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Index and biological spectrum of human 
DNase I hypersensitive sites

Wouter Meuleman1 ✉, Alexander Muratov1, Eric Rynes1, Jessica Halow1, Kristen Lee1,  
Daniel Bates1, Morgan Diegel1, Douglas Dunn1, Fidencio Neri1, Athanasios Teodosiadis1,  
Alex Reynolds1, Eric Haugen1, Jemma Nelson1, Audra Johnson1, Mark Frerker1, Michael Buckley1, 
 Richard Sandstrom1, Jeff Vierstra1, Rajinder Kaul1 & John Stamatoyannopoulos1,2,3 ✉

DNase I hypersensitive sites (DHSs) are generic markers of regulatory DNA1–5 and 
contain genetic variations associated with diseases and phenotypic traits6–8. We 
created high-resolution maps of DHSs from 733 human biosamples encompassing 
438 cell and tissue types and states, and integrated these to delineate and numerically 
index approximately 3.6 million DHSs within the human genome sequence, providing 
a common coordinate system for regulatory DNA. Here we show that these maps 
highly resolve the cis-regulatory compartment of the human genome, which encodes 
unexpectedly diverse cell- and tissue-selective regulatory programs at very high 
density. These programs can be captured comprehensively by a simple vocabulary 
that enables the assignment to each DHS of a regulatory barcode that encapsulates its 
tissue manifestations, and global annotation of protein-coding and non-coding RNA 
genes in a manner orthogonal to gene expression. Finally, we show that sharply 
resolved DHSs markedly enhance the genetic association and heritability signals of 
diseases and traits. Rather than being confined to a small number of distal elements or 
promoters, we find that genetic signals converge on congruently regulated sets of 
DHSs that decorate entire gene bodies. Together, our results create a universal, 
extensible coordinate system and vocabulary for human regulatory DNA marked by 
DHSs, and provide a new global perspective on the architecture of human gene 
regulation.

A fundamental challenge in modern biology is to delineate with the 
highest possible precision the repertoire of regulatory DNA elements 
encoded within the human genome sequence. A universal feature of 
active cis-regulatory elements—promoters, enhancers, silencers, chro-
matin insulators or enhancer blockers, and locus control regions—is 
focal alteration in chromatin structure triggered by binding of tran-
scription factors (TFs), which supplants a canonical nucleosome and 
renders the underlying DNA accessible to nucleases and other protein 
factors1,9. For more than 40 years2,10,11, DHSs have provided reliable 
signposts for high-precision delineation of regulatory DNA in complex 
genomes1–5. DHSs typically mark compact (less than 250 base pair (bp)) 
elements, and their appearance over a cis-regulatory region signifies 
its actuation (readying for activation), which may occur before, or 
coincident with, its functional activation. DHS mapping thus provides 
a generic tool for illuminating both active and potential regulatory 
landscapes.

The advent of genome-scale mapping of DHSs12–15 and its applica-
tion to diverse human and mouse cell and tissue types16,17 has yielded 
many insights into the organization16, evolution17–19, activity15,16,20, and 
function16,21,22 of human regulatory DNA in both normal and malig-
nant states23. A cardinal property of regulatory DNA is that its acces-
sibility is cell type- and state-selective, with only a small fraction of 

all genome-encoded elements becoming actuated in a given cellular 
context16,23.

The overwhelming majority of disease- and trait-associated vari-
ants identified by genome-wide association studies (GWASs) lie in 
non-coding regions of the genome, and these variants are most strongly 
enriched in DHSs mapped in disease-relevant cell contexts6,7. DHSs also 
collectively contain the GWAS variants that account for the majority 
of trait heritability explained by genotyped single-nucleotide poly-
morphisms (SNPs)8. Deeper insights into the connection between 
GWAS variants and gene regulation have been limited by the lack of 
comprehensive annotations that capture the biological behaviour of 
regulatory DNA.

As genome-scale data from diverse cellular contexts have accumu-
lated, systematic annotation of cell type- and state-selective DHSs has 
grown increasingly challenging, and it has also become evident that 
large sets of DHSs distributed widely across the genome may share 
common regulatory programs16. However, the annotation and analysis 
of state-selective behaviours has been hampered by the lack of a com-
mon coordinate system for DHSs.

Here we sought to expand the breadth of high-quality DHS maps, and 
to unify them into a common reference framework that achieves precise 
genomic annotation by integrating observed biological variability 
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in the manifestation of accessibility at individual elements, and that 
captures complex cell-selective behaviours in a quantitative fashion. 
We report a coherent framework and demonstrate its utility for the 
annotation of human regulatory DNA and gene landscapes; for defin-
ing how regulatory programs are encoded within the genome; and for 
clarifying links between genetic signals and gene regulation to enable 
new insights into the organization and interpretation of non-coding 
variation associated with diseases and traits.

Index of consensus human DHSs
To create deeply sampled reference maps of human regulatory DNA 
marked by DHSs, we performed DNase I hypersensitive site sequenc-
ing (DNase-seq)15 on a wide range of human cell and tissue biosamples 
that span all major human organ systems (Fig. 1a). Reference-grade 
data were created by rigorous quality screening for complex libraries 

yielding high signal-to-noise ratio data (Methods), and were aggregated 
with prior high-quality data from the ENCODE16 and Roadmap Epig-
enomics24 projects. We conservatively selected 733 biosamples that 
represent 438 cell or tissue types and states (Fig. 1a, Supplementary 
Table 1, Methods), the majority of which were derived from primary ex 
vivo cells and tissues (72% of samples) or from primary cells in culture 
(11%), with the remainder (17%) from immortalized cell lines. Collec-
tively these samples represent an approximately 5.5-fold expansion of 
sampled cell and tissue types and states relative to the previous phase 
of ENCODE16 (Extended Data Fig. 1a), and the resulting data reveal rich 
and varied patterns of DNase I hypersensitivity (Fig. 1b).

Common coordinates for regulatory DNA
We sought to create a precise and durable common reference frame-
work for genomic elements that encode DHSs by (i) comprehensively 
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Fig. 1 | Index of DHSs in the human genome. a, DNA accessibility assayed 
across multiple biosamples (indicated) from the main human organ systems. 
Of 733 biosamples, 531 were derived from primary cells and tissues. b, Example 
locus on chromosome 1, showing DNase I cleavage density in haematopoietic 
biosamples (right) with cell type-selective differences. c, Outline of DHS index 
procedure; 76.5 million DHSs aggregated across individual datasets jointly 

delineate and annotate 3.59 million consensus DHSs. d, Examples of consensus 
DHSs with varying cell-type selectivity and genome positional stability. 
Annotations include consensus DHS coordinates (start/end), single-base 
‘centroid’, ‘core’ region aggregating centroids across biosamples, and a unique 
numerical identifier. e, Number of organ systems across which DHSs are 
shared.
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and stringently (0.1% false discovery rate (FDR)) delineating DHSs 
within each biosample; (ii) integrating individual biosample DHS 
maps to define archetypal DHS-encoding sequence elements within 
the human genome sequence; and (iii) assigning to each archetypal 
element a unique numerical identifier (Fig. 1c).

We identified an average of 104,433 DHSs per biosample, and a total 
of 76,549,656 DHSs across all 733 biosamples. To delineate arche-
typal DHS-encoding genomic elements, we developed the consen-
sus approach outlined in Fig. 1c and Extended Data Fig. 1b, c. First, we 
computed the summit coordinate (1 bp) of each DHS peak and aligned 
these across all biosamples to define a consensus centroid for each 
archetypal DHS. To resolve DHS boundaries, we collated the local linear 
extent of DNase I hypersensitivity into a consensus range (Methods). 
We then combined centroids and boundaries into a single index of 
3,591,898 spatially distinct DHS-encoding sequence elements, greatly 
eclipsing both the number (approximately 2.5-fold) and precision of 
DHSs delineated during earlier phases of ENCODE (Extended Data 
Fig. 1d). In addition to a consensus summit (centroid) and start and 
end coordinates, each archetypal DHS additionally comprises a ‘core’ 
region that represents empirical confidence bounds on the centroid 
(Fig. 1d, Extended Data Fig. 1e). Each archetypal DHS derives from an 
average of 21 biosamples, and because each DHS from a given biosample 
contributes to a single archetypal DHS, the provenance of each DHS in 
the index can be directly traced back to its contributing biosample(s).

Finally, we assigned a unique identifier to each archetypal index DHS 
using a numerical schema (Fig. 1d) that (i) conveys the genomic localiza-
tion of each DHS; (ii) enables unlimited extension to newly discovered 
elements; (iii) ensures compatibility with future reference genome 
builds and portability to personal genomes; and (iv) enables direct 
integration with DNase I footprints25 or other experimental annotations 
(Methods). We also assigned confidence scores to all index DHSs that 
combine signal strength with propensity for repeated observation in 
independent biosamples (Extended Data Fig. 1f, g).

Index DHSs are broadly distributed across annotated genic and repet-
itive elements (Extended Data Fig. 2a–e). Fifty-three per cent of DHSs 
lie within introns, about 3% within non-coding exons and untranslated 
regions (UTRs), and about 2% are dually encoded within protein-coding 
exons (Extended Data Fig. 2c). Although DHSs are pronounced at anno-
tated transcription start sites (TSSs), most localize to regions away 
from TSSs (Extended Data Fig. 2d, e). Fifty-four per cent of index DHSs 
overlap repetitive elements of all classes and subfamilies (Extended 
Data Fig. 2b), consistent with previous observations26, although overlap 
with DHS cores (41%) and centroids (37%) suggests that a more focused 
subset of DHSs derives regulatory machinery from repeats.

Proportion of the genome that encodes DHSs
The full extent ot the DHS landscape should define—or at least closely 
approximate—the canonical cis-regulatory compartment of the 
genome, the size of which has been the subject of considerable debate27. 
The roughly 3.6 million consensus DHSs have an average width of 204 bp 
(median 196 bp, interquartile range (IQR) 151–240 bp) and collectively 
span 665.57 Mb (21.55%) of the reference human genome sequence. DHS 
cores have an average width of 55 bp (median 38 bp) (Extended Data 
Fig. 2f) and span 197.74 Mb (6.4%) of the genome. DHS centroids also 
precisely mark the peak in evolutionarily conserved nucleotides within 
DHSs, and the corresponding trough in the average density of human 
genetic variants (Extended Data Fig. 2g), which are discontinuously 
distributed between TF-occupied and unoccupied subsegments of 
DHSs25. Iterative subsampling of the 733 biosamples showed that the 
addition of any given new biosample would be expected to contribute 
about 1,676 new DHSs to the index (median 283, range 4–64,054, 95% 
confidence interval 1,344–2,009) (Extended Data Fig. 2h and Meth-
ods). Extrapolating from this, the addition of an additional biosample 
collection of equivalent size (n = 733) would be expected to increase 

annotated DHS elements by about 27% (Extended Data Fig. 2h). Notably, 
increasing biosamples should increase the precision of annotation and 
thus the resolution of some broader elements (such as Extended Data 
Fig. 1c, second DHS from the right) to two or more distinct archetypal 
DHSs; however, such elements are in the minority.

Cellular patterning of DNA accessibility
DHSs are extensively shared across both individual biosamples and 
groups of biosamples from different organ systems (Fig. 1e, Extended 
Data Fig. 2i). It was previously reported that groups of widely distributed 
DHSs with closely shared cross-cell-type actuation patterns also shared 
biological functions such as enhancer activity16. Patterns of index DHS 
actuation across the 733 biosamples (Fig. 2a) were complex, with both 
highly modular and less coherent structures (Fig. 2b). The majority of 
DHSs showed complex actuation patterns rather than simple cell-selective 
behaviour (Fig. 1e, Extended Data Fig. 2i), prompting us to develop a flex-
ible approach for quantifying and annotating these patterns.

In principle, the actuation of any given index DHS across cell states 
can be summarized by a limited number of biological ‘components’ 
combined in a weighted fashion. Orthogonally, the same components 
can be used to summarize the DHS repertoire of an individual biosa-
mple. Because DHS-centric information can inform biosamples and 
vice versa, a key advantage of this approach is its potential to capture 
complex behaviours while providing biological interpretability.

A vocabulary for regulatory patterns
To simplify the matrix of 3,591,898 DHSs × 733 biosamples we applied 
non-negative matrix factorization28 (NMF) (Extended Data Fig. 3a–d), 
a technique that was initially used in the field of computer vision for 
learning parts-based representations of objects and semantic features 
of text29. We represented each DHS by a large enough number of com-
ponents (k = 16) to ensure accuracy—that is, the degree to which the 
original matrix can be reconstructed from the components—while 
retaining potential for interpretability via assignment of components 
to established biological contexts such as known cell lineage relation-
ships, or cell states known to be specified by specific regulatory factors 
(Fig. 2c, Extended Data Fig. 3e–g, Methods).

To connect components with biological contexts, we identified the 
biosamples that were most strongly associated with each component, 
and the distribution of TF recognition sequences within DHSs that was 
most strongly associated with that component. For all components, 
the top contributing cell or tissue samples were notably coherent, 
enabling provisional assignment of a meaningful biological label to 
most components (Extended Data Fig. 4a–d, Methods). Enrichment 
of TF recognition sequences within the DHSs that were most strongly 
associated with each component revealed clear mappings between 
distinct sets of cell lineage- or state-specifying TFs and specific 
components (Extended Data Fig. 4e, f, Methods), orthogonal to the 
biosample-to-component mappings described above. Finally, we com-
bined biosample-to-component mappings and TF-to-component map-
pings to create a regulatory ‘vocabulary’ that captures the actuation 
pattern of a DHS across cell types and states (Fig. 2d, Supplementary 
Note). Notably, the interpretation of components does not change with 
further induced model sparsity (Extended Data Fig. 5a–c) or changes 
in cell type representation (Extended Data Fig. 5d).

Biological annotation of individual DHSs
We next sought to annotate each DHS with a regulatory ‘barcode’ 
that captures its tissue manifestations. The cross-biosample actua-
tion pattern of each DHS is captured by linear combinations of NMF 
components (Fig. 2c, Extended Data Fig. 3a–c), providing a de facto 
barcode of its biological spectrum (Fig. 2c, e). DHSs that are selective 
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for a single cell type or state are annotated by a single majority com-
ponent (Fig. 2e, columns 1, 4, 5, 7–9); DHSs that occur in multiple cel-
lular contexts are described by combinations of components (Fig. 2e, 
columns 2, 3, 6, 10); and constitutive DHSs are annotated by mixtures 
of all components (Fig. 2e, column 10), including a component that 
describes tissue-invariant behaviour. In this schema, DHSs with simi-
lar cross-biosample actuation patterns exhibit similar mixtures of 
components. For analytical practicality and visual compactness, the 
annotation of each DHS can be further summarized using its strongest 
single component (Fig. 2e, bottom); we use this summary vocabulary 
for the analyses described below.

Dense encoding of regulatory information
The above results indicate that DHSs have the potential for surpris-
ingly diverse biological regulatory patterns that combine coordinated 
positive (actuation) and negative (quiescent) behaviours. As the over-
whelming majority of DHSs fall into a tight size range that stays roughly 
constant with increasing numbers of biosamples and does not vary 
with the complexity of component barcodes (Extended Data Fig. 2f), 
archetypal DHS elements must therefore encode regulatory informa-
tion with extremely high linear density.

Regulatory annotation of human genes
The function of many genes is closely connected to their regulated 
expression across cells and tissues, and hence to the activity spectra 
of their cognate regulatory elements. We found that DHSs with simi-
lar component annotations were highly clustered along the genome 
(Extended Data Fig. 6a, b, Methods), particularly over gene bodies and 
their immediate flanking regions (Extended Data Fig. 6c), which col-
lectively capture 65% of all DHSs (Extended Data Fig. 6d–g). We thus 
reasoned that integration of the components of DHSs overlying a given 
gene could be used to annotate its likely functional compartment(s). 
The existence of coordinately regulated DHSs in gene bodies cannot 
be ascribed to transcriptional activity per se, which produces only 
very minor changes in the general DNase I sensitivity baseline. Quan-
tification of the enrichment of congruently annotated DHSs around 
56,832 GENCODE genes (protein-coding and non-coding) genome-wide 
revealed 20,658 genes (5% FDR) with significant clustering along the 
genome of DHSs that belonged to the same component (Fig. 3a–d, 
Supplementary Table 2). Notably, the gene body-centric approach to 
annotation captured 70% more genes, and more genes that are likely to 
be biologically significant, than a TSS-centric approach (Extended Data 
Fig. 6h, i). Only a subset of gene body DHSs contributed to component 
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assignments (median, 38%; IQR, 26–54%), consistent with the fact that 
many distal regulatory elements localize within the bodies of genes 
other than the ones that they regulate.

Of 20,291 GENCODE protein-coding genes, more than half (54.1%) 
could be assigned a regulatory component based on their overlying 
DHSs (Fig. 3b). To determine whether these assignments were con-
cordant with other functional annotations, we assessed (i) whether the 
genes most confidently annotated by a given DHS component reflected 
their known function(s), and (ii) whether genes annotated with a par-
ticular component are maximally expressed in cell types that match 
or are closely related to those components. The top genes annotated 
by the lymphoid component are all involved in immune response and 
disease (Fig. 3e, Extended Data Fig. 7a). Similar relationships were 
observed for other categories of gene (Fig. 3e, Extended Data Fig. 7b–d), 
including those annotated by the myeloid/erythroid component (eryth-
ropoiesis or haematopoietic stem cell genes), a stromal component 
(collagen genes and fibronectin), and the tissue-invariant component 
(housekeeping genes). This phenomenon was particularly notable for 
TF-encoding genes30 such as lineage-specifying master regulators 
of cardiac development (cardiac component; Fig. 3f, Extended Data 

Fig. 7f) or the development of other organ systems (Extended Data 
Fig. 7e–h).

To explore the concordance between DHS vocabulary annotations 
and gene expression across cell states, we investigated an indepen-
dently generated compendium of more than 100,000 uniformly pro-
cessed RNA sequencing (RNA-seq) datasets31. After matching DHS 
components with tissue-relevant expression datasets (Methods), we 
found strong correspondence between the vocabulary-based annota-
tion of genes and the cell or tissue types in which they were maximally 
expressed (Fig. 3g). In many instances, DHS vocabulary annotation 
and gene expression offered different but complementary views of 
gene characteristics. For example, the transferrin receptor (TFRC) is 
responsible for cellular iron uptake and is required for erythropoiesis. 
TFRC RNA is most highly expressed in tissues from the placental com-
ponent (Extended Data Fig. 7i), where TFRC is known to be involved in 
trophoblast membranes. From the perspective of regulation, however, 
TFRC is the most strongly associated gene in the myeloid/erythroid 
component (Fig. 3e, Extended Data Fig. 7b), in line with its core iron 
transport functionality. Analogously, the gene for HNF4G, a TF that is 
crucial for liver development, is the most strongly associated gene in 
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the digestive component (Fig. 3e, Extended Data Fig. 7g); however, its 
RNA is expressed most highly in cells and tissues encompassed under 
the renal component (Extended Data Fig. 7i). DHS-centric annota-
tions thus provide an orthogonal yet complementary view relative 
to expression data alone by providing a window into regulation. As 
DHSs greatly outnumber genes, DHS landscapes are in principle more 
information-rich than gene expression data alone.

Annotating genes with unknown functions
Despite intensive study, the function of many human genes remains 
obscure, particularly for those that are expressed at low levels or that 
have highly cell-selective expression patterns—for example, zinc-finger 
(ZNF) TFs30,32 or long non-coding RNA genes33. Nearly half of ZNF TFs 
(43.7%) could be annotated with a DHS component (Extended Data 
Fig. 8a), indicating their likely biological sphere of activity. Among long 
non-coding RNA genes, 38.7% could be mapped to DHS components 
(Extended Data Fig. 8b), as could 18% of pseudogenes34 (Extended 
Data Fig. 8c), which might reflect remnants of regulatory states that 
existed before ancient gene duplications. Beyond genes, we reasoned 
that entire pathways could be annotated using the DHS landscapes 
of their constituent genes (Extended Data Fig. 8d). For instance, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG)35 pathway ‘allograft 
rejection’ (a paradigmatic immune response) is strongly enriched for 
the lymphoid component (Extended Data Fig. 8e), consistent with the 
concept that genes involved in similar biological processes should 
share similar patterns of regulatory element activity.

Connecting DHS actuation to specific TFs
We reasoned that the coalescence of congruently annotated DHSs 
and genes, plus the availability of high-quality motif databases and 
newly available DNase I footprinting data25, could enable the system-
atic discovery of regulatory regions for which actuation patterns were 
likely to be driven, at least in part, by particular TFs. We identified 454 
TFs with known sequence recognition motifs for which the encoding 
genes were annotated by a DHS component. We next identified 189,318 
DHSs genome-wide (per TF median 149, IQR 47–477 DHSs) that (i) were 
exclusively annotated by a component matching that of the TF gene, 
and (ii) showed occupancy of the cognate motif by footprinting25 in 
a component-matched biosample (Fig. 3h). Such DHSs are likely to 
be highly functionally dependent on their associated TF, and should 
provide a rich substrate for experimental manipulations to investigate 
connections between TFs and regulatory functions.

Annotating genetic association signals
We next investigated whether DHS annotations could expand insights 
into the role(s) of genetic variation in regulatory DNA, and thus provide 
a more meaningful framework for interpreting the pathophysiological 
basis of disease and trait associations. A rank-based analysis of disease 
or trait against DHS component associations (explicitly controlling for 
large scale linkage disequilibrium (LD) structure; Methods) revealed 
increasingly strong component-specific enrichments of association 
signals across diverse traits (Fig. 4a, Extended Data Fig. 9a, b). In many 
cases these enrichments exceeded those obtained by considering only 
DHSs detected in biosamples most closely related to the relevant DHS 
component (for example, lymphoid cell biosamples versus lymphoid 
component; Fig. 4a, Extended Data Figs. 4a, 9c).

Quantifying the extent to which DHS annotations captured 
SNP-based trait heritability36 (hg

2) (Fig. 4b) revealed a strong increase 
in heritability enrichment for trait-relevant DHS components (Fig. 4b, 
coloured bars) relative to all index DHSs (Fig. 4b, grey bars) or to a large 
panel of 85 baseline annotations (Fig. 4b, white bars; top three annota-
tions shown). Heritability was markedly enriched specifically within 

DHS ‘core’ regions, providing orthogonal evidence for the delineation 
and importance of this subcompartment (Fig. 4b).

To generalize these observations, we compiled more than 1,300 traits 
with SNP-based heritability of at least 1% from the UK Biobank project37 
and from curated published data38. Of these, 261 diseases and traits 
showed highly significant component-specific enrichment in herit-
ability, particularly for pathophysiologically relevant DHS components 
(Fig. 4c, Extended Data Fig. 9d; 1% FDR). Restricting DHS delineations to 
‘core’ regions again yielded significantly greater enrichment compared 
to full DHSs (Extended Data Fig. 9e, f).

To remove potentially confounding contributions from multiple 
genomic annotations that overlap the same SNP (for example, a DHS 
that overlaps a coding region of a gene annotated with a particular DHS 
component), we quantified the statistical significance of DHS compo-
nent heritability contributions while controlling for the contribution of 
all other annotations (Methods). For virtually all reported traits, DHS 
component annotations significantly (P < 0.01) captured SNP-based 
trait heritability (Fig. 4d, black line).

We next performed cell type-specific heritability analyses39 to 
quantify the concentration of trait-associated genetic signals in DHSs 
annotated by specific DHS components, relative to the full repertoire 
of DHSs mapped in disease- or trait-relevant cell types (Methods). 
Component-annotated DHSs produced significant improvements in 
capturing trait heritability compared to individual biosample maps 
(P < 2.2 × 10−16; Fig. 4d, grey solid line). At the level of specific traits, in 
68 out of 261 cases (26%), DHS component annotations captured trait 
heritability better than individual DNase-seq datasets (Fig. 4e). We 
conclude that the current index of highly resolved consensus DHSs 
markedly sharpens disease and trait association and heritability signals.

Genetic signals span gene body DHSs
The observed clustering of concordantly regulated DHSs along gene 
bodies (Fig. 3) led us to speculate that such DHSs were more likely than 
other DHSs to contain relevant genetic signals. To test this idea, we 
quantified trait heritability separately for component-concordant 
DHSs (17% of DHSs) and component-discordant DHSs (34%) within gene 
bodies (Fig. 4f). Concordant DHSs strongly contributed to SNP-based 
trait heritability relative to DHSs that were found in the same genes 
but with component annotations discordant with the annotations of 
the underlying gene, despite having lower average DNase-seq signal 
levels (Extended Data Fig. 9g) and more specialized utilization patterns 
(occurring in an average of 15 versus 25 biosamples). DHSs that were 
proximal to genes not labelled by any DHS component showed the 
weakest heritability contributions, and intergenic DHSs contributed 
only modestly (Fig. 4f, Extended Data Fig. 9h). Rather than being con-
fined to a small number of distal elements or promoters, it thus appears 
that genetic association signals are concentrated within congruently 
regulated sets of DHSs that decorate entire gene bodies.

Discussion
Here we have presented the most comprehensive and precise map of 
human DHSs, and a common coordinate system and vocabulary for reg-
ulatory DNA, creating a framework for global analyses of tissue-specific 
gene regulation and its intersection with human disease trait genetics. 
Regulation across cell types and states is a cardinal property of DHSs 
that is now captured in DHS components, greatly expanding the analyti-
cal horizon beyond cell type-agnostic annotations such as chromatin 
states7,40. Common reference coordinates should additionally facilitate 
comparisons between large experimental datasets, and between human 
and mouse DHSs, which can now be directly linked in a manner that is 
robust to future mouse assemblies17.

Given the scale of the data, it is natural to ask how complete and stable 
our current maps are. New biosamples will add new DHSs and annotate 
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existing elements with ever higher precision. Adding 733 biosamples 
of equivalent biological breadth would increase the number of con-
sensus DHSs by an average of 27%, with rapidly diminishing returns 
after that. From the current 21.55% it also is reasonable to predict that 
no more than 28% of the extant human reference sequence encodes 
cis-regulatory modalities that give rise to DHSs.

It should now be possible to triangulate the genetics-to-gene- 
regulation interface along three axes: (i) a genomic position axis, 
which is now finely resolved to consensus DHS summits (centroids); 
(ii) a cell/tissue-state axis now captured in DHS components; and (iii) a 

gene context axis that reflects the coherent co-localization of similarly 
regulated DHSs over gene bodies. The convergence of GWAS variants 
in coordinately regulated gene body DHSs suggests a fundamental 
feature of the genetic architecture of disease that has heretofore, to 
our knowledge, escaped notice. This finding resulted from combining 
the sharpened disease association and heritability signals enabled by 
high-precision annotation of regulatory DNA with the new ability to 
annotate the biological spectrum of each element, neither of which 
would have been possible without the large advances in biological scale 
and methodologies reported here. The fact that genetic association and 
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heritability signals are concentrated across congruently regulated sets 
of DHSs that decorate entire gene bodies has important theoretical and 
practical implications for understanding both the genetic architecture 
of disease and the problem of connecting genetic signals with their 
target genes, which is critical for therapeutic translation.

More broadly, the framework we report represents a transition 
from an exploratory era focused on the discovery of novel elements, 
to a map-centric era with a focus on the detection of previously anno-
tated elements within specific biological contexts (Extended Data 
Fig. 10a). The index framework may also obviate the need for peak 
calling (Extended Data Fig. 10b–e), and should prove particularly valu-
able for anchoring single-cell studies41, which are presently at least 
1,000-fold too sparse for robust delineation of regulatory DNA within 
individual cells.
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Methods

Generation of DNase I hypersensitivity maps
DNase I assays were generally performed according to a protocol 
detailed previously42. This protocol involves treatment of intact nuclei 
with the small enzyme DNase I which is able to penetrate the nuclear 
pore and cleave exposed DNA. Small (<1 kb) fragments are isolated 
from lysed nuclei following DNase I treatment, linkers are added, and 
the resulting library is sequenced. Because tissue and cell culture, iso-
lation, and handling protocols differ for different biosamples, these 
are indexed in Supplementary Table 1. Additional information on the 
procurement of biosample material and DNase-seq biosample selec-
tion and data processing is available in the Supplementary Methods.

Index of consensus human DHSs
DHSs were detected in individual biosample datasets and integrated 
across all 733 datasets to yield a set of 3.59 million consensus DHS 
delineations. These elements were subsequently annotated with esti-
mates of their centre-of-mass, positional stability across datasets and 
confidence scores. A detailed explanation of this procedure is provided 
in the Supplementary Methods.

Overlap of the DHS index with genomic annotations. To assess 
the overlap of our DHS consensus elements with repetitive elements 
(Extended Data Fig. 2b), we obtained RepeatMasker43 annotations 
downloaded from the University of California Santa Cruz (UCSC) Ta-
ble Browser44, and considered the various repeat classes and (sub)
families as provided. To perform analogous analyses for human gene 
annotations (Extended Data Fig. 2c), we obtained GENCODE45 v.28 
Basic annotations. We defined exons as specified in the GENCODE an-
notation, promoters as the TSS of genes ±1 kb, and introns as the rest 
of the gene body. Intergenic regions were defined as those not covered 
by gene bodies or defined promoters. We assigned index DHSs to these 
annotations requiring at least a 1 bp overlap, choosing the annotation 
with the largest overlap in case of multiple overlapping annotations.

TOPMed within-human sequence variation data were obtained 
from the Bravo website (https://bravo.sph.umich.edu/freeze5/hg38/
download, Freeze 5, hg38, VCF format). We converted 495.6 million 
single-base substitutions to nucleotide diversity scores (π), with a 
score of zero implied for every genomic base position with no variants. 
Per base, phyloP46 sequence conservation scores were downloaded 
as-is (http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP-
100way/). Within-human sequence variation data (π × 104) and phyloP 
conservation scores were aligned relative to DHS centroids using 20-bp 
non-overlapping windows tiled across a 1-kb region centred on each 
centroid (Extended Data Fig. 2g). For each window offset relative to 
the DHS centroid, genome-wide per-base scores were subsetted using 
bedops47 and averaged with GNU datamash.

Saturation and extendability of DHS index. For random subsamples of 
sizes ranging from 1 to 733 biosamples, we estimated the mean number 
of novel DHSs added by a new dataset as a function of total number of 
datasets sampled (Extended Data Fig. 2h). To extrapolate these esti-
mates to future biosample sets, we fitted a log-log model to the data. 
From the saturation analysis, we expect the overwhelming majority 
of DHSs identified in any new dataset to be represented already in the 
index, to which they will contribute additional confidence and preci-
sion. Incremental datasets can be added to the index by re-delineating 
DHSs using the original per-dataset DHS calls permanently recorded 
at the ENCODE DCC (Supplementary Table 1).

Construction of a DHS vocabulary
We used NMF28,29 for the decomposition of a binary matrix consisting 
of the presence or absence calls of m DHSs across n DNase-seq data-
sets into a smaller set of k components. As with other dimensionality 

reduction methods, NMF does not guarantee a total recapitulation 
of the original data; instead we chose to allow information loss in 
exchange for a more interpretable result. Therefore, we considered 
using a much smaller number of k components than the lower of the 
two dimensions of our input matrix (733 DNase-seq datasets). To keep 
the reconstruction error in check, we used an objective function that 
is minimized subject to the Frobenius norm (Extended Data Fig. 3a). 
NMF typically uses a random initialization step, leading to unstable 
results. To alleviate this, we performed the initialization step using 
singular value decomposition (SVD)48,49, leading to consistent results 
while maintaining a performance that is on par with randomly initialized 
instances. A more detailed rationale for the component-wise descrip-
tion of DHSs, as well as details on the implementation and execution 
of the decomposition, is provided in the Supplementary Methods.

Labelling of NMF components and DHSs. To aid interpretation of the 
16 NMF-derived components, we used two orthogonal approaches to 
assign labels to components, based on (i) biosample properties and 
(ii) DHS sequence features.

First, for each component we selected the top biosamples based on 
component-specific NMF loadings present in their datasets (Extended 
Data Fig. 4a). These maximal NMF loadings across datasets were gen-
erally strong across components (Extended Data Fig. 4b). In general, 
a clear pattern emerged of shared properties of biosamples most 
strongly associated with specific components. To formalize this, we 
performed one-sided Mann–Whitney U tests to assess whether NMF 
loadings for biosamples sharing certain metadata categories (Sup-
plementary Table 1) are greater than those for biosamples not in the 
given metadata category (Extended Data Fig. 4c). In particular, we 
assessed metadata categories corresponding to human organ systems 
and the cancer status of biosamples. P values were corrected for multi-
ple hypothesis testing using the Bonferroni correction method. A post 
hoc analysis of biosample-to-component assignment for values of k < 
16 provided insight into the genesis of our k = 16 component model, 
showing junctures after which separate cell type lineages are captured 
by distinct components (Extended Data Fig. 4d).

Second, for each component we obtained DHSs with maximal NMF 
loadings for that component, and subsequently performed enrichment 
analyses for TF binding site motifs (Extended Data Fig. 4e). We used a 
wide array of TF motifs and used FIMO50 (match threshold P < 10−5), to 
search for motif instances in the human genome. We tested the asso-
ciation of motif occurrences with specific NMF components using 
Fisher’s exact test. We used clusters of similar motifs (http://www.
mauranolab.org/CATO/weblogos/main.html) for the purpose of sum-
marization and visualization. The results show strong enrichments 
for component-specific motifs, suggesting preferential binding of 
component-relevant transcription factors (Extended Data Fig. 4f).

The strong associations of 1) biosample properties and 2) TF bind-
ing site occurrences with specific components enabled us to label 
each NMF component, resulting in a DHS vocabulary (Fig. 2d), further 
detailed in the Supplementary Note. For downstream analyses, we 
labelled each DHS with its strongest NMF component (Fig. 2e, bottom).

Robustness of component interpretation. To test the effect of induc-
ing additional sparsity in the NMF model, we systematically increased 
the L1 penalization setting while tracking F1 scores and the fraction of 
non-zero parameters used in the model (Extended Data Fig. 5a–c). The 
top 15 component-contributing biosamples per component remain 
mostly consistent with Fig. 2e and Extended Data Fig. 4a without L1 
penalization, indicating that enforcing additional sparsity does not 
impact the interpretation of model components.

To test the effect of possible over/under-representation of certain 
cell types, we removed 44 (40%) haematopoietic biosamples, consisting 
of the highest quality datasets representative of unique cellular condi-
tions (Supplementary Table 1). After building a new NMF model, we 
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observe that although the remaining (lower quality) haematopoietic 
biosamples are now captured by a single component instead of two, 
the interpretation of the remaining non-haematopoietic components 
does not change (Extended Data Fig. 5d).

Regulatory annotation of human genes
Per-component genomic distribution of DHSs. We compared the 
average distance between same-component DHSs against empirical 
distributions based on random assignment of component labels to 
DHSs and sampling the same number of DHSs 1,000 times (Extended 
Data Fig. 6a).

Per-component meta-DNase tracks. To illustrate the regional di-
versity of DHS component data, we generated meta-DNase tracks 
representing each of the 16 DHS components (Extended Data Fig. 6b) 
by averaging genome-wide DNase-seq signal profiles of the top 15 bi-
osamples most strongly associated with each component (Extended 
Data Fig. 4a). For visual conciseness, we provide aggregate tracks that 
overlay the meta-DNase tracks of all DHS components (for example, 
Fig. 3c, Extended Data Figs. 6b, c, 7a–h, 8a–c).

Definition of regulatory landscapes. We defined the regulatory land-
scape of a gene as the set of DHSs within the gene body, plus DHSs 
in flanking regions of maximally 5 kb upstream and maximally 1 kb 
downstream of the gene body, or up until halfway through to the gene 
upstream, whichever value is smaller (Fig. 3a, Extended Data Fig. 6e–g). 
This captures approximately 65% of all DHSs (Extended Data Fig. 6d) 
and prevents flanking region DHSs from being routinely assigned to the 
regulatory landscapes of multiple genes, alleviating mixing of regula-
tory signals.

Association of genes with DHS components. We tested the associa-
tion of all 56,832 annotated GENCODE genes (Fig. 3b) with each DHS 
component separately. Under the null hypothesis that DHS compo-
nents are randomly distributed across gene regulatory landscapes, 
we used the binomial distribution to test whether the proportion of 
DHSs annotated with a given component is higher among DHSs within 
a particular gene regulatory landscape than outside. We controlled 
the FDR at 5% by calculating q values51 across the total of all genes and 
components. Further details are provided in the Supplementary Meth-
ods. To study the differences between a gene-centric and TSS-centric 
approach, we calculated component associations for 10-kb regions 
centred around the TSS (that is, TSS ± 5 kb) and assessed the number 
and type of genes annotated (Extended Data Fig. 6h, i).

Annotations for GENCODE genes and pseudo-gene types. GENCODE 
v.28 (Basic) annotations were used for all analyses. For the purpose 
of labelling and visualizing genes, for each gene we used its longest 
transcript as its representative region. Pseudo-gene annotations were 
obtained from psiCube52, http://pseudogene.org/psicube/data/gen-
code.v10.pgene.parents.txt.

Visualization of gene regulatory annotations. We used t-SNE to visu-
alize the enrichment ratios of gene regulatory landscapes for DHS 
components (Fig. 3d, Extended Data Fig. 8a–c). Each dot shown repre-
sents a gene found to be significantly associated with one or more DHS 
components, and the union of these are the genes used to calculate the 
2D embedding. The R (http://www.r-project.org) implementation as 
provided in the Rtsne package was used, with default parameters. Genes 
are coloured according to their (most strongly enriched) significant 
DHS component.

Construction and use of gene expression compendium dataset. 
We used the full human ARCHS4 dataset (downloaded 26 June 2018)31 
and selected relevant tissue and cell types for each DHS vocabulary 

component (Supplementary Methods). This resulted in a total of 33,733 
unique gene expression datasets, with expression information for 
35,238 genes. For each gene, we obtained the 95th percentile value 
across datasets selected for each DHS component as the represent-
ative value in that component, to not be led by outliers in the data, 
while still being sensitive for cell type selective expression levels. For 
each DHS component, we calculated average expression levels across 
genes labelled with that component (observed), as well as across all 
component-labelled genes (expected). Resulting values are reported 
as log2-transformed enrichment ratios (Fig. 3g).

Annotation and visualization of pathway labellings. A curated 
set of canonical pathways was obtained from the MSigDB Collec-
tions (http://software.broadinstitute.org/gsea/msigdb/genesets.
jsp?collection=CP). Pathway enrichment analyses (Extended Data 
Fig. 8d, e) were performed analogously to gene enrichment analy-
ses, by pooling DHSs in neighbourhoods of all pathway-associated 
genes. We used the KEGG35 REST API (https://www.kegg.jp/kegg/rest/
keggapi.html) to download and graphically annotate KEGG pathway 
representations.

Prioritization of TF-associated DHSs. We obtained DHSs with load-
ings for a single component only. For each component-labelled TF 
gene with a known sequence binding motif, we obtained the subset 
of DHSs that (i) are annotated with the same component as the TF, (ii) 
contain a TF-matching motif, and (iii) are footprinted in a biosample 
associated with the same component25 (Fig. 3h). Although the above 
analysis identified a small minority of DHSs owing to stringent filter-
ing, motifs with variable information content, and the smaller range 
of biosamples for which footprinting data are available, this approach 
could be recapitulated with less extreme parameters to identify larger 
sets of DHSs at reasonable confidence.

Genetic variation analyses
GWAS traits and summary statistics. We obtained GWAS summary 
statistics data from the UK Biobank project as processed by the Neale 
lab (http://www.nealelab.is/uk-biobank/). In addition, we obtained 
GWAS summary statistics calculated using BOLT-LMM v2.353, as used 
in recent work38.

Estimates of SNP-based heritability. GWAS traits were curated by 
removing those with a narrow-sense SNP-based heritability54 (hg

2) of less 
than 1%. Although ideally we would quantify heritability by considering 
the true causal effects of variants, in reality we do not observe these. 
Instead, we are limited to GWAS summary statistics, which essentially 
describe the marginal trait-correlation for each variant, consisting of 
both causal effects and effects due to LD, plus statistical noise. Recently 
proposed methods such as LD score regression (LDSC)55 are able to 
estimate heritability while explicitly considering the underlying LD 
structure. For continuous traits, in case both raw and inverse-ranked 
normalized (irnt) versions were available, we retained the latter only. 
This yielded a total of 1,316 traits for subsequent analyses with an hg

2 
of at least 1%.

Quantitative trait associations. For quantitative trait-versus- 
component analyses (Fig. 4a, Extended Data Fig. 9a–c), we assessed the 
correspondence between trait association strength (GWAS variant asso-
ciation P value) and the component annotations of variant-containing 
DHSs, for increasingly stringent subsets of GWAS variants. Enrichment 
P values were calculated using a binomial distribution, as done previ-
ously6. We explicitly control for large scale LD structure, using a form 
of LD clumping56, by selecting a single variant-containing DHS for each 
of 1,708 approximately independent LD blocks57. Namely, for each LD 
block, the variant with the lowest GWAS association P value that over-
laps a DHS was selected for subsequent analysis. In case multiple such 
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variant-containing DHSs existed, we gave preference to the DHS with 
the highest confidence score (mean signal) in our DHS index.

Stratified LD-score regression. To estimate hg
2 with maximal statis-

tical power, we used LD score regression (LDSC)55 to explicitly take 
into account LD structure. In particular, we used a stratified version 
of LDSC (S-LDSC)36 to partition heritability estimates according to 
pre-defined sets of genome-wide annotations (Fig. 4b, c, Extended 
Data Fig. 9d, e), consisting of our annotated DHSs in addition to a 
wide range of 85 genome-wide functional ‘baseline’ annotations 
(baseline-LD model v.2.1). The v.2.1 baseline set consists of a total 
of 86 genome-wide annotations, building upon the 76 annotations 
used in the v.2.0 set and several additional annotations58. These ‘base-
line’ annotations encode whether SNPs fall inside protein-coding or 
non-coding regions, regions with increased levels of evolutionary 
conservation, regions predicted or confirmed to have enhancer activ-
ity, and so on. Their breadth provides a robust36 baseline model along 
which to test trait heritability contributions of our DHS components. 
We express the heritability enrichment of an annotation as the ratio 
of its proportion of per-trait hg

2 and the proportion of SNPs covered 
by the annotation (Fig. 4b).

Variants included in the analysis are those registered in HapMap3, 
with a minimal minor allele frequency (MAF) of 5%, and excluding the 
human major histocompatibility complex (MHC) locus. Baseline LD 
scores were computed from 1000 Genomes Phase 3 data from European 
ancestry populations and corresponding allele frequencies (as used 
previously58 and available from the LDSC reference downloads page, 
along with the baselineLD annotation set: https://data.broadinstitute.
org/alkesgroup/LDSCORE/).

Heritability enrichments for DHS vocabulary components. We 
applied S-LDSC to our DHS vocabulary components as follows. In 
brief, each DHS was assigned to its majority DHS component and 
(when possible) assigned to overlapping variants. For the resulting 
vocabulary-based annotations, LD scores were calculated. We then 
performed S-LDSC separately for each of the selected 1,316 traits, 
relative to these vocabulary-based annotations and the baselineLD 
model described above. For each trait versus annotation combination, 
we obtained estimates of its heritability enrichment36, expressed as 
the ratio of its proportion of hg

2 and the proportion of SNPs covered 
by the annotation (Fig. 4b, c). We considered heritability enrichments 
statistically significant at an estimated FDR of less than 5% calcu-
lated across all considered traits and DHS components. This is more 
stringent than the commonly used per-trait correction for multiple 
hypothesis testing.

Unique per-annotation contributions to SNP-based heritability. Es-
timates of heritability enrichment can be confounded by contributions 
of multiple (overlapping) genomic annotations included in S-LDSC 
models. To quantify unique per-annotation contributions to heritabil-
ity, we obtained the average per-SNP increase in heritability ascribed to 
that component, after controlling for all other annotations in the model 
(baseline annotations and DHS components)36. From the reported 
coefficients and their standard errors, we derived z-scores, one-sided 
P values and FDR-corrected q values for each trait-versus-component 
combination (Fig. 4d, e). For the heritability analysis in component 
concordant genic DHSs (Fig. 4f), we further stratified DHSs based on 
whether they are component concordant, component discordant, 
inside non-annotated genes (genic controls), or inter-genic. Figure 4f 
shows z-scores for the maximally enriched components identified in 
Fig. 4c.

To quantify the heritability contribution of per-dataset DHSs, we 
performed a variation on the standard S-LDSC procedure, as described 
previously36. Specifically, we built upon the baselineLD model by itera-
tively considering annotations derived from individual datasets only. 

These individual datasets were collected by selecting for each trait 
the 15 datasets most informative to each DHS component (Extended 
Data Fig. 4a). Annotations consist of DHSs observed in those datasets, 
as well as their complement, that is, the remainder of index DHSs. We 
report the contribution to heritability based on the former, expressed 
as z-scores (Fig. 4d, e).

Extendability of the DHS vocabulary
Addition of novel unseen datasets. New datasets may be added to the 
current NMF model while retaining the same interpretation of compo-
nents (Extended Data Fig. 10a). In brief, 0.1% FDR variable-width peak 
calls are obtained from new datasets of interest, mapped to DHS index 
elements using bedops47 and projected into the existing component 
space using standard NMF routines (see code for more details).

DHS index element identification without de novo peak identifica-
tion. We used bedops47 to look up DNase-seq signal levels of a dataset 
of interest over index elements, to determine whether a given element 
is actuated in the dataset. Expressed as a classification problem, using 
the existing 0.1% FDR variable-width peak calls as the groundtruth set, 
we assess precision and recall of peak recovery. For all 733 biosamples 
we find area under precision recall curve (AUPRC) values ranging from 
0.33 to 0.83 (median, 0.71; IQR, 0.64–0.75), with a trophoblast biosa-
mple (ENCODE DCC identifier ENCBS576QRR) shown as an example 
(Extended Data Fig. 10a). The large difference between AUPRC values 
of matched versus non-matched biosamples allows the identification 
of the original biosample (Extended Data Fig. 10b), while showing that 
biosamples with similar AUPRC ranks share the same biological charac-
teristics (Extended Data Fig. 10c). This procedure can also be followed 
for unseen datasets (Extended Data Fig. 10d), in particular datasets that 
are less deeply profiled or would otherwise be too sparse to call peaks 
on de novo—such as single cell chromatin profiling data.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All primary data are available from the ENCODE DCC portal. Biosample 
metadata are available in Supplementary Table 1 as well as in other 
formats via Zenodo (https://doi.org/10.5281/zenodo.3838751). The set 
of more than 3.5 million DHS delineations is available in tab-separated 
format from the ENCODE DCC portal (https://www.encodeproject.
org/annotations/ENCSR857UZV/) and via Zenodo (https://doi.
org/10.5281/zenodo.3838751). Data matrices describing the occurrence 
patterns of DHSs across biosamples are available in various formats 
via Zenodo (https://doi.org/10.5281/zenodo.3838751). There are no 
restrictions on data availability and (re)use. We additionally provide 
a specialized data browser (https://index.altius.org/) and a trackhub 
for the UCSC Genome Browser (https://genome.ucsc.edu/cgi-bin/
hgTracks?db=hg38&hubUrl=https://resources.altius.org/~meuleman/
DHS_Index_tracks/hub.txt). BED files documenting the coordinates 
and annotations of DHSs with evidence of being bound by specific 
transcription factors are available via Zenodo (https://doi.org/10.5281/
zenodo.3838751), and top-scoring elements per TF can be explored in 
a browser (https://index.altius.org/?application=viewer&roiSet=TFa
ssoc_Meuleman).

Code availability
Code is available on Github for building the index of consensus DHSs 
(https://github.com/Altius/Index), for constructing the DHS vocabu-
lary and the addition of novel biosamples (https://github.com/Altius/
Vocabulary).
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Extended Data Fig. 1 | Construction of a DHS index. a, Increase in number of 
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DNase I hypersensitive sites (DHSs) from raw DNase-seq signal tracks, shown 
for simplified data (b) and actual data (c). Starting from individual DNase-seq 
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coordinates according to these clusters (step 4), and delineate DHSs using 

full-width at half maximum (FWHM) (step 5). d, Increase in number of detected 
DHSs relative to previous efforts. e. Detailed view of FWHM delineation.  
f, g, Confidence scores based on DNase I signal strengths assigned to each DHS, 
allowing for pragmatic filtering using either summed (f) or mean (g) signal 
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high signal levels across datasets, the latter providing a score normalized by 
the number of datasets in which a DHS was observed.
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Extended Data Fig. 2 | Genomic context of DHS index elements. a, Overall 
coverage of 3.5M+ DHSs across genes and repetitive elements. b, Coverage of 
classes and families of repetitive elements. c, Coverage of annotated genic 
regions. d, Barplot of the number of DHSs as a function of distance to the 
nearest annotated transcription start site (TSS), up to 100,000 base pairs.  
e, Density plot of DHS distance to the closest TSS for all index DHSs, showing 
that the vast majority of DHSs are found distal to annotated promoters.  
f, Density plot of element widths for full DHSs and their core regions only, 

shown for DHSs observed in more than one biosample. Uniform 20 bp jitter 
added for smoothness. g, DHS centroids show an increase in sequence 
conservation (phyloP) and a decrease in within-human sequence variation 
(TOPMed, π × 104). h, Mean number of new DHSs observed as a function of the 
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well as for an extrapolation to an additional future 733 new biosamples.  
i, Histogram indicating the variety in cell type selectivity of DHSs, ranging from 
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Extended Data Fig. 4 | Association of DHS components with cellular 
conditions and TF motifs. a, Bar plots showing for each NMF component the 
top 15 DNase-seq datasets in terms of NMF loadings. NMF loading strength  
(x-axes) and dataset labelling ( y-axes) are indicated. b, Box plots showing for 
each NMF component its loadings across those biosamples for which that 
component is maximally loaded. Boxes denote medians and interquartile 
ranges (IQRs, 25–75%), whiskers represent 1.5 × IQRs, n = 18,57,46,27,52,23,34, 
49,40,107,33,27,54,40,36,90 biosamples, respectively. c, Beyond the top 15 
biosamples for each component, general associations of components with 
annotations regarding human organ systems and cancer. Indicated are 

Bonferroni corrected P values, resulting from one-sided Mann–Whitney U 
tests. d, Distribution of biosamples across (maximal) NMF components, for  
the number of components (k) ranging from 2 to 16. Labels at the top indicate  
at which point distinct lineages became represented in corresponding 
components. e, Enrichment of transcription factor (TF) binding motifs in DHS 
components. Greyscale values indicate enrichment levels, only statistically 
significant results are included. DHS components shown on the x-axis, TF motif 
clusters with top representative motif on the y-axis. f, Top enriched TF motifs 
for each DHS component.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | DHS component robustness. a, F1 score as a function 
of L1 penalization levels (ƛ), with separately indicated levels of sparsity 
reflected by the percentage of non-zero parameters in the resulting models. 
Shaded area represents penalization levels resulting in comparable 
16-component models, as opposed to models with effectively less than 16 
components, which are discarded in subsequent analyses. b, All biosamples 
with non-zero NMF loadings in the cardiac DHS component (for ƛ = 0). 
Horizontal line separates the top 15 biosamples (yellow shading) from the rest 
(shades of green), where green shading indicates quantile ranking in terms of 

component loading strength. c, Biosamples with non-zero NMF loadings for 
each DHS component, extended with agreement of quantile ranking as a 
function of L1 penalization levels, indicating that these rankings stay near 
constant for most components. d, Top 15 biosamples in terms of NMF loading 
per DHS component for an alternative NMF model resulting from a 40% 
downsampling of high-quality haematopoietic biosamples. NMF loading 
strength (x-axes) and dataset labelling ( y-axes) are indicated, only for 
components that differ with the final model.
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Extended Data Fig. 6 | Clustering of same-component DHSs near genes.  
a, Component-specific genomic clustering of DHSs, as shown by the median 
distance between same-component DHSs as compared to the median distance 
after random permutation of DHS-component labels. b, Regulatory landscape 
+/− 50kb around the GATA1 gene, indicating GENCODE gene annotations, 
meta-DNase tracks for individual DHS components (Methods), and a 
meta-DNase overlay track. c, Detailed view, restricted to the GATA1 regulatory 
landscape, including its delineated and annotated DHSs. Collectively, this 
landscape shows a statistical over-representation of DHSs associated with the 
myeloid/erythroid (red) component. d, Density plot of DHS distance to the 
closest TSS for all Index DHSs (black line) and the subset (65%) of DHSs 
considered for the purpose of annotating genes using DHS components.  

e, f, Alignment plots showing DHS summit density across the transcription 
start sites (TSSs, e) and transcription termination sites (TTSs, f) of annotated 
genes. Shaded areas indicate regions included for the purpose of annotating 
genes using DHS components. g, DHS density expressed in terms of number of 
DHSs per kilobase, indicating a general enrichment of DHSs in and immediately 
surrounding genes. h, Venn diagram showing the overlap between regulatory 
annotations based on the gene-centric approach described in this work and a 
TSS-centric approach (+/−5kb). The gene-centric approach captures the vast 
majority of genes annotated using the TSS-centric approach, while adding an 
additional approximately 11,000 genes. i, Type of genes annotated using a 
gene-centric versus TSS-centric approach, showing the former yielding larger 
fractions of protein-coding and long non-coding genes.
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Extended Data Fig. 7 | Top labelled genes for selected components.  
a–d, Top-scoring protein-coding genes per DHS component reflect their 
functional roles, as shown for lymphoid (a), myeloid / erythroid (b), stromal (c) 
and tissue-invariant (d) components. e–h, Top-scoring transcription factor 
(TF) genes per DHS component reflect their functional roles, as shown for 
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components. Full gene regulatory landscapes used for labelling are shown, 
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in this particular case discordant with cell and tissue types with maximal 
expression.



98

164

128

16

79

72

59

77

17

47

41

21

47

46

4

38
Transcription factors

10 kbchr19:53,550,000ZNF331

73

499

452

96

310

106

96

107

106

111

132

68

145

231

46

73
Pseudo-genes

chr14:105,667,500
IGHGP

1 kb

106

535

268

117

209

337

137

159

144

214

119

79

93

197

144

42
LincRNA genes

1 kbchr9:69,300,000
BANCR

0 5

observed
expected

da

b

c

e

Endogenous sterols
T Cytotoxic Cell Surface Molecules
Graft−versus−host disease
Allograft rejection
Phosphorylation of CD3 and TCR zeta chains
Translocation of ZAP−70 to Immunological synapse
T Helper Cell Surface Molecules
HIV Induced T Cell Apoptosis
PD−1 signaling
CTL mediated immune response against target cells
Endosomal/Vacuolar pathway
The Co−Stimulatory Signal During T−cell Activation
Antigen Dependent B Cell Activation
Primary immunodeficiency
Lck and Fyn tyrosine kinases in initiation of TCR Activation
Immunoreg. interactions between Lymphoid & non−Lymphoid cell
Asthma
B Lymphocyte Cell Surface Molecules
Th1/Th2 Differentiation
Antigen processing and presentation
NO2−dependent IL 12 Pathway in NK cells
Autoimmune thyroid disease
Intestinal immune network for IgA production
IL 17 Signaling Pathway
The TNF−type receptor Fas induces apoptosis on ligand binding.
Generation of second messenger molecules
Regulation of the Fanconi anemia pathway
Dendritic cells in regulating TH1 and TH2 Development
Adhesion and Diapedesis of Granulocytes
Expression of chemokine receptors during T−cell polarization
TCR signaling
CD28 dependent Vav1 pathway
IL 5 Signaling Pathway
Chemokine receptors bind chemokines
Adhesion and Diapedesis of Lymphocytes
SODD/TNFR1 Signaling Pathway
Downstream TCR signaling
Monocyte and its Surface Molecules
Cytokines can induce activation of matrix metalloproteinases
TNFR2 Signaling Pathway
IL12 and Stat4 Dependent Signaling Pathway in Th1 Development
Extrinsic Pathway for Apoptosis
Binding and entry of HIV virion
Role of Mitochondria in Apoptotic Signaling
Cytokine Network
D4−GDI Signaling Pathway
IL12 signaling mediated by STAT4
Base−free sugar−phosphate removal
Negative regulators of RIG−I/MDA5 signaling
T Cell Signal Transduction
TCR signaling in naive CD8+ T cells
IL−7 Signal Transduction
Apoptosis eliminates damaged or unneeded cells.
Trafficking and processing of endosomal TLR
IL2 signaling events mediated by STAT5
HIV−1 Nef: Negative effector of Fas and TNF−alpha
IL12−mediated signaling events
Hemoglobin’s Chaperone
Metabolism of porphyrins
The SARS−coronavirus Life Cycle
Transferrin endocytosis and recycling
Sulfur metabolism
AKAP95 role in mitosis and chromosome dynamics
Iron uptake and transport
Synthesis, Secretion, and Inactivation of GIP
Incretin Synthesis, Secretion, and Inactivation
Striated Muscle Contraction
ALK in cardiac myocytes
Gap junction assembly
IKK complex recruitment mediated by RIP1
VEGF and VEGFR signaling network
ALK1 signaling events
VEGF ligand−receptor interactions
Valine, leucine and isoleucine biosynthesis
Advanced glycosylation endproduct receptor signaling
GABA A receptor activation
Ligand−gated ion channel transport
DSCAM interactions
Digestion of dietary carbohydrate
Drug metabolism − cytochrome P450
Xenobiotics
Metabolism of xenobiotics by cytochrome P450
Maturity onset diabetes of the young
Phenylalanine metabolism
Recycling of bile acids and salts
Phase II conjugation
Linoleic acid metabolism
Common Pathway
Apoptotic cleavage of cell adhesion  proteins
Starch and sucrose metabolism
Cytosolic sulfonation of small molecules
Extrinsic Prothrombin Activation Pathway
Synthesis of bile acids and bile salts via 24−hydroxycholesterol
Biological oxidations
Nuclear Receptors in Lipid Metabolism and Toxicity
Mitochondrial Fatty Acid Beta−Oxidation
Amino acid synthesis and interconversion (transamination)
Bone Remodelling
Glucuronidation
Ascorbate and aldarate metabolism
Pentose and glucuronate interconversions
Porphyrin and chlorophyll metabolism
Prolactin receptor signaling
Retinol metabolism
Steroid hormone biosynthesis
Drug metabolism − other enzymes
The IGF−1 Receptor and Longevity
Ethanol oxidation
Tryptophan catabolism
Biosynthesis of neurotransmitters
Passive Transport by Aquaporins
RNA Polymerase I Promoter Opening
Packaging Of Telomere Ends
Processing of Intronless Pre−mRNAs
Processing of Capped Intronless Pre−mRNA
Apoptosis induced DNA fragmentation
Ribosome
Processing of Replication−Dependent Histone Pre−mRNAs
SRP−dependent cotranslational protein targeting to membrane
Peptide chain elongation
APOBEC3G mediated resistance to HIV−1 infection
Formation of ternary complex, and subsequently, the 43S complex
Respiratory electron transport
Cleavage of Growing Transcript in the Termination Region 
mRNA 3’−end processing
Activation of mRNA upon binding of cap−binding complex and eIFs
Translation
Respiratory electron transport, ATP synthesis, and heat production
Formation of ATP by chemiosmotic coupling
3’ −UTR−mediated translational regulation
Formation of tubulin folding intermediates by CCT/TriC
Spliceosome
Prefoldin mediated transfer of substrate  to CCT/TriC
ER−Phagosome pathway
Transport of Mature Transcript to Cytoplasm
Nonsense Mediated Decay Enhanced by the Exon Junction Complex
Deposition of New CENPA−containing Nucleosomes at Centromere
Destabilization of mRNA by AUF1 (hnRNP D0)
mRNA Splicing
Processing of Capped Intron−Containing Pre−mRNA
Influenza Viral RNA Transcription and Replication
Transport of Mature mRNA Derived from an Intronless Transcript

BioCarta (33)
KEGG (23)

Pathway Interaction Database (7)
Reactome (75)

SigmaAldrich (3)
Signaling Transduction KE (1)

Allograft rejection

Antigen processing and presentation Maturity onset Diabetes of the young

genelymphoid labelled gene: 
digestive labelled gene: gene

multi labelled gene: gene

Extended Data Fig. 8 | See next page for caption.



Article
Extended Data Fig. 8 | Annotation of genes with unknown function and 
pathways. a–c, Two-dimensional projection coordinates generated using  
t-SNE on all genes significantly associated with a DHS component and shown 
selectively for subsets of gene categories, namely transcription factors (TFs; 
diamonds: ZNF TF genes) (a), lincRNA genes (b) and pseudo-genes (c). 
Indicated are the number of labelled genes in each combination of gene 
category and DHS component. Examples of labelled genes are shown as 
follows. a, Regulatory landscape of ZNF331; a poorly annotated zinc-finger 
(ZNF) TF gene (lymphoid and placental components). b, Regulatory landscape 

of BANCR; a long intergenic non-coding RNA (lincRNA) gene, recently 
associated with cardiomyocyte migration. c, Regulatory landscape of the 
pseudo-gene IGHGP (lymphoid component). d, DHS component labelling of 
MSigDB canonical pathways, through the regulatory landscapes of constituent 
genes. Shown are pathways with a significant association (5% FDR) and  
an observed/expected ratio of at least 2. The most strongly associated 
components are indicated for each pathway, with their source databases.  
e, Examples of three component-associated pathways from the KEGG database, 
with genes coloured according to their majority component.
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Extended Data Fig. 9 | GWAS trait associations of DHS components.  
a–c, Quantitative association of component-DHSs with GWAS traits 
reticulocyte count, pulse rate, and FEV1/FVC ratio. Canonical genome-wide 
significance threshold indicated (5 × 10−8). a, Enrichment ratios for increasingly 
stringent subsets of variants, per DHS component. b, Nominal enrichment −
log10(P value) of a one-sided binomial test for each DHS component. c, Nominal 
enrichment -log10(p-value) of a one-sided binomial test for the strongest DHS 
component only, along with its strongest associated biosamples. d, GWAS 
traits associated with component-annotated index DHSs. e, Greyscale values, 

heritability enrichment levels for statistically significant (FDR 1%) traits based 
on the full delineated width of index DHSs (left) and restricted to index DHS 
‘core’ regions (right). Row labelled as per d. f, Ratio of heritability enrichment 
values for ‘core’ versus ‘full size’ DHSs. g, DHS confidence scores (mean signal) 
stratified according to gene landscape DHS types. Boxes denote medians and 
interquartile ranges (IQRs, 25–75%), whiskers represent 1.5 x IQRs, n = 261 GWAS 
traits. h, Heritability enrichments stratified according to gene landscape DHS 
types. Greyscale indicates heritability enrichment levels for statistically 
significant associations (1% FDR).
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Extended Data Fig. 10 | Extendability of the DHS annotation framework.  
a, Two-dimensional UMAP projection of 733 biosamples by way of their index 
DHS utilization, coloured by their strongest representative NMF component. 
Stars indicate the embeddings of 38 previously unseen immune-related 
DNase-seq peak call datasets. b, Area under precision recall curve (AUPRC) 
values for predicting per-biosample DHSs from DNase-seq signal alone, shown 

for a trophoblast biosample. c, AUPRC values for the matching trophoblast 
versus all other 732 biosamples. d, Top 20 biosamples matching the 
aforementioned trophoblast biosample in terms of AUPRC values. e, Top 20 
biosamples (out of 733) matching an unseen CD4+ biosample in terms of 
AUPRC values.
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C#%##�#4,�!�

9��/#�$�1�!�%�$%!4!@!�"1$�%�/#4"��!%&/�������5%2#��%&#%#��1��%�#4%�%�%&�����#�1&+$%��%,�% ��1�!+� !�!��$+4!�&� 4!%��#%$��:��5%2#��/$�%+�+�/# �#3#!4#+4�%�%�� !%���#� ��3!�2���7f�f��%���"4,��1�$�#"�1� � ����!%!��!�!�#1�//$�!%,�����!%��,'�7"7g!%h$+(7.��%&�0#%$��-���#�1&"$! �4!���5���$+/!%%!�"1� �i��5%2#��5��5$�%&��!�5��/#%!��7C#%#<�4!1,!�5��/#%!��#+�$%#3#!4#+!4!%,�5�5 #%#B44/#�$�1�!�%�/$�%!�14$ �# #%##3#!4#+!4!%,�%#%�/��%8&!��%#%�/��%�&�$4 ���3! �%&�5�44�2!�"!�5��/#%!��:2&���#��4!1#+4�)DB11���!��1� ��:$�!j$�! ��%!5!���:����2�+4!�6�5���$+4!14,#3#!4#+4� #%#��%�DB4!�%�5�55!"$���%&#%&#3�#���1!#%� �#2 #%#DB ��1�!�%!���5�5#�,���%�!1%!������� #%##3#!4#+!4!%,

f�$%��>�$4�/#�:k�&�.%#/#%�,#�����$4��k$�lm:lnln

oo
o
oo
o
o

ooo

C#%#1�44�1%!��2#�#��!�%� +,+,%&�5�44�2!�"�!�1���5�5��5%2#��5����# /#��!�"#� �$+��j$��%��!/#�, #%#���1���!�")bfB'n7p7ql(:+� ���'l7r7st(:&�%���%l'l7q7q(7B44 #%#1�44�1%!��#� ���1���!�"���1� $���#�� �1$/��%� #�#��#�%�5�5%&�;0�uC;C���!��4!���7C#%##�#4,�!�2#����5��/� $�!�"-'3���!��s7v7q:$�!�"�#16#"��j3#4$�'3l7qm7n(:>#%�!='3q7l7qp(:"�4�%�'3s7n7s(:-%���'3n7qw((#� <,%&��'3���!��s7v7r:$�!�"4!+�#�!���$/�,'3q7qm7q(:�#� #�'3q7n7s(:�64�#��'5��0>9:3n7ll7q(:$/#�'3n7r7q((7�� �!�!�#3#!4#+4�����g!%&$+5��+$!4 !�"%&�!� �=�5�51������$�Ch.�'&%%��)??"!%&$+71�/?B4%!$�?x� �=(:5��1���%�$1%!�"%&�Ch.3�1#+$4#�,#� %&�#  !%!���5�5��3�4+!��#/�4��'&%%��)??"!%&$+71�/?B4%!$�?y�1#+$4#�,(:#� 5��#���%#%!�"Ch.���4#%!3�%�%�"����#� ����%!%!3��4�/��%�'&%%��)??"!%&$+71�/?B4%!$�?Ch.zB���%#%!���(7

B44��!/#�, #%##��#3#!4#+4�5��/%&�;0�uC;C�����%#47b!��#/�4�/�%# #%##��#3#!4#+4�!�!�.$��4�/��%#�,8#+4�q#�#�2�44#�#�!�!��%&��5��/#%�3!#{��� �'&%%��)?? �!7��"?qn7wlmq?@��� �7smsmpwq(78&���%�5�5s7w>|Ch. �4!��#%!���!�!�#3#!4#+4�!�!�%#+D���#�#%� 5��/#%5��/%&�;0�uC;C�����%#4'&%%��)??2227��1� ����\�1%7��"?#���%#%!���?;0�.-mwp}{y?(#� 3!#{��� �'&%%��)?? �!7��"?qn7wlmq?@��� �7smsmpwq(7C#%#/#%�!1�� ��1�!+!�"%&��11$����1�



~

������������	
����������������
���������

9!�4 D���1!5!1�����%!�"<4�#����4�1%%&����+�4�2%&#%!�%&�+��%5!%5��,�$�����#�1&7x5,�$#����%�$��:��# %&�#������!#%���1%!���+�5���/#6!�",�$���4�1%!��7*!5��1!��1�� b�&#3!�$�#4i��1!#4�1!��1�� ;1�4�"!1#4:�3�4$%!��#�,i��3!���/��%#4�1!��1��9��#��5����1�1��,�5%&� �1$/��%2!%&#44��1%!���:����#%$��71�/? �1$/��%�?��D�����%!�"D�$//#�,D54#%7� 5*!5��1!��1���%$ , ��!"�B44�%$ !��/$�% !�14�����%&�����!�%��3��2&��%&� !�14��$��!���"#%!3�7.#/�4��!@�
C#%#�=14$�!���
-��4!1#%!��
-#� �/!@#%!��b4!� !�"-����%!�"5�����1!5!1/#%��!#4�:�,�%�/�#� /�%&� �f���j$!��!�5��/#%!��5��/#$%&���#+�$%��/�%,����5/#%��!#4�:�=���!/��%#4�,�%�/�#� /�%&� �$�� !�/#�,�%$ !��7h���:!� !1#%�2&�%&���#1&/#%��!#4:�,�%�/��/�%&� 4!�%� !���4�3#�%%�,�$��%$ ,7x5,�$#����%�$��!5#4!�%!%�/#��4!��%�,�$�����#�1&:��# %&�#������!#%���1%!��+�5�����4�1%!�"#��������7>#%��!#4�i�=���!/��%#4�,�%�/��?#x�3�43� !�%&��%$ ,B�%!+� !��;$6#�,�%!11�444!���<#4#���%�4�",#� #�1&#��4�",B�!/#4�#� �%&����"#�!�/�h$/#�����#�1&�#�%!1!�#�%��4!�!1#4 #%#C$#4$������#�1&�51��1���

>�%&� ��?#x�3�43� !�%&��%$ ,�&x<D��j94�21,%�/�%�,>-xD+#�� ��$��!/#"!�"

�#%%�����5Ch.�#1����+!��#/�4��#��#3#!4#+4�!�3#�!�$�5��/#%�3!#{��� �'&%%��)?? �!7��"?qn7wlmq?@��� �7smsmpwq(78&���#�������%�!1%!����� #%##3#!4#+!4!%,#� '��($��7f�#  !%!��#44,���3! �#���1!#4!@�  #%#+��2���'&%%��)??!� �=7#4%!$�7��"?(#� #%�#16&$+5��%&�}�.�g���/�b��2���'&%%��)??"���/�7$1�17� $?1"!D+!�?&"8�#16�� +�&"smi&$+}�4�&%%��)??����$�1��7#4%!$�7��"?�/�$4�/#�?Ch.zx� �=z%�#16�?&$+7%=%(7b;C5!4�� �1$/��%!�"%&�1��� !�#%��#� #���%#%!����5Ch.�2!%&�3! ��1��5+�!�"+�$� +,���1!5!1%�#��1�!�%!��5#1%���#��#3#!4#+4�3!#{��� �'&%%��)?? �!7��"?qn7wlmq?@��� �7smsmpwq(:#� %��D�1��!�"�4�/��%����891#�+��=�4��� !�#+��2���'&%%��)??!� �=7#4%!$�7��"?�#��4!1#%!���3!�2��i��!.�%�89#���1z>�$4�/#�(7y#�!�$� #%#+#���2���1���$4%� %��+%#!�"����=�����!�� #%#'B-�h.r:&%%��)??#/�7�&#�/7/��/7� $?#�1&�r? �2�4�# 7&%/4:#11���� k$��lv:lnqm(:"���#���%#%!���'g;0�uC;3lm&%%��)??2227"��1� �"����7��"?&$/#�?��4�#��zlm7&%/4:��!�$+�&%%�)??���$ �"���7��"?��!1$+�? #%#?"��1� �73qn7�"���7�#���%�7%=%(#� �#%&2#,#���%#%!���'>.!"Cb3v7q&%%��)??2227"��#D/�!" +7��"?"��#?/�!" +?1�44�1%!���7\��:�;gg3mt7q&%%��)??2227"���/�7\�?6�""?(7

o

f� �%��/!�� �#/�4��!@�+,1���! ��!�"�=14$�!3�4,&!"&j$#4!%,C0#��D��j #%#2!%&#.<u8�1����5#%4�#�%n7s5���$�#�#4,���:,!�4 !�"#%�%#4�5pssC0#��D��j #%#��%�7��44�1%!3�4,:%&��� #%##��#,#%�%#4�5rsm1�44#� %!��$��%#%����#��!�"#44&$/#���"#��,�%�/�'.$��4�/��%#�,8#+4�q(78&!�!�1$����%4,%&�4#�"��%&!"&Dj$#4!%,C0#��x1&��/#%!�#11���!+!4!%, #%#��%#3#!4#+4�#� #��$1&!%��#/�4��!@�!�j$!%�# �j$#%�7f���/�3� C0#��D��j�#/�4��2!%&#.<u8�1���+�4�2n7s:%����$��2���4,��%#!�&!"&j$#4!%, #%#'.$��4�/��%#�,8#+4�q�g��"4�.���# �&��%(7B��#�%�5%&�;0�uC; #%#1�44�1%!�����1� $��:2�&#3����5��/� ��1�� ���4!1#%�#��#,�2&�����$"&/#%��!#42#�#3#!4#+4�:#� &#3���%#!�� ���4!1#%��5��#�#4,�!�!�1#��.<u8�1����2���#%4�#�%n7s:2&!1&!�%&�1#��5��qvt1�44%,���#� �%#%��7f� ���%&#3�!�5��/#%!����1#���2&����$��%�!1%j$#4!%,/�%�!1�2�����%#1&!�3� 70�%#��4!1#+4�:#�2�#����%���5��/!�"#�,"��$�D2!��?1�&��%D2!��1�/�#�!����70�%#��4!1#+4�:!� !3! $#4+!��#/�4� #%#2#��+%#!�� #� \�!�%4,���1���� #� #�#4,@� 7

o ooo ooo

ooo



�

������������	
���������
���������������

�������
���������

;$6#�,�%!11�444!���<�4!1,!�5��/#%!��#+�$%1�444!�����444!����$�1�'�(
B$%&��%!1#%!��
>,1��4#�/#1��%#/!�#%!����//��4,/!�! ��%!5!� 4!���'.��x�*B���"!�%��(h$/#�����#�1&�#�%!1!�#�%�<�4!1,!�5��/#%!��#+�$%�%$ !��!�3�43!�"&$/#�����#�1&�#�%!1!�#�%�<��$4#%!��1&#�#1%��!�%!1�

-�1�$!%/��%
;%&!1��3���!"&%0�%�%&#%5$44!�5��/#%!������%&�#����3#4�5�5%&��%$ ,���%�1�4/$�%#4��+�+����3! � !�!�%&�/#�$�1�!�%7

8&���$�1��5�5#441�444!��/#%��!#4!�!� ��1�!+� '2&��#3#!4#+4�(!�!�.$��4�/��%#�,8#+4�q#� %&���4!��g��"4�.���# �&��%7��444!���2������1$�� 5��/#������!#%�1�//��1!#4��$�1��7&7;.�4!���$�� 2���5��/0xh#����3� 4!�%#� ���3! � +,+,4#+��#%��!��2!%&�=���%!��!�!�"��2!�":1&#�#1%��!@!�"#�  !55����%!#%!�"%&���1�44%,���7'���;0�uC;2�+�!%�5�� �%#!4�#� ���%�1�4�(7B$%&��%!1#%!��2#����3! � +,+,%&�1�//��1!#43�� ���5��/2&!1&%&�1�444!���2������1$�� #� !�!�#11�� #�1�2!%&;0�uC;��4!1!��7b�,�� %&!�:����1�444!���2���5$�%&��#$%&��%!1#%� 7��444!���2�����%��$%!��4,1&�16� 5��/,1��4#�/#1��%#/!�#%!��7u��!�14$ � 1�444!��'.�D0D>�(#���#������%&�x�*B�4!�%:#� 2�2�������4, �1$/��%%&!�+!��#/�4�#�#�;2!�"���#�1�/##�#������� %�%�#��$����!%&�4!�/#+!��#/�4�7

<��$4#%!��1&#�#1%��!�%!1�#� �%&��+!��#/�4�/�%# #%##�� ��1�!+� '2&��#3#!4#+4�(!�!�.$��4�/��%#�,8#+4�q#� %&���4!��g��"4�.���# �&��%7h$/#���!/#�,%!��$��2���1�44�1%� $� ��x-b#����3� ���%�1�4�$�!�"u���D#11���1�����%�:#�#����0hg-x?;0�uC;��4!1!��7�#��2#�%#6��%�%����$����=�#�!%,5��%!��$��1�44�1%� :%�%�%&��=%��%����!+4�7B44��!/#�,%!��$�����1���� +,+,�$�1��%��2�����1�!3� #�#�#���,/!@� �#/�4��2!%&/!�!/#4/�%# #%#!�5��/#%!��#+�$%%!��$�%,��:#"�:��=#� �%&�!1!%,�5�5%&� ����7B�B��$1&:�$�!��%!%$%!��#4x-b��3!�2� �$��%$ ,$�!�"#���,/!@� ��!/#�,%!��$�#� 1�44�#/�4��:#� 14#��!5!� !%!%#�#����D&$/#��$+\�1%�%$ !��7C�����2�����1�$!%� +,+,1�44�1%!��1��%���'4!6�9�� h$%1&#�  +g#<(:$�!�"x-b#����3� u���D#11���1�����%�7f�f���1�!3� #���,/!@� }�!3���!%,�5�5f#�&!�"%��x-b


	Index and biological spectrum of human DNase I hypersensitive sites
	Index of consensus human DHSs
	Common coordinates for regulatory DNA
	Proportion of the genome that encodes DHSs
	Cellular patterning of DNA accessibility
	A vocabulary for regulatory patterns
	Biological annotation of individual DHSs
	Dense encoding of regulatory information
	Regulatory annotation of human genes
	Annotating genes with unknown functions
	Connecting DHS actuation to specific TFs
	Annotating genetic association signals
	Genetic signals span gene body DHSs
	Discussion
	Online content
	Fig. 1 Index of DHSs in the human genome.
	Fig. 2 A simple vocabulary captures complex patterning of DHSs.
	Fig. 3 Regulatory annotation of human genes.
	Fig. 4 DHS components illuminate genetic associations and heritability.
	Extended Data Fig. 1 Construction of a DHS index.
	Extended Data Fig. 2 Genomic context of DHS index elements.
	Extended Data Fig. 3 NMF decomposition of DHS index.
	Extended Data Fig. 4 Association of DHS components with cellular conditions and TF motifs.
	Extended Data Fig. 5 DHS component robustness.
	Extended Data Fig. 6 Clustering of same-component DHSs near genes.
	Extended Data Fig. 7 Top labelled genes for selected components.
	Extended Data Fig. 8 Annotation of genes with unknown function and pathways.
	Extended Data Fig. 9 GWAS trait associations of DHS components.
	Extended Data Fig. 10 Extendability of the DHS annotation framework.




