing posterior estimates for parameters and summary statistics of the drug combination Gemcitabine + MK-8776 on the
OCUBM cell line (data from [24]) Note: The samples were generated using the NUTS algorithm on default model settings, with niter = 4000. The
parameters are grouped into their corresponding location within the model hierarchy. For the user, the summary statistics at the end is the
more interesting output of the model, together with perhaps the EC50 parameters, all of which is marked in bold.

Mean 2.5% 97.5% neff

Observation model
σ 0.0864 0.0769 0.0968 6755

Non-interaction
l1 (Gemcitabine) 0.07 0.04 0.10 3171
l2 (MK-8776) 0.64 0.58 0.69 3909
s1 (Gemcitabine) 2.38 1.97 2.83 3571
s2 (MK-8776) 1.94 1.07 3.37 4024
m1 (Gemcitabine) -2.68 -2.72 -2.64 3238
m2 (MK-8776) -0.53 -0.71 -0.33 3163

Interaction
� 1.68 0.96 3.09 1334
σ 2

f 3.69 1.32 13.35 1859

Summary statistics
DSS (Gemcitabine) 45.91 42.48 49.10 3485
DSS (MK-8776) 20.71 16.66 24.85 4419
rVUS(f) 53.39 37.18 72.59 2920
rVUS(p0) 29.17 27.47 30.86 5876
VUS(�−) -25.14 -43.46 -11.85 2816
VUS(�+) 0.93 0.03 4.47 3242

is larger than the initial estimate from the screen using the
variational approximation. Variational inference algorithms are
known for underestimating variances, which can explain why
this effect was left underexplored. The wide CI in the synergy
estimate is due to a large portion of the estimated effect being
outside of the data range. Note that in Figure 6C, the crosses
denote the observed viability locations for the drug concen-
trations. The large synergistic effect is supported by three or
four locations in the drug concentration landscape, with the
bulk of the effect taking place outside of the data range. In this
region, synergy is extrapolated using the underlying smoothness
assumptions of the GP, as encoded by its length-scale �. The
variational approximation can underestimate the variability of
this smoothness parameter, and thus also synergistic effects
outside of the data range. We therefore recommend that the user
rerun the most interesting experiments with full MCMC to better
explore the uncertainties. It would also be natural to extend
this experiment with slightly smaller concentrations of the drug
combination, and, in general, there is little sense in looking
for synergy in areas where the monotherapies themselves are
effective.

A comparison of this analysis with the results from other
software packages (Table 1) is challenging due to the ‘shifted’
structure of the drug concentration grids, which creates missing
observations in both the monotherapy and in the drug combi-
nation data. Both SynergyFinder 2.0 and Combenefit software
packages require fully observed concentration grids to work
out-of-the-box, although the online version of SynergyFinder
2.0 (https://synergyfinder.fimm.fi/) can handle missing data by
integration with a separate prediction model.

The prediction model is called DECREASE [8] and utilizes a
non-negative matrix factorization technique to predict a fully
observed viability matrix from a sparsely observed input. After
using the DECREASE model as a pre-processing step, we can
thus compare bayesynergy results with the output from the
SynergyFinder model. However, the DECREASE model does not

handle missing observations in the monotherapies caused by
the ‘shifted’ grid. In order to get around this, we first impute the
missing monotherapy viabilities by using the posterior mean of
a model fitted by bayesynergy, using only monotherapy viability
as input. We then run the DECREASE model four times, one for
each replicate of the combination viabilities, to obtain four com-
plete dose–response matrices that can be fed into SynergyFinder.
We do this in order to keep some of the data heterogeneity
and ensure that SynergyFinder can provide us with confidence
intervals, which requires a minimum of three replicates at each
concentration.

We use the online version of both SynergyFinder 2.0 and
DECREASE (https://decrease.fimm.fi/) to perform the analysis
and find a synergy score based on the Bliss reference model
of 11.738 ± 0.19 for a 95% confidence interval, indicating a
moderate synergistic effect. This score is calculated differently
from the scores reported by the bayesynergy package, but a
comparable metric can be easily computed from the poste-
rior distribution, yielding a mean of 24.68 with a 95% CI of
(11.28, 39.79). The main reason for the difference in scores and
uncertainty is that the interaction surface computed by the
DECREASE model quickly drops off towards zero outside the data
range in all replicates, whereas the bayesynergy model uses the
smoothness of the curve to extrapolate beyond the data. The
predicted interaction surface from SynergyFinder, and a more
detailed discussion regarding estimation uncertainty is available
in Supplementary Material S7.

Model assessment

The interaction part of the model consists of the GP, which is con-
structed from the latent parameters z together with the kernel
hyperparameters σ 2

f and �, and the parameters inside the trans-
formation, (b1, b2). Of these, only the kernel hyperparameters
can be given a clear interpretation and are therefore reported in
Table 2. We see that the length-scale parameter is estimated at

https://synergyfinder.fimm.fi/
https://decrease.fimm.fi/
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Figure 6. Some plots produced from the model output for the combination of Gemcitabine and MK-8776 on the OCUBM cell line. In (a), monotherapy curves for the

two drugs, (b) a 3D interactive plot of the combined response, (c) contour plots of the interaction surface and in (d) posterior densities of rVUS summaries.

1.68, 95% CI (0.96,3.09), indicating a rather smooth function over
the dose concentrations that range from 10−6 to 4μM, also visible
in Figure 6C. The kernel amplitude σ 2

f has a posterior mean of
3.69, with a wide 95% CI (1.32,13.35) indicating that the posterior
function is allowed to deviate far from its mean, i.e. there is most
likely interaction here as the function is allowed to deviate from
p0. These parameters have a slightly smaller effective sample
size, most likely due to the difficulty of updating these at the
same time as updating z, as reported in [22]. Although these
parameters may not be of immediate interest to the user, they
provide, together with the estimate of the observation noise σ ,
information about the model fit. Particularly when compared
with other experiments across a large screen.

Having obtained estimates of synergy, which take the full
uncertainty of the data into account, the user is left with a
list of interesting experiments to follow up. Because the model
properly handles the estimation uncertainty, the list of such
experiments is concise, focussing on those where a true effect

can be clearly differentiated from the background noise. From
here, the user can analyse the drug combination screen either
qualitatively by going further into the biology or quantitatively
by plugging the output of the model into other algorithms for
further analysis. One such avenue might be biomarker discovery
models as in the style of [31], who utilizes both the efficacy
estimate and its corresponding uncertainty to find biomarkers of
single therapy responses. The output can also be used as training
data for machine learning algorithms attempting to predict the
combined drug efficacy or synergy for untested experiments.

Conclusion and outlook
The bayesynergy package implements a probabilistic model for
analysing drug combination experiments. It handles the real
world structure of drug combination experiments, which fea-
ture different patterns of missingness and differing numbers
of replicates. The model accounts for measurement noise by
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using a heteroscedastic observation model and produces esti-
mates of the underlying dose–response function and measures
derived from it, alongside uncertainty quantification. Since the
model samples from the dose–response function directly, any
user-defined summary statistic of dose–response can also be
computed, and the uncertainty is naturally propagated.

Through the natural grid structure of drug combination
experiments, a computationally efficient GP implementation
ensures the automatic exploration of the complete dose–
response matrix from an incomplete input. This enables
experimenters to analyse sparsely observed experiments in
situations with limited resources, for example, when using
patient-derived cell samples with limited biopsy material, to
inform treatment decisions under uncertainty.

Cell viability assays are noisy by nature, with multiple sources
of biological and technical noise. It is crucial to take this into
account when estimating the efficacy and synergy of drug com-
binations in an attempt at understanding the underlying bio-
logical mechanisms. It enables researchers to hone in on the
interesting combinations for follow up experiments and informs
decision making and experimental design. More precise esti-
mates of drug efficacy can be used as input in various models
attempting to connect efficacy to underlying genomics pat-
terns or used to predict the response in new experiments or in
patients.

In this paper, we have focussed on the Bliss independence
model as the underlying non-interaction assumption. This
choice was motivated partly by the attractive probabilistic
interpretation, but also by computational considerations. The
Bliss model can be computed analytically from the two dose–
response functions, whereas other models require numerical
solutions (e.g. the Loewe model [1]). In an MCMC setting,
this becomes expensive, as a numerical solver would need to
be run at each step of the algorithm. Furthermore, both the
NUTS algorithm and the variational approximation require the
evaluation of the gradient of the log-posterior. Other models of
non-interaction can introduce discontinuities in these gradients
(e.g. the ‘Highest Single Agent’ [32]), which would make posterior
sampling slow and inefficient.

An advantage of the fully Bayesian model is that the user can
explore various non-interaction assumptions post hoc. From the
posterior samples of the monotherapy parameters, the user can
construct various non-interaction assumptions to obtain p̃0(x),
which can then be subtracted from the posterior dose response
matrix in Figure 3 to obtain �̃(x). In this fashion, more suitable
pharmacokinetic assumptions can be incorporated if desired.
See Supplementary Material S4 for more details.

Researchers working with drug efficacy screens frequently
run multiple versions of their experiments. For example, in an
initial phase of setting up a large drug screen, the active ranges
of various drugs might need to be determined experimentally.
Sometimes entire experiments are scrapped, because they fail
to meet a quality control threshold. The bayesynergy model
can readily be extended to not only consider within-experiment
variability, but also between-experiment variability, as in [15].
This would allow the pooling of experimental data in estimating
drug efficacy and synergy, utilizing all available data for the
final analysis. The differences in experimental quality can be
handled by assigning different weights to different experiments
according to assay quality as characterized by the positive and
negative controls.

Finally, the extension of the model to higher orders of drug
combinations is fairly straight forward and still computation-
ally efficient due to the grid structure. Considering six unique

concentrations for each drug, a single replicate fully observed
drug combination experiment would contain 36 216 and 1296(!)
viability measurements for two, three and four drugs, respec-
tively. In these settings, resource constraints will quickly become
an issue, and sparse designs an essential tool in the exploration
of higher order drug synergies. In this context, we note that
there is a fundamental limit on how precise measurements
can be in various regions of the concentration grid (Figure 1).
This is connected to the heterogeneity of cell growth and the
technical error underlying cell viability assays. An avenue for
further exploration is therefore the optimal design of exper-
iments given a limited amount of resources, i.e. the optimal
distribution of measurements in the concentration space and
across replicates. Because the bayesynergy model samples from
the full posterior distributions, we can use tools from optimal
experimental design [33–35], for example, to directly minimize
uncertainty in the synergy estimates.

Key Points
• Drug combination experiments are typically fraught

with noise, both biological and technical.
• Accounting for this noise is key when searching for

synergistic drug combinations in large screens, or
when using estimates of synergy as input in other
algorithms.

• The bayesynergy package implements a probabilis-
tic model using GPs for analysing drug combination
experiments, controlling for these noise sources.

• Since it is a statistical model, it allows inclusion of
replicates, missing data and uneven concentration
grids, in addition to providing uncertainty quantifica-
tion around the results.

• By modelling the dose–response function directly,
user-defined summaries of efficacy or synergy can be
derived to fit individual researchers’ needs.

Software availability
The R package is available at https://github.com/ocbe-uio/baye
synergy. Scripts and datasets for reproducing Figures 5 and 6 and
Table 2 can also be found there. All results and figures in this
manuscript have been produced with the bayesynergy package
version 2.4.1.
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