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DNase I hypersensitive sites (DHSs) are generic markers of regulatory DNA' and
contain genetic variations associated with diseases and phenotypic traits® 5. We

created high-resolution maps of DHSs from 733 human biosamples encompassing
438 cell and tissue types and states, and integrated these to delineate and numerically
index approximately 3.6 million DHSs within the human genome sequence, providing
acommon coordinate system for regulatory DNA. Here we show that these maps
highly resolve the cis-regulatory compartment of the human genome, which encodes
unexpectedly diverse cell-and tissue-selective regulatory programs at very high
density. These programs can be captured comprehensively by asimple vocabulary
that enables the assignment to each DHS of a regulatory barcode that encapsulates its
tissue manifestations, and global annotation of protein-coding and non-coding RNA
genes inamanner orthogonal to gene expression. Finally, we show that sharply
resolved DHSs markedly enhance the genetic association and heritability signals of
diseases and traits. Rather than being confined to a small number of distal elements or
promoters, we find that genetic signals converge on congruently regulated sets of
DHSs that decorate entire gene bodies. Together, our results create a universal,
extensible coordinate system and vocabulary for human regulatory DNA marked by
DHSs, and provide a new global perspective on the architecture of human gene

regulation.

A fundamental challenge in modern biology is to delineate with the
highest possible precision the repertoire of regulatory DNA elements
encoded within the human genome sequence. A universal feature of
active cis-regulatory elements—promoters, enhancers, silencers, chro-
matin insulators or enhancer blockers, and locus control regions—is
focal alteration in chromatin structure triggered by binding of tran-
scription factors (TFs), which supplants a canonical nucleosome and
renders the underlying DNA accessible to nucleases and other protein
factors'®. For more than 40 years*'®", DHSs have provided reliable
signposts for high-precision delineation of regulatory DNA in complex
genomes' . DHSs typically mark compact (less than 250 base pair (bp))
elements, and their appearance over a cis-regulatory region signifies
its actuation (readying for activation), which may occur before, or
coincident with, its functional activation. DHS mapping thus provides
ageneric tool for illuminating both active and potential regulatory
landscapes.

The advent of genome-scale mapping of DHSs"* ™ and its applica-
tion to diverse human and mouse cell and tissue types'®" has yielded
many insights into the organization', evolution” %, activity'*?°, and
function'®??? of human regulatory DNA in both normal and malig-
nant states®. A cardinal property of regulatory DNA is that its acces-
sibility is cell type- and state-selective, with only a small fraction of
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all genome-encoded elements becoming actuated in a given cellular
context'®?,

The overwhelming majority of disease- and trait-associated vari-
ants identified by genome-wide association studies (GWASSs) lie in
non-coding regions of the genome, and these variants are most strongly
enriched in DHSs mapped in disease-relevant cell contexts®’. DHSs also
collectively contain the GWAS variants that account for the majority
of trait heritability explained by genotyped single-nucleotide poly-
morphisms (SNPs)®. Deeper insights into the connection between
GWAS variants and gene regulation have been limited by the lack of
comprehensive annotations that capture the biological behaviour of
regulatory DNA.

As genome-scale data from diverse cellular contexts have accumu-
lated, systematic annotation of cell type- and state-selective DHSs has
grown increasingly challenging, and it has also become evident that
large sets of DHSs distributed widely across the genome may share
common regulatory programs'®. However, the annotation and analysis
of state-selective behaviours has been hampered by the lack of acom-
mon coordinate system for DHSs.

Here we sought to expand the breadth of high-quality DHS maps, and
to unify themintoacommon reference framework that achieves precise
genomic annotation by integrating observed biological variability
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Fig.1|Index of DHSs in the humangenome.a, DNA accessibility assayed
across multiple biosamples (indicated) from the main human organ systems.
0Of733biosamples, 531 were derived from primary cells and tissues. b, Example
locus on chromosome 1, showing DNase I cleavage density in haematopoietic
biosamples (right) with cell type-selective differences. ¢, Outline of DHS index
procedure; 76.5 million DHSs aggregated across individual datasets jointly

in the manifestation of accessibility at individual elements, and that
captures complex cell-selective behaviours in a quantitative fashion.
We report a coherent framework and demonstrate its utility for the
annotation of human regulatory DNA and gene landscapes; for defin-
inghow regulatory programs are encoded within the genome; and for
clarifyinglinks between genetic signals and gene regulation to enable
new insights into the organization and interpretation of non-coding
variation associated with diseases and traits.

Index of consensus human DHSs

To create deeply sampled reference maps of human regulatory DNA
marked by DHSs, we performed DNase | hypersensitive site sequenc-
ing (DNase-seq)" on awide range of human cell and tissue biosamples
that span all major human organ systems (Fig. 1a). Reference-grade
datawere created by rigorous quality screening for complex libraries

5
Number of organ systems

delineate and annotate 3.59 million consensus DHSs. d, Examples of consensus
DHSs with varying cell-type selectivity and genome positional stability.
Annotationsinclude consensus DHS coordinates (start/end), single-base
‘centroid’, ‘core’ region aggregating centroids across biosamples, and a unique
numerical identifier.e, Number of organ systems across which DHSs are
shared.

yielding high signal-to-noise ratio data (Methods), and were aggregated
with prior high-quality data from the ENCODE" and Roadmap Epig-
enomics® projects. We conservatively selected 733 biosamples that
represent 438 cell or tissue types and states (Fig. 1a, Supplementary
Table 1, Methods), the majority of which were derived from primary ex
vivo cells and tissues (72% of samples) or from primary cellsin culture
(11%), with the remainder (17%) from immortalized cell lines. Collec-
tively these samples represent an approximately 5.5-fold expansion of
sampled cell and tissue types and states relative to the previous phase
of ENCODE (Extended Data Fig.1a), and the resulting datareveal rich
and varied patterns of DNase I hypersensitivity (Fig. 1b).

Common coordinates for regulatory DNA

We sought to create a precise and durable common reference frame-
work for genomic elements that encode DHSs by (i) comprehensively
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and stringently (0.1% false discovery rate (FDR)) delineating DHSs
within each biosample; (ii) integrating individual biosample DHS
maps to define archetypal DHS-encoding sequence elements within
the human genome sequence; and (iii) assigning to each archetypal
element a unique numerical identifier (Fig. 1c).

Weidentified an average 0f104,433 DHSs per biosample, and a total
of 76,549,656 DHSs across all 733 biosamples. To delineate arche-
typal DHS-encoding genomic elements, we developed the consen-
sus approach outlined in Fig. 1c and Extended Data Fig. 1b, c. First, we
computed the summit coordinate (1bp) of each DHS peak and aligned
these across all biosamples to define a consensus centroid for each
archetypal DHS. Toresolve DHS boundaries, we collated the local linear
extent of DNase I hypersensitivity into a consensus range (Methods).
We then combined centroids and boundaries into a single index of
3,591,898 spatially distinct DHS-encoding sequence elements, greatly
eclipsing both the number (approximately 2.5-fold) and precision of
DHSs delineated during earlier phases of ENCODE (Extended Data
Fig.1d). In addition to a consensus summit (centroid) and start and
end coordinates, each archetypal DHS additionally comprises a“‘core’
region that represents empirical confidence bounds on the centroid
(Fig. 1d, Extended Data Fig. 1e). Each archetypal DHS derives from an
average of 21 biosamples, and because each DHS fromagiven biosample
contributestoasingle archetypal DHS, the provenance of each DHS in
theindex canbedirectly traced back toits contributing biosample(s).

Finally, we assigned a unique identifier to each archetypal index DHS
using anumerical schema (Fig.1d) that (i) conveys the genomiclocaliza-
tion of each DHS; (ii) enables unlimited extension to newly discovered
elements; (iii) ensures compatibility with future reference genome
builds and portability to personal genomes; and (iv) enables direct
integration with DNase I footprints® or other experimental annotations
(Methods). We also assigned confidence scores to all index DHSs that
combine signal strength with propensity for repeated observationin
independent biosamples (Extended Data Fig. 1f, g).

Index DHSs are broadly distributed across annotated genic and repet-
itive elements (Extended Data Fig. 2a-e). Fifty-three per cent of DHSs
liewithinintrons, about 3% within non-coding exons and untranslated
regions (UTRs), and about 2% are dually encoded within protein-coding
exons (Extended Data Fig. 2c). Although DHSs are pronounced at anno-
tated transcription start sites (TSSs), most localize to regions away
from TSSs (Extended DataFig. 2d, e). Fifty-four per cent of index DHSs
overlap repetitive elements of all classes and subfamilies (Extended
DataFig. 2b), consistent with previous observations®, although overlap
with DHS cores (41%) and centroids (37%) suggests that amore focused
subset of DHSs derives regulatory machinery from repeats.

Proportion of the genome that encodes DHSs

The full extent ot the DHS landscape should define—or at least closely
approximate—the canonical cis-regulatory compartment of the
genome, the size of which has been the subject of considerable debate?.
Theroughly 3.6 million consensus DHSs have an average width of204 bp
(median196 bp, interquartile range (IQR) 151-240 bp) and collectively
span 665.57 Mb (21.55%) of the reference human genome sequence. DHS
cores have an average width of 55 bp (median 38 bp) (Extended Data
Fig. 2f) and span 197.74 Mb (6.4%) of the genome. DHS centroids also
precisely mark the peakin evolutionarily conserved nucleotides within
DHSs, and the corresponding trough in the average density of human
genetic variants (Extended Data Fig. 2g), which are discontinuously
distributed between TF-occupied and unoccupied subsegments of
DHSs?. Iterative subsampling of the 733 biosamples showed that the
addition of any given new biosample would be expected to contribute
about 1,676 new DHSs to the index (median 283, range 4-64,054, 95%
confidence interval 1,344-2,009) (Extended Data Fig. 2h and Meth-
ods). Extrapolating from this, the addition of an additional biosample
collection of equivalent size (n =733) would be expected to increase
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annotated DHS elements by about 27% (Extended DataFig. 2h). Notably,
increasing biosamples should increase the precision of annotation and
thus the resolution of some broader elements (such as Extended Data
Fig.1c, second DHS from the right) to two or more distinct archetypal
DHSs; however, such elements are in the minority.

Cellular patterning of DNA accessibility

DHSs are extensively shared across both individual biosamples and
groups of biosamples from different organ systems (Fig. 1e, Extended
DataFig. 2i). It was previously reported that groups of widely distributed
DHSs with closely shared cross-cell-type actuation patterns also shared
biological functions such as enhancer activity’. Patterns of index DHS
actuation across the 733 biosamples (Fig. 2a) were complex, with both
highly modular and less coherent structures (Fig. 2b). The majority of
DHSs showed complex actuation patterns rather thansimple cell-selective
behaviour (Fig.1e, Extended Data Fig. 2i), prompting us to develop aflex-
ible approach for quantifying and annotating these patterns.

In principle, the actuation of any given index DHS across cell states
can be summarized by a limited number of biological ‘components’
combined inaweighted fashion. Orthogonally, the same components
can be used to summarize the DHS repertoire of an individual biosa-
mple. Because DHS-centric information can inform biosamples and
vice versa, a key advantage of this approachisits potential to capture
complex behaviours while providing biological interpretability.

Avocabulary for regulatory patterns

To simplify the matrix of 3,591,898 DHSs x 733 biosamples we applied
non-negative matrix factorization®® (NMF) (Extended Data Fig. 3a-d),
atechnique that was initially used in the field of computer vision for
learning parts-based representations of objects and semantic features
of text?”. We represented each DHS by a large enough number of com-
ponents (k =16) to ensure accuracy—that is, the degree to which the
original matrix can be reconstructed from the components—while
retaining potential for interpretability via assignment of components
to established biological contexts such as known cell lineage relation-
ships, or cell states known to be specified by specific regulatory factors
(Fig. 2¢c, Extended Data Fig. 3e-g, Methods).

To connect components with biological contexts, we identified the
biosamples that were most strongly associated with each component,
and the distribution of TF recognition sequences within DHSs that was
most strongly associated with that component. For all components,
the top contributing cell or tissue samples were notably coherent,
enabling provisional assignment of a meaningful biological label to
most components (Extended Data Fig. 4a-d, Methods). Enrichment
of TF recognition sequences within the DHSs that were most strongly
associated with each component revealed clear mappings between
distinct sets of cell lineage- or state-specifying TFs and specific
components (Extended Data Fig. 4e, f, Methods), orthogonal to the
biosample-to-component mappings described above. Finally, we com-
bined biosample-to-component mappings and TF-to-component map-
pings to create a regulatory ‘vocabulary’ that captures the actuation
pattern of a DHS across cell types and states (Fig. 2d, Supplementary
Note). Notably, theinterpretation of components does not change with
furtherinduced model sparsity (Extended Data Fig. 5a-c) or changes
in cell type representation (Extended Data Fig. 5d).

Biological annotation ofindividual DHSs

We next sought to annotate each DHS with a regulatory ‘barcode’
that captures its tissue manifestations. The cross-biosample actua-
tion pattern of each DHS is captured by linear combinations of NMF
components (Fig. 2c, Extended Data Fig. 3a-c), providing a de facto
barcode of its biological spectrum (Fig. 2c, ). DHSs that are selective
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for a single cell type or state are annotated by a single majority com-
ponent (Fig. 2e, columns 1, 4, 5, 7-9); DHSs that occur in multiple cel-
lular contexts are described by combinations of components (Fig. 2e,
columns 2, 3, 6,10); and constitutive DHSs are annotated by mixtures
of all components (Fig. 2e, column 10), including a component that
describes tissue-invariant behaviour. In this schema, DHSs with simi-
lar cross-biosample actuation patterns exhibit similar mixtures of
components. For analytical practicality and visual compactness, the
annotation of each DHS can be further summarized usingits strongest
single component (Fig. 2e, bottom); we use this summary vocabulary
for the analyses described below.

Dense encoding of regulatory information

The above results indicate that DHSs have the potential for surpris-
ingly diverse biological regulatory patterns that combine coordinated
positive (actuation) and negative (quiescent) behaviours. As the over-
whelming majority of DHSs fallinto a tight size range that stays roughly
constant with increasing numbers of biosamples and does not vary
with the complexity of component barcodes (Extended Data Fig. 2f),
archetypal DHS elements must therefore encode regulatory informa-
tion with extremely high linear density.

patternsacross 733 biosamples into 16 components using NMF. The cellular
patterning of each DHS is described using a mixture of components, indicated
by distinct colours.d, DHS componentlabels provide aregulatory vocabulary
for DHSs. e, Component mixtures for ten example DHSs with varying degrees
of componentspecificity. The biosample dataset most strongly associated
witheach componentis shown. Bottom, annotation of individual DHSs with a
single dominant component.

Regulatory annotation of human genes

The function of many genes is closely connected to their regulated
expression across cells and tissues, and hence to the activity spectra
of their cognate regulatory elements. We found that DHSs with simi-
lar component annotations were highly clustered along the genome
(Extended DataFig. 6a, b, Methods), particularly over gene bodies and
theirimmediate flanking regions (Extended Data Fig. 6¢), which col-
lectively capture 65% of all DHSs (Extended Data Fig. 6d-g). We thus
reasoned thatintegration of the components of DHSs overlying agiven
gene could be used to annotate its likely functional compartment(s).
The existence of coordinately regulated DHSs in gene bodies cannot
be ascribed to transcriptional activity per se, which produces only
very minor changes in the general DNase I sensitivity baseline. Quan-
tification of the enrichment of congruently annotated DHSs around
56,832 GENCODE genes (protein-coding and non-coding) genome-wide
revealed 20,658 genes (5% FDR) with significant clustering along the
genome of DHSs that belonged to the same component (Fig. 3a-d,
Supplementary Table 2). Notably, the gene body-centric approach to
annotation captured 70% more genes, and more genes that are likely to
bebiologically significant, than a TSS-centric approach (Extended Data
Fig. 6h,i). Only asubset of gene body DHSs contributed to component
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assignments (median, 38%; IQR, 26-54%), consistent with the fact that
many distal regulatory elements localize within the bodies of genes
other than the ones that they regulate.

0f 20,291 GENCODE protein-coding genes, more than half (54.1%)
could be assigned a regulatory component based on their overlying
DHSs (Fig. 3b). To determine whether these assignments were con-
cordant with other functional annotations, we assessed (i) whether the
genes most confidently annotated by agiven DHS component reflected
their known function(s), and (ii) whether genes annotated with a par-
ticular component are maximally expressed in cell types that match
or are closely related to those components. The top genes annotated
by the lymphoid component are allinvolved inimmune response and
disease (Fig. 3e, Extended Data Fig. 7a). Similar relationships were
observedforother categories of gene (Fig. 3e, Extended Data Fig. 7b-d),
including those annotated by the myeloid/erythroid component (eryth-
ropoiesis or haematopoietic stem cell genes), a stromal component
(collagengenes and fibronectin), and the tissue-invariant component
(housekeeping genes). This phenomenon was particularly notable for
TF-encoding genes® such as lineage-specifying master regulators
of cardiac development (cardiac component; Fig. 3f, Extended Data
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per component. Top five results for all protein-coding genes (e) and TF genes
subset (f), for selected components. g, Correspondence between regulatory
annotation and RNA expression shown usingrelative transcriptional activity
across a panel of component-matched tissues and cell types (log, observed/
expectedratios). h, Putative TF-dependent regulatory elements defined by
DHSs exclusively sharing regulatory components withgenes encodingagiven
TF thatalso contain an occupied (footprinted) cognate TF motif.

Fig. 7f) or the development of other organ systems (Extended Data
Fig.7e-h).

To explore the concordance between DHS vocabulary annotations
and gene expression across cell states, we investigated an indepen-
dently generated compendium of more than 100,000 uniformly pro-
cessed RNA sequencing (RNA-seq) datasets®. After matching DHS
components with tissue-relevant expression datasets (Methods), we
found strong correspondence between the vocabulary-based annota-
tion of genes and the cell or tissue types in which they were maximally
expressed (Fig. 3g). In many instances, DHS vocabulary annotation
and gene expression offered different but complementary views of
gene characteristics. For example, the transferrin receptor (TFRC) is
responsible for cellulariron uptake andis required for erythropoiesis.
TFRCRNA is most highly expressed in tissues from the placental com-
ponent (Extended DataFig. 7i), where TFRC is known to be involved in
trophoblast membranes. From the perspective of regulation, however,
TFRCis the most strongly associated gene in the myeloid/erythroid
component (Fig. 3e, Extended Data Fig. 7b), in line with its core iron
transport functionality. Analogously, the gene for HNF4G, a TF that is
crucial for liver development, is the most strongly associated gene in



the digestive component (Fig. 3e, Extended DataFig. 7g); however, its
RNA s expressed most highly in cells and tissues encompassed under
the renal component (Extended Data Fig. 7i). DHS-centric annota-
tions thus provide an orthogonal yet complementary view relative
to expression data alone by providing a window into regulation. As
DHSs greatly outnumber genes, DHS landscapes arein principle more
information-rich than gene expression data alone.

Annotating genes with unknown functions

Despite intensive study, the function of many human genes remains
obscure, particularly for those that are expressed at low levels or that
have highly cell-selective expression patterns—for example, zinc-finger
(ZNF) TFs***? or long non-coding RNA genes*. Nearly half of ZNF TFs
(43.7%) could be annotated with a DHS component (Extended Data
Fig.8a), indicatingtheir likely biological sphere of activity. Among long
non-coding RNA genes, 38.7% could be mapped to DHS components
(Extended Data Fig. 8b), as could 18% of pseudogenes®* (Extended
Data Fig. 8c), which might reflect remnants of regulatory states that
existed before ancient gene duplications. Beyond genes, we reasoned
that entire pathways could be annotated using the DHS landscapes
of their constituent genes (Extended Data Fig. 8d). For instance, the
Kyoto Encyclopedia of Genes and Genomes (KEGG)* pathway ‘allograft
rejection’ (a paradigmatic immune response) is strongly enriched for
the lymphoid component (Extended DataFig. 8e), consistent with the
concept that genes involved in similar biological processes should
share similar patterns of regulatory element activity.

Connecting DHS actuation to specific TFs

We reasoned that the coalescence of congruently annotated DHSs
and genes, plus the availability of high-quality motif databases and
newly available DNase I footprinting data®, could enable the system-
aticdiscovery of regulatory regions for which actuation patterns were
likely to be driven, at least in part, by particular TFs. We identified 454
TFs with known sequence recognition motifs for which the encoding
geneswere annotated by aDHS component. We next identified 189,318
DHSs genome-wide (per TF median 149, IQR 47-477 DHSs) that (i) were
exclusively annotated by acomponent matching that of the TF gene,
and (ii) showed occupancy of the cognate motif by footprinting® in
a component-matched biosample (Fig. 3h). Such DHSs are likely to
be highly functionally dependent on their associated TF, and should
providearichsubstrate for experimental manipulations toinvestigate
connections between TFs and regulatory functions.

Annotating genetic association signals

We nextinvestigated whether DHS annotations could expand insights
into therole(s) of genetic variationinregulatory DNA, and thus provide
amore meaningful framework for interpreting the pathophysiological
basis of disease and trait associations. A rank-based analysis of disease
ortraitagainst DHS component associations (explicitly controlling for
large scale linkage disequilibrium (LD) structure; Methods) revealed
increasingly strong component-specific enrichments of association
signalsacross diverse traits (Fig. 4a, Extended DataFig. 9a, b).Inmany
cases these enrichments exceeded those obtained by considering only
DHSs detected in biosamples most closely related to the relevant DHS
component (for example, lymphoid cell biosamples versus lymphoid
component; Fig. 4a, Extended Data Figs. 4a, 9¢).

Quantifying the extent to which DHS annotations captured
SNP-based trait heritability®® (h,”) (Fig. 4b) revealed a strong increase
in heritability enrichment for trait-relevant DHS components (Fig. 4b,
coloured bars) relative to allindex DHSs (Fig.4b, grey bars) ortoalarge
panel of 85baseline annotations (Fig. 4b, white bars; top three annota-
tions shown). Heritability was markedly enriched specifically within

DHS ‘core’ regions, providing orthogonal evidence for the delineation
and importance of this subcompartment (Fig. 4b).

Togeneralize these observations, we compiled more than1,300 traits
with SNP-based heritability of at least 1% from the UK Biobank project®
and from curated published data®. Of these, 261 diseases and traits
showed highly significant component-specific enrichment in herit-
ability, particularly for pathophysiologically relevant DHS components
(Fig.4c, Extended DataFig.9d; 1% FDR). Restricting DHS delineations to
‘core’regions again yielded significantly greater enrichment compared
to full DHSs (Extended Data Fig. 9e, f).

To remove potentially confounding contributions from multiple
genomic annotations that overlap the same SNP (for example, a DHS
thatoverlapsacoding region of agene annotated withaparticular DHS
component), we quantified the statistical significance of DHS compo-
nent heritability contributions while controlling for the contribution of
all other annotations (Methods). For virtually all reported traits, DHS
component annotations significantly (P < 0.01) captured SNP-based
trait heritability (Fig. 4d, black line).

We next performed cell type-specific heritability analyses® to
quantify the concentration of trait-associated genetic signalsin DHSs
annotated by specific DHS components, relative to the full repertoire
of DHSs mapped in disease- or trait-relevant cell types (Methods).
Component-annotated DHSs produced significant improvements in
capturing trait heritability compared to individual biosample maps
(P<2.2x107%; Fig.4d, grey solid line). At the level of specific traits, in
68 out of 261 cases (26%), DHS component annotations captured trait
heritability better than individual DNase-seq datasets (Fig. 4e). We
conclude that the current index of highly resolved consensus DHSs
markedly sharpens disease and trait association and heritability signals.

Geneticsignals span gene body DHSs

The observed clustering of concordantly regulated DHSs along gene
bodies (Fig.3) led us to speculate that such DHSs were more likely than
other DHSs to contain relevant genetic signals. To test this idea, we
quantified trait heritability separately for component-concordant
DHSs (17% of DHSs) and component-discordant DHSs (34%) withingene
bodies (Fig. 4f). Concordant DHSs strongly contributed to SNP-based
trait heritability relative to DHSs that were found in the same genes
but with component annotations discordant with the annotations of
the underlying gene, despite having lower average DNase-seq signal
levels (Extended Data Fig. 9g) and more specialized utilization patterns
(occurring in an average of 15 versus 25 biosamples). DHSs that were
proximal to genes not labelled by any DHS component showed the
weakest heritability contributions, and intergenic DHSs contributed
only modestly (Fig. 4f, Extended Data Fig. 9h). Rather than being con-
fined toasmall number of distal elements or promoters, it thus appears
that genetic association signals are concentrated within congruently
regulated sets of DHSs that decorate entire gene bodies.

Discussion

Here we have presented the most comprehensive and precise map of
human DHSs, and acommon coordinate system and vocabulary for reg-
ulatory DNA, creating aframework for global analyses of tissue-specific
generegulationanditsintersection with human disease trait genetics.
Regulation across cell types and states is a cardinal property of DHSs
thatis now captured in DHS components, greatly expanding the analyti-
cal horizon beyond cell type-agnostic annotations such as chromatin
states”*®. Commonreference coordinates should additionally facilitate
comparisons between large experimental datasets, and between human
and mouse DHSs, which can now be directly linked in amanner that is
robust to future mouse assemblies".

Giventhescale of the data, itis natural to ask how complete and stable
our current maps are. New biosamples willadd new DHSs and annotate
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Fig.4|DHS componentsilluminate genetic associations and heritability.
a, Association of DHSs with GWAS traits by component, shown as enrichment
ratios for increasingly stringent subsets of variants (canonical genome-wide
significance threshold of 5x 10 ®indicated). Grey, enrichments for top 15
component-associated biosamples. b, Stratified LD-score regression (S-LDSC)
for traitsshowninaassociates GWAS variants and DHS components.
Heritability enrichment for the top three most enriched baseline annotations
(white); the full DHS index (grey); and trait-relevant DHS components (red).
*Statistically significant enrichment (one-sided test, 1% FDR). ¢, Enrichment of
DHS component (x-axis) heritability across 261 GWAS traits (y-axis). Greyscale
indicates heritability enrichmentlevels for statistically significant associations
(one-sided tests, 1% FDR). Right, sampling of labels of enriched traits for each
component. Arrows, traits fromaandb. d, Distribution of S-LDSC coefficient

existing elements with ever higher precision. Adding 733 biosamples
of equivalent biological breadth would increase the number of con-
sensus DHSs by an average of 27%, with rapidly diminishing returns
after that. From the current 21.55% it also is reasonable to predict that
no more than 28% of the extant human reference sequence encodes
cis-regulatory modalities that give rise to DHSs.

It should now be possible to triangulate the genetics-to-gene-
regulation interface along three axes: (i) a genomic position axis,
which is now finely resolved to consensus DHS summits (centroids);
(ii) a cell/tissue-state axis now captured in DHS components; and (iii) a
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S-LDSC coefflclentz score
z-scores across 261 GWAS traits, shown for all baseline annotations (dashed
grey line), top 15DHS component-associated biosamples (solid grey line) and
DHS components (blackline). e, S-LDSC coefficient z-scores for selected traits
(lupus, g=0.002; maximum heart rate during fitness, g=0.016; alcohol
drinking status, g=0.009), shown for all biosamples (grey lines), top 15
component-associated biosamples (coloured ticks) and DHS components
(coloured arrows). f, Stronger heritability contribution of component-
concordant DHSs shown by stratifying S-LDSC z-scores by DHS types. Boxes,
medians and IQRs (25-75%); whiskers, 1.5 x IQRs; n =261 GWAS traits. Grey areas
ind-findicate S-LDSC z-scores (S-LDSC coefficients, normalized using
estimated standard errors) with P<0.01; FDR-corrected g-values shown for
traitsine.

gene context axis thatreflects the coherent co-localization of similarly
regulated DHSs over gene bodies. The convergence of GWAS variants
in coordinately regulated gene body DHSs suggests a fundamental
feature of the genetic architecture of disease that has heretofore, to
our knowledge, escaped notice. This finding resulted from combining
the sharpened disease association and heritability signals enabled by
high-precision annotation of regulatory DNA with the new ability to
annotate the biological spectrum of each element, neither of which
would have been possible without the large advancesinbiological scale
and methodologies reported here. The fact that genetic associationand



heritability signals are concentrated across congruently regulated sets
of DHSs that decorate entire gene bodies has important theoretical and
practicalimplications for understanding both the geneticarchitecture
of disease and the problem of connecting genetic signals with their
target genes, whichiis critical for therapeutic translation.

More broadly, the framework we report represents a transition
from an exploratory era focused on the discovery of novel elements,
toamap-centric erawith afocus onthe detection of previously anno-
tated elements within specific biological contexts (Extended Data
Fig.10a). The index framework may also obviate the need for peak
calling (Extended DataFig.10b-e), and should prove particularly valu-
able for anchoring single-cell studies*, which are presently at least
1,000-fold too sparse for robust delineation of regulatory DNA within
individual cells.
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Methods

Generation of DNase I hypersensitivity maps

DNase I assays were generally performed according to a protocol
detailed previously*. This protocol involves treatment of intact nuclei
with the small enzyme DNase | which is able to penetrate the nuclear
pore and cleave exposed DNA. Small (<1 kb) fragments are isolated
from lysed nuclei following DNase I treatment, linkers are added, and
theresultinglibraryis sequenced. Because tissue and cell culture, iso-
lation, and handling protocols differ for different biosamples, these
areindexed in Supplementary Table 1. Additional information on the
procurement of biosample material and DNase-seq biosample selec-
tion and data processing is available in the Supplementary Methods.

Index of consensus human DHSs

DHSs were detected in individual biosample datasets and integrated
across all 733 datasets to yield a set of 3.59 million consensus DHS
delineations. These elements were subsequently annotated with esti-
mates of their centre-of-mass, positional stability across datasets and
confidencescores. A detailed explanation of this procedureis provided
inthe Supplementary Methods.

Overlap of the DHS index with genomic annotations. To assess
the overlap of our DHS consensus elements with repetitive elements
(Extended Data Fig. 2b), we obtained RepeatMasker* annotations
downloaded from the University of California Santa Cruz (UCSC) Ta-
ble Browser*, and considered the various repeat classes and (sub)
families as provided. To perform analogous analyses for human gene
annotations (Extended Data Fig. 2c), we obtained GENCODE* v.28
Basic annotations. We defined exons as specified in the GENCODE an-
notation, promoters as the TSS of genes +1kb, and introns as the rest
ofthegenebody. Intergenicregions were defined as those not covered
by genebodies or defined promoters. We assigned index DHSs to these
annotations requiring atleast albp overlap, choosing the annotation
with the largest overlap in case of multiple overlapping annotations.

TOPMed within-human sequence variation data were obtained
from the Bravo website (https://bravo.sph.umich.edu/freeze5/hg38/
download, Freeze 5, hg38, VCF format). We converted 495.6 million
single-base substitutions to nucleotide diversity scores (), with a
score of zeroimplied for every genomic base position with no variants.
Per base, phyloP*® sequence conservation scores were downloaded
as-is (http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP-
100way/). Within-human sequence variation data (7 x 10*) and phyloP
conservation scores were aligned relative to DHS centroids using 20-bp
non-overlapping windows tiled across a 1-kb region centred on each
centroid (Extended Data Fig. 2g). For each window offset relative to
the DHS centroid, genome-wide per-base scores were subsetted using
bedops* and averaged with GNU datamash.

Saturation and extendability of DHS index. For random subsamples of
sizesranging from1to 733 biosamples, we estimated the mean number
of novel DHSs added by a new dataset as a function of total number of
datasets sampled (Extended Data Fig. 2h). To extrapolate these esti-
mates to future biosample sets, we fitted a log-log model to the data.
From the saturation analysis, we expect the overwhelming majority
of DHSsidentified in any new dataset to be represented already in the
index, to which they will contribute additional confidence and preci-
sion.Incremental datasets canbe added to theindex by re-delineating
DHSs using the original per-dataset DHS calls permanently recorded
atthe ENCODE DCC (Supplementary Table1).

Construction of a DHS vocabulary

We used NMF%? for the decomposition of a binary matrix consisting
of the presence or absence calls of m DHSs across n DNase-seq data-
sets into a smaller set of k components. As with other dimensionality

reduction methods, NMF does not guarantee a total recapitulation
of the original data; instead we chose to allow information loss in
exchange for a more interpretable result. Therefore, we considered
using a much smaller number of k components than the lower of the
two dimensions of our input matrix (733 DNase-seq datasets). To keep
the reconstruction error in check, we used an objective function that
is minimized subject to the Frobenius norm (Extended Data Fig. 3a).
NMEF typically uses a random initialization step, leading to unstable
results. To alleviate this, we performed the initialization step using
singular value decomposition (SVD)****, leading to consistent results
while maintaining aperformance thatis on par with randomly initialized
instances. A more detailed rationale for the component-wise descrip-
tion of DHSs, as well as details on the implementation and execution
of the decomposition, is provided in the Supplementary Methods.

Labelling of NMF components and DHSs. To aid interpretation of the
16 NMF-derived components, we used two orthogonal approaches to
assign labels to components, based on (i) biosample properties and
(ii) DHS sequence features.

First, for eachcomponent we selected the top biosamples based on
component-specific NMF loadings present in their datasets (Extended
DataFig. 4a). These maximal NMF loadings across datasets were gen-
erally strong across components (Extended Data Fig. 4b). In general,
aclear pattern emerged of shared properties of biosamples most
strongly associated with specific components. To formalize this, we
performed one-sided Mann-Whitney U tests to assess whether NMF
loadings for biosamples sharing certain metadata categories (Sup-
plementary Table 1) are greater than those for biosamples not in the
given metadata category (Extended Data Fig. 4c). In particular, we
assessed metadata categories corresponding to human organ systems
and the cancer status of biosamples. Pvalues were corrected for multi-
ple hypothesis testing using the Bonferroni correction method. A post
hoc analysis of biosample-to-component assignment for values of k<
16 provided insight into the genesis of our k=16 component model,
showingjunctures after which separate cell type lineages are captured
by distinct components (Extended Data Fig. 4d).

Second, for each component we obtained DHSs with maximal NMF
loadings for that component, and subsequently performed enrichment
analyses for TF binding site motifs (Extended Data Fig. 4e). We used a
wide array of TF motifs and used FIMO* (match threshold P<107°), to
search for motif instances in the human genome. We tested the asso-
ciation of motif occurrences with specific NMF components using
Fisher’s exact test. We used clusters of similar motifs (http:/www.
mauranolab.org/CATO/weblogos/main.html) for the purpose of sum-
marization and visualization. The results show strong enrichments
for component-specific motifs, suggesting preferential binding of
component-relevant transcription factors (Extended Data Fig. 4f).

The strong associations of 1) biosample properties and 2) TF bind-
ing site occurrences with specific components enabled us to label
each NMF component, resulting in a DHS vocabulary (Fig. 2d), further
detailed in the Supplementary Note. For downstream analyses, we
labelled each DHS withits strongest NMF component (Fig. 2e, bottom).

Robustness of component interpretation. To test the effect of induc-
ing additional sparsity in the NMF model, we systematically increased
theL1penalization setting while tracking F1scores and the fraction of
non-zero parameters used in the model (Extended Data Fig. 5a-c). The
top 15 component-contributing biosamples per component remain
mostly consistent with Fig. 2e and Extended Data Fig. 4a without L1
penalization, indicating that enforcing additional sparsity does not
impact the interpretation of model components.

To test the effect of possible over/under-representation of certain
celltypes, weremoved 44 (40%) haematopoietic biosamples, consisting
ofthe highest quality datasets representative of unique cellular condi-
tions (Supplementary Table 1). After building a new NMF model, we
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observe that although the remaining (lower quality) haematopoietic
biosamples are now captured by a single component instead of two,
theinterpretation of the remaining non-haematopoietic components
does not change (Extended Data Fig. 5d).

Regulatory annotation of human genes

Per-component genomic distribution of DHSs. We compared the
average distance between same-component DHSs against empirical
distributions based on random assignment of component labels to
DHSs and sampling the same number of DHSs 1,000 times (Extended
DataFig. 6a).

Per-component meta-DNase tracks. To illustrate the regional di-
versity of DHS component data, we generated meta-DNase tracks
representing each of the16 DHS components (Extended Data Fig. 6b)
by averaging genome-wide DNase-seq signal profiles of the top 15 bi-
osamples most strongly associated with each component (Extended
DataFig.4a).Forvisual conciseness, we provide aggregate tracks that
overlay the meta-DNase tracks of all DHS components (for example,
Fig.3c, Extended DataFigs. 6b, ¢, 7a-h, 8a-c).

Definition of regulatory landscapes. We defined the regulatory land-
scape of a gene as the set of DHSs within the gene body, plus DHSs
in flanking regions of maximally 5 kb upstream and maximally 1 kb
downstream of the gene body, or up until halfway through to the gene
upstream, whichever valueis smaller (Fig. 3a, Extended Data Fig. 6e-g).
This captures approximately 65% of all DHSs (Extended Data Fig. 6d)
and prevents flanking region DHSs frombeing routinely assigned to the
regulatory landscapes of multiple genes, alleviating mixing of regula-
tory signals.

Association of genes with DHS components. We tested the associa-
tion of all 56,832 annotated GENCODE genes (Fig. 3b) with each DHS
component separately. Under the null hypothesis that DHS compo-
nents are randomly distributed across gene regulatory landscapes,
we used the binomial distribution to test whether the proportion of
DHSs annotated with agiven componentis higher among DHSs within
a particular gene regulatory landscape than outside. We controlled
the FDR at 5% by calculating g values® across the total of all genes and
components. Further details are provided in the Supplementary Meth-
ods. To study the differences between a gene-centric and TSS-centric
approach, we calculated component associations for 10-kb regions
centred around the TSS (thatis, TSS £ 5 kb) and assessed the number
and type of genes annotated (Extended Data Fig. 6h, i).

Annotations for GENCODE genes and pseudo-gene types. GENCODE
v.28 (Basic) annotations were used for all analyses. For the purpose
of labelling and visualizing genes, for each gene we used its longest
transcriptasits representative region. Pseudo-gene annotations were
obtained from psiCube®, http://pseudogene.org/psicube/data/gen-
code.vl0.pgene.parents.txt.

Visualization of gene regulatory annotations. We used ¢-SNE to visu-
alize the enrichment ratios of gene regulatory landscapes for DHS
components (Fig. 3d, Extended Data Fig. 8a-c). Each dot shownrepre-
sentsagene found to be significantly associated with one or more DHS
components, and the union of these are the genes used to calculate the
2D embedding. The R (http://www.r-project.org) implementation as
providedinthe Rtsne package was used, with default parameters. Genes
are coloured according to their (most strongly enriched) significant
DHS component.

Construction and use of gene expression compendium dataset.
We used the full human ARCHS4 dataset (downloaded 26 June 2018)*
and selected relevant tissue and cell types for each DHS vocabulary

component (Supplementary Methods). This resultedinatotal of 33,733
unique gene expression datasets, with expression information for
35,238 genes. For each gene, we obtained the 95th percentile value
across datasets selected for each DHS component as the represent-
ative value in that component, to not be led by outliers in the data,
while still being sensitive for cell type selective expression levels. For
each DHS component, we calculated average expression levels across
genes labelled with that component (observed), as well as across all
component-labelled genes (expected). Resulting values are reported
aslog,-transformed enrichment ratios (Fig. 3g).

Annotation and visualization of pathway labellings. A curated
set of canonical pathways was obtained from the MSigDB Collec-
tions (http://software.broadinstitute.org/gsea/msigdb/genesets.
jsp?collection=CP). Pathway enrichment analyses (Extended Data
Fig. 8d, e) were performed analogously to gene enrichment analy-
ses, by pooling DHSs in neighbourhoods of all pathway-associated
genes. We used the KEGG* REST API (https://www.kegg.jp/kegg/rest/
keggapi.html) to download and graphically annotate KEGG pathway
representations.

Prioritization of TF-associated DHSs. We obtained DHSs with load-
ings for a single component only. For each component-labelled TF
gene with a known sequence binding motif, we obtained the subset
of DHSs that (i) are annotated with the same component as the TF, (ii)
contain a TF-matching motif, and (iii) are footprinted in a biosample
associated with the same component® (Fig. 3h). Although the above
analysis identified a small minority of DHSs owing to stringent filter-
ing, motifs with variable information content, and the smaller range
ofbiosamples for which footprinting dataare available, this approach
could berecapitulated with less extreme parameters to identify larger
sets of DHSs at reasonable confidence.

Genetic variation analyses

GWAS traits and summary statistics. We obtained GWAS summary
statistics data from the UK Biobank project as processed by the Neale
lab (http://www.nealelab.is/uk-biobank/). In addition, we obtained
GWAS summary statistics calculated using BOLT-LMM v2.3%, as used
inrecent work?s,

Estimates of SNP-based heritability. GWAS traits were curated by
removing those with a narrow-sense SNP-based heritability* (h,”) of less
than1%. Althoughideally we would quantify heritability by considering
the true causal effects of variants, in reality we do not observe these.
Instead, we are limited to GWAS summary statistics, which essentially
describe the marginal trait-correlation for each variant, consisting of
both causal effects and effects due to LD, plus statistical noise. Recently
proposed methods such as LD score regression (LDSC)* are able to
estimate heritability while explicitly considering the underlying LD
structure. For continuous traits, in case both raw and inverse-ranked
normalized (irnt) versions were available, we retained the latter only.
This yielded a total of 1,316 traits for subsequent analyses with an h,*
ofatleast1%.

Quantitative trait associations. For quantitative trait-versus-
componentanalyses (Fig.4a, Extended DataFig. 9a-c), we assessed the
correspondence between traitassociation strength (GWAS variant asso-
ciation Pvalue) and the component annotations of variant-containing
DHSs, forincreasingly stringent subsets of GWAS variants. Enrichment
Pvalues were calculated using a binomial distribution, as done previ-
ously®. We explicitly control for large scale LD structure, using a form
of LD clumping®®, by selecting asingle variant-containing DHS for each
of1,708 approximately independent LD blocks”. Namely, for each LD
block, the variant with the lowest GWAS association Pvalue that over-
laps aDHS was selected for subsequent analysis. In case multiple such
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variant-containing DHSs existed, we gave preference to the DHS with
the highest confidence score (mean signal) in our DHS index.

Stratified LD-score regression. To estimate z,” with maximal statis-
tical power, we used LD score regression (LDSC)* to explicitly take
into account LD structure. In particular, we used a stratified version
of LDSC (S-LDSC)*® to partition heritability estimates according to
pre-defined sets of genome-wide annotations (Fig. 4b, ¢, Extended
Data Fig. 9d, e), consisting of our annotated DHSs in additionto a
wide range of 85 genome-wide functional ‘baseline’ annotations
(baseline-LD model v.2.1). The v.2.1 baseline set consists of a total
of 86 genome-wide annotations, building upon the 76 annotations
usedinthev.2.0 set and several additional annotations®, These ‘base-
line’ annotations encode whether SNPs fall inside protein-coding or
non-coding regions, regions with increased levels of evolutionary
conservation, regions predicted or confirmed to have enhancer activ-
ity,and so on. Their breadth provides a robust*® baseline model along
which to test trait heritability contributions of our DHS components.
We express the heritability enrichment of an annotation as the ratio
of its proportion of per-trait h,” and the proportion of SNPs covered
by the annotation (Fig. 4b).

Variants included in the analysis are those registered in HapMap3,
with aminimal minor allele frequency (MAF) of 5%, and excluding the
human major histocompatibility complex (MHC) locus. Baseline LD
scores were computed from1000 Genomes Phase 3 datafrom European
ancestry populations and corresponding allele frequencies (as used
previously*® and available from the LDSC reference downloads page,
along with the baselineLD annotation set: https://data.broadinstitute.
org/alkesgroup/LDSCORE/).

Heritability enrichments for DHS vocabulary components. We
applied S-LDSC to our DHS vocabulary components as follows. In
brief, each DHS was assigned to its majority DHS component and
(when possible) assigned to overlapping variants. For the resulting
vocabulary-based annotations, LD scores were calculated. We then
performed S-LDSC separately for each of the selected 1,316 traits,
relative to these vocabulary-based annotations and the baselineLD
model described above. For each trait versus annotation combination,
we obtained estimates of its heritability enrichment®, expressed as
the ratio of its proportion of h,? and the proportion of SNPs covered
by the annotation (Fig. 4b, c). We considered heritability enrichments
statistically significant at an estimated FDR of less than 5% calcu-
lated across all considered traits and DHS components. This is more
stringent than the commonly used per-trait correction for multiple
hypothesis testing.

Unique per-annotation contributions to SNP-based heritability. Es-
timates of heritability enrichment can be confounded by contributions
of multiple (overlapping) genomic annotations included in S-LDSC
models. To quantify unique per-annotation contributions to heritabil-
ity, we obtained the average per-SNPincreasein heritability ascribed to
that component, after controlling for all other annotations in the model
(baseline annotations and DHS components)*®. From the reported
coefficients and their standard errors, we derived z-scores, one-sided
Pvalues and FDR-corrected g values for each trait-versus-component
combination (Fig. 4d, e). For the heritability analysis in component
concordant genic DHSs (Fig. 4f), we further stratified DHSs based on
whether they are component concordant, component discordant,
inside non-annotated genes (genic controls), or inter-genic. Figure 4f
shows z-scores for the maximally enriched components identified in
Fig.4c.

To quantify the heritability contribution of per-dataset DHSs, we
performed avariation on the standard S-LDSC procedure, as described
previously®. Specifically, we built upon the baselineLD model by itera-
tively considering annotations derived fromindividual datasets only.

These individual datasets were collected by selecting for each trait
the 15 datasets most informative to each DHS component (Extended
DataFig.4a). Annotations consist of DHSs observed in those datasets,
as well as their complement, that is, the remainder of index DHSs. We
reportthe contribution to heritability based on the former, expressed
as z-scores (Fig. 4d, e).

Extendability of the DHS vocabulary

Addition of novel unseen datasets. New datasets may beadded to the
current NMF model while retaining the same interpretation of compo-
nents (Extended Data Fig.10a). In brief, 0.1% FDR variable-width peak
calls are obtained from new datasets of interest, mapped to DHS index
elements using bedops* and projected into the existing component
space using standard NMF routines (see code for more details).

DHS index element identification without de novo peak identifica-
tion. We used bedops* to look up DNase-seq signal levels of a dataset
of interest overindex elements, to determine whether agiven element
isactuated inthe dataset. Expressed as a classification problem, using
the existing 0.1% FDR variable-width peak calls as the groundtruth set,
we assess precision and recall of peak recovery. For all 733 biosamples
we find areaunder precisionrecall curve (AUPRC) values ranging from
0.33t0 0.83 (median, 0.71; IQR, 0.64-0.75), with a trophoblast biosa-
mple (ENCODE DCC identifier ENCBS576QRR) shown as an example
(Extended Data Fig.10a). The large difference between AUPRC values
of matched versus non-matched biosamples allows the identification
ofthe original biosample (Extended Data Fig.10b), while showing that
biosamples with similar AUPRC ranks share the same biological charac-
teristics (Extended DataFig.10c). This procedure can also be followed
forunseen datasets (Extended DataFig.10d), in particular datasets that
areless deeply profiled or would otherwise be too sparse to call peaks
ondenovo—such as single cell chromatin profiling data.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

All primary dataare available from the ENCODE DCC portal. Biosample
metadata are available in Supplementary Table 1 as well as in other
formatsviaZenodo (https://doi.org/10.5281/zenodo.3838751). The set
of more than 3.5million DHS delineationsis available in tab-separated
format from the ENCODE DCC portal (https://www.encodeproject.
org/annotations/ENCSR857UZV/) and via Zenodo (https://doi.
org/10.5281/zenodo0.3838751). Datamatrices describing the occurrence
patterns of DHSs across biosamples are available in various formats
via Zenodo (https://doi.org/10.5281/zenodo.3838751). There are no
restrictions on data availability and (re)use. We additionally provide
aspecialized data browser (https://index.altius.org/) and a trackhub
for the UCSC Genome Browser (https://genome.ucsc.edu/cgi-bin/
hgTracks?db=hg38&hubUrl=https://resources.altius.org/-meuleman/
DHS_Index_tracks/hub.txt). BED files documenting the coordinates
and annotations of DHSs with evidence of being bound by specific
transcriptionfactors are available viaZenodo (https://doi.org/10.5281/
zenodo.3838751), and top-scoring elements per TF can be exploredin
abrowser (https://index.altius.org/?application=viewer&roiSet=TFa
ssoc_Meuleman).

Code availability

Code is available on Github for building the index of consensus DHSs
(https://github.com/Altius/Index), for constructing the DHS vocabu-
lary and the addition of novel biosamples (https://github.com/Altius/
Vocabulary).
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