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Single nucleotide polymorphism (SNP) data derived from array-based technology or massive parallel sequencing are often flawed
with missing data. Missing SNPs can bias the results of association analyses. To maximize information usage, imputation is often
adopted to compensate for the missing data by filling in the most probable values. To better understand the available tools for this
purpose, we compare the imputation performances among BEAGLE, IMPUTE, BIMBAM, SNPMStat, MACH, and PLINK with
data generated by randomlymasking the genotype data from the International HapMap Phase III project. In addition, we propose a
new algorithm called simple imputation (Simpute) that benefits from the high resolution of the SNPs in the array platform. Simpute
does not require any reference data. The best feature of Simpute is its computational efficiency with complexity of order (𝑚𝑤 + 𝑛),
where 𝑛 is the number of missing SNPs, 𝑤 is the number of the positions of the missing SNPs, and 𝑚 is the number of people
considered. Simpute is suitable for regular screening of the large-scale SNP genotyping particularly when the sample size is large,
and efficiency is a major concern in the analysis.

1. Background

A single nucleotide polymorphism (SNP) is a genetic varia-
tion at a single base-pair position. It is acquired and retained
in the population. Most SNPs produce no observable differ-
ence between members of a species. These variations in the
DNA can occur on both coding and noncoding sequences at
a frequency of approximately 1 per 1000 base pairs [1, 2]. This
leads to a rate of an estimated 11 million loci that can vary
in approximately 0.1% of the population according to neutral
theory of population genetics [3].

Studies concerning genetic association examine genetic
traits shared among individuals in a population. SNPs have
an important role in these studies because they record the
history of recombination and are sufficiently dense to form
linkage disequilibrium (LD) in nearly all functional genes.
However, it is common for data to be missing on the various
genotyping platforms. Even for array technology, the rate of
missing data can be as high as 0.53% [4].This is approximately
5300 loci for every million SNPs designed on the arrays.

Assuming a random missing mechanism exists, if any locus
in a sample is removed, the missing rate can become as high
as 1 − (1 − 0.0053)𝑛 in an association study of 𝑛 samples.

Because it is often not financially viable to regenotype
the missing data, imputation is used to fill in the missing
SNP values, and to maintain low costs. Imputation can be as
simple as selecting at random a genotype that already exists
in the data or by using a major allele. However, such naive
methods normally result in high error rates [4]. Certain other
methods are based on haplotypes, which are sets of SNPs
that are associated on one chromosome pair. These methods
include the Hidden Markov Model (HMM), Markov chain
(MC), maximum-likelihood, and neural network. Because a
multitude of methodologies exists that can be employed to
impute a haplotype, a range of imputation software, conse-
quently, also exists. Examples of imputation software include
IMPUTE [5], MaCH [6], SNPMSTAT [7], fastPhase [8], and
BEAGLE [9].

Both the IMPUTE and BEAGLE software use the HMM.
The HMM is a statistical tool for modelling generative
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sequences, which are characterised by the use of an underly-
ing process to generate an observable sequence. In the HMM
these underlying processes are represented by states, which
are considered to be unobserved or hidden. The hidden state
used is a pair of haplotypes observed in reference samples
from the HapMap project.The observed data are the individ-
ual genotypes at the corresponding loci. IMPUTE considers
mutation and recombination in itsHMMmodel; this requires
additional information fromCHIAMO[10] andHAPGEN[6,
10, 11] to determine the probability of the genotypes estimated
from the arrays and the predicted haplotypes. MaCH uses a
Markov chain-based approach using samples from HapMap
as references. Long missing segments are compensated for in
MaCH by using haplotypes from the reference samples.

Alternative imputation software and methodologies
include SNPMSTAT and FFNN. SNPMSTAT uses a maxi-
mum-likelihood framework on the genotype data. It uses
HapMap data or other similar data sets to construct the
most-likely haplotypes to occur for a missing SNP value. The
feed-forward neural networks (FFNNs) proposed by Sun
and Kardia [12] were reported to perform well by using a
Bayesian criterion to select the predictors. They claimed that
the performance is better than that of fastPHASE [8] and the
LD-based method, which is used by HelixTree [10].

In this paper, we propose an algorithm based on observed
genotypes and the LD at three neighbouring SNPs, including
the SNP under consideration, to impute the missing SNPs,
and to reduce the error rate for estimation. This algorithm
only considers the two neighbouring SNPs and uses the hap-
lotype information, which is a direct consequence of LD. Jung
et al. used the same level of information in their proposed
method [4], which phased genotypes by the partition-ligation
expectationmaximization (PLEM) [11] to impute themissing
SNPs. We compare the results using SNPs from the same
chromosomal regions in Jung’s study and demonstrate the
better performance of our algorithm. We also compare the
general-purpose methods including BIMBAM v0.99, BEA-
GLE v3.0.3, IMPUTE v0.5.0, MARCH v1.0.16, PLINK, and
SNPMSTAT v3.1. Because Simpute provides the best power at
highly linked loci, we compare it to the best method using
SNPs with strong LD. We demonstrate that Simpute is a
promising tool to provide efficient computation when it
comes to the age of massive parallel sequencing.

2. Methods

SNPs could be bi-, tri-, or tetraallelic polymorphisms by
definition, but triallelic and tetraallelic SNPs rarely exist in
the human population. SNPs are usually considered biallelic,
and three genotypes are possible for each SNP locus.They are
coded as 0 (homozygous for the wild type), 2 (heterozygote),
and 1 (homozygous for mutants) in this study.

Two neighbouring SNP loci of the missing target are
considered in the Simpute method. Haplotypes formed by
the consecutive pair of loci are constructed and the estimated
haplotype probabilities are combined with the LD informa-
tion fromeither side of themissing SNP to predict themissing
SNP genotype.

2.1. Estimate the Population Proportion of Haplotypes. We
first considered genotypes at two loci. The counts of all
genotype combinations are summarized in Table 3.

In Table 3, there are nine genotype combinations. The
haplotypes for eight of them can be clearly resolved, while
those of the 𝑁

1,1
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where 𝑋
1
is the proportion of the phase ab/AB with the

observed genotype aAbB, and 𝑋
2
is the proportion of the

phase aB/Ab.
The initial values for 𝑋

1
and 𝑋

2
are set to 0.5, and they

are iteratively updated to get a more probable estimate. The
updating step is

𝑋
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The estimated𝑋
1
and𝑋
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are then used to calculate the 𝑝(ab),

𝑝(aB), 𝑝(Ab), and 𝑝(AB) in (1). The 10 iterations will stop
for either 𝑋

1
or 𝑋
2
. According to (1) and (2), 𝑋

1
or 𝑋
2
is a

cubic function, solved by the cubic formula. Here we use the
iterative method to solve𝑋

1
and𝑋

2
. The initial value of both

is set to 0.5, where the two phases have the same probability
(Table 4).

2.2. Linkage Disequilibrium Measurement. We impute the
missing genotypes using the LD information and the haplo-
type probabilities calculated in the previous section. If the LD
value between two SNP sites is high, then the two SNPs are
close to each other, and there are relatively few recombination
events between them. Some measurements are commonly
used to evaluate the extent of LD between a pair of SNP
sites. Two important pairwise measures of LD are 𝑟2 and |𝐷󸀠|
[13–15]. Their range is from 0 to 1, but their interpretation is
slightly different. When |𝐷󸀠| is equal to 1, 𝑟2 can be small. For
example, when 𝑝(ab) = 0.9, 𝑝(aB) = 0.1, 𝑝(Ab) = 0.1, and
𝑝(AB) = 0, |𝐷󸀠| is equal to 1, the 𝑟2 value is 0.012. In this paper,
𝑟2 is derived from the input samples. The |𝐷󸀠| and 𝑟2 can be
computed as follows.

The difference between the observed and the expected
probability of two loci is measured. The disequilibrium
coefficient𝐷 is expressed as

𝐷 = 𝑝 (ab) − 𝑝 (a⋅) × 𝑝 (⋅b) . (3)
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The normalized disequilibrium coefficient is defined as 𝐷󸀠 =
𝐷/|𝐷|max according the study of Pritchard and Przeworski
[14], where

𝐷max = {
min (𝑝 (a⋅) × 𝑝 (⋅B) , 𝑝 (A⋅) × 𝑝 (⋅b)) , if 𝐷 ≥ 0
min (𝑝 (a⋅) × 𝑝 (⋅b) , 𝑝 (A⋅) × 𝑝 (⋅B)) , if 𝐷 < 0.

(4)

The range of the normalized disequilibrium coefficient 𝐷󸀠 is
[−1, 1].𝐷󸀠 can be 1 while the𝑃 value is not significant.That is,
when𝐷󸀠 is equal to 1, there can still be no association. Hence,
we adopt another popular measurement 𝑟2, where
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2

=
𝐷2

𝑝 (a⋅) × 𝑝 (⋅b) × 𝑝 (A⋅) × 𝑝 (⋅B)
. (5)

The 𝑟2 value between the sites 𝑃 and 𝑄 is denoted as 𝑟2
𝑃,𝑄

.

2.3. Imputation Algorithm. Consider three SNP sites 𝑃, 𝑄,
and 𝑅 that are in consecutive order. The imputation proce-
dure is as follows.
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zero, it will be set to a minimum value of 10−5 to facilitate the
following computation.

(2) Because most haplotypes consisting of three loci are
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be correctly estimated with the limited samples in most
studies, we approximate it with the product of haplotype
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pair of loci:
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where ⊗ and ⊕ are the genotypes at the first and the second
locus in each pair. If the𝑊
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equals zero, it will be set to a

minimum value of 10−5 to facilitate the following computa-
tion.

(4) Calculate the haplotype pair score
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where the probabilities of the haplotype pair 𝑃
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(5) Choose from all legitimate haplotype pairs that maxi-

mize the score in (8).
The algorithm also considers the situation when consecu-

tive SNPs are missing. In that case, the two neighbouring loci
𝑃 and 𝑅 of the missing locus 𝑄 can represent the adjacent
two loci on the same side of the 𝑄. For example, when there
is a long stretch of missing genotypes from SNP 1 to 4 in a
specific sample, we can first impute locus 4 with information
from locus 5 and 6 and then sequentially fill in all the missing
ones.

2.4. Time Complexity. Our algorithm requires the computa-
tion complexity at the order of 𝑂(𝑚𝑤 + 𝑛) where 𝑛 is the
number ofmissing SNPs,𝑤 is the number of the SNP lociwith
at least one missing entry, and𝑚 is the number of individual
with at least one locus missing. Each sample requires the
order of 𝑂(1) to count each of the 9 genotype and the order
of𝑂(𝑚𝑤) for steps 1 and 2. Hence, the total complexity of the
algorithm is 𝑂(𝑚𝑤 + 𝑛).

3. Data Description

In this paper, we used two data sets to compare imputation
performance. All data sets are based on the individuals
included in the HapMap project [16].

3.1. SNP-Dense Region on Chromosome 22. The first data set
was the testing region adopted from Jung et al.They identified
a region with dense SNP distribution and demonstrated their
performance with only six SNPs, as annotated in HapMap
Phase II, release 22. Those SNPs are rs2213329, rs2227029,
rs9610029, rs2213331, rs9619447 and rs743726, and are located
from positions 33227611 to 33233156 of chromosome 22. This
region was selected for its strong linkage of |𝐷󸀠| > 0.7. We
used the SNPdata of 270 people fromHapMap to generate the
testing data. The data were randomly selected with missing
rates of 5%, 10%, 15%, and 20% from the total of 270 × 6 =
1620 SNPs. We adopted the settings of the missing rates of
Jung et al. for comparison purposes. This random procedure
was repeated 100 times, and the average error rates were
obtained. A more realistic comparison is demonstrated with
the other set of random missing studies described in the
following section.

3.2. Random Missing SNPs from the HapMap Phase III on
Chromosome 21. We used samples of HapMap phase III as
our testing data. Because some of the software we compared
required reference data, we provided samples of HapMap
Phase II release 22 as the reference samples; those samples
were, thus, excluded in our testing set. SNP loci that are
tri-alleic or tetraallelic were excluded in the comparison;
Tables 1 and 2 show the proportion of this type of loci in the
reference samples (HapMap Phase II release 22) and testing
samples (HapMap Phase III specific samples), respectively.
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Table 1: The nonbiallelic loci proportion in the HapMap phase II
release 22.

Population Individuals SNPs Nonbiallelic
CEU 90 48217 1.69%
JPT + CHB 90 50053 1.81%
YRI 90 48541 1.60%

Table 2:The non-bi-allelic loci proportion in theHapMap phase III.

Population Individuals SNPs Non-bi-allelic
CEU 80 19250 0.39%
JPT + CHB 77 17286 0.21%
YRI 80 20198 0.21%

Table 3: A 3 × 3 contingency table for the genotypes at two
consecutive loci. A and a are the two alleles in locus 1 while B and b
are the two alleles in locus 2.

0 (bb) 1 (bB) 2 (BB) Total
0 (aa) 𝑁

0,0
𝑁
0,1

𝑁
0,2

𝑁
0,⋅

1 (aA) 𝑁
1,0

𝑁
1,1

𝑁
1,2

𝑁
1,⋅

2 (AA) 𝑁
2,0

𝑁
2,1

𝑁
2,2

𝑁
2,⋅

Total 𝑁
⋅,0

𝑁
⋅,1

𝑁
⋅,2

𝑁
𝑃,𝑄

The proportion is low and is not crucial for the conclusion.
We conducted the experiment on the smallest chromosome
to enable easier computation of the less efficient algorithms
in the comparison.The results are reported separately for the
different ethnic groups because certain interesting differences
were observed.

We generated three sets of testing data from the HapMap
Phase III specific samples. The first set was derived by ran-
domly masking the genotypes on chromosome 21, called the
complete set. Because the error rate of genotype calling is less
than 1% [17], the missing rates were 0.1%, 0.5%, 1%, and 5%.
Ten randomly missing testing data sets were generated for
comparison, and the accuracy was calculated as the average
of the 10 repeats. The software used to compare the data set
included BIMBAM v0.99, BEAGLE v3.0.3, IMPUTE v0.5.0,
MARCH v1.0.16, PLINK, and SNPMSTAT v3.1 and used the
system Linux kernel version 2.6 on AMD 64 platform.

Our second test data consisted of numerous regions of
only three SNPs on chromosome 21, called the short input. At
most, two of the three SNPs were permitted to be missing in
our random sampling process. The error rates are reported,
with the averages of 25 repeats of the random missing
procedure for missing rates, as 0.1%, 0.5%, 1%, and 5%.

The algorithm we proposed adopted minimum infor-
mation to complete the missing gaps, and, hence, it is not
designed for all purposes.We show that its performance at the
highly linked regions is no worse than the best method previ-
ously mentioned.The third set of test data consists of missing
SNPs with strong linkage (𝑟2 > 0.9) to either one of their
adjacent SNPs, called high LD. The advantage acquired at the
highly linked regions is themost important aspect of Simpute
and is why Simpute is the most helpful program in global
genome sequencing projects. The error rates are reported

Table 4: Notation for the haplotype probabilities at the two loci.

Locus 𝑃 \ 𝑄 b B Total
a p (ab) p (aB) p (a⋅)
A p (Ab) p (AB) p (A⋅)
Total p (⋅b) p (⋅B) 1

Table 5: Error rates∗ for Simpute, BEAGLE, and Jung’s methodwith
random missing study on the six SNPs of chromosome 22.

Missing rate/method Simpute BEAGLE Jung’s method
5% 1.358% 1.7531% 16.59%
10% 1.8944% 2.1429% 17.82%
15% 3.0207% 3.4132% 20.25%
20% 4.4472% 4.4907% 20.07%
∗Error rates = number of error imputed entries/number of missing entries
∗100%.

from the average of 100 repeats of the random missing
procedure for the missing rates at 0.1%, 0.5%, 1%, and 5%.

4. Results

We used samples from HapMap Phase II release 22 as the
reference data set, which is required by BEAGLE, BIMBAM,
MACH, SNPMStat, IMPUTE, and plink. Because of the
intractable computation load of SNPMStat and IMPUTE,
we divided the chromosome into segment of 10,000 SNPs
for the inputs. Because SNPMStat requires substantial CPU
time, only three repeats were performed to derive the average
accuracy. All the other programs used 10 repeats to obtain
the averages. The results from the complete set are shown in
Figure 1. BEAGLE gives the best overall accuracy and is also
the fastest on our benchmark platform CentOS 5.3 under the
VNWare ESX 4i in Figure 2. The following comparisons only
address the differences between Simpute and BEAGLE.

The results from the SNP-dense region of chromosome
22 in Jung’s study are shown in Table 5. The error rates from
the Jung et al. study are copied directly from their report
because we did not implement their algorithm. It appears that
Simpute has a strong advantage in the SNP-dense regions.
Although BEAGLE used the same HapMap samples as refer-
ence samples and used all six SNPs together in their compli-
cated algorithms, it still has slightly higher error rates, and the
contrast is strong at the lower missing rates.

To understand the relation between the information fed
into each method and the power each method gains, we
first assessed the sets of three SNPs on chromosome 21. This
provided limited information, and the error rates for Simpute
and BEAGLE are shown in Table 6.Themissing rates were set
as 0.1%, 0.5%, 1%, and 5% to better match the actual appli-
cations. Because the data are artificial and require repeated
initiation processes for BEAGLE to process all the short
regions, extensive computation time is required for BEAGLE
to process all the data. Hence, comparing the computation
time is not feasible, and it is difficult to run the entire set of
simulations on all three ethnic groups. We only reported the
results for Group CEUwith 25 repeats of the randommissing
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Figure 1: Imputation accuracy compared across BEAGLE, IMPUTE, BIMBAM, SNPMStat, MACH, and plink using the complete set. The
curve with IMPUTE-call thresh-0 stands for the best setting (call thresh = 0) we found for Impute rather than the default setting. Accuracy =
number of correctly imputed entries/number of missing entries ∗100%.

procedure, as shown in Table 6. The error rate of Simpute is
approximately the same as that of BEAGLE and matches our
expectations.

Tables 7, 8, and 9 show the evaluation of Simpute and
BEAGLE using the high LD testing data on chromosome 21.
The default setting of BEAGLE used the same 270 people
from HapMap Phase II as the reference data. In contrast,
Simpute used the two neighboring SNPs of the missing one.
The error counts are the averages of 100 repeats of the random
missing procedure. BEAGLE performed better than Simpute
but the difference is negligible when the missing rate is low.
In addition, BEAGLE requires substantially more processing
time.

5. Conclusion and Discussion

In this study we developed a simple strategy to impute
missing genotypes for SNPs that have a high resolution. Our
method requires only twoneighbouring loci of amissing SNP.
Furthermore, we show in our study that for highly linked
loci, our algorithm has comparable performance to BEAGLE,
a system that incorporates data from various sources of
information, as has been suggested in recent studies. These

Table 6: The error rates∗ for random missing SNPs of short input
at 𝑟2 ≥ 0.9 from the HapMap phase III on chromosome 21 of short
input for the CEU.

Method/
missing rate Simpute BEAGLE

0.1% 37.136/483 (7.69%) 38.09/483 (7.89%)
0.5% 188/2412 (7.79%) 183.6364/2412 (7.61%)
1% 378.333/4823 (7.84%) 376.762/4823 (7.81%)
5% 1913.632/24111 (7.94%) 1892.053/24111 (7.84%)
∗Error rates = number of error imputed entries/number of missing entries
∗100%.

sources of information include reference samples and long-
range LD.

The algorithmwe introduced in our study has a complex-
ity of 𝑂(𝑚𝑤 + 𝑛), where 𝑛 is the number of missing SNPs, 𝑤
is the number of the positions of the missing SNPs, and 𝑚 is
the sample size. Because of the design of our algorithm, and
the reduction of the prerequisite input incorporated into the
imputation algorithm,wewere able to significantly reduce the
computation time.
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Table 7: Error rates∗ and computation time for random missing SNPs of high LD for the CEU samples.

Method/missing rate Simpute BEAGLE
Error rate Running time (sec) Error rate Running time (sec)

0.1% 5.52/483 (1.14%) 12.88 4.49/483 (0.93%) 164.17
0.5% 27.94/2412 (1.16%) 13.09 21.01/2412 (0.87%) 164.82
1% 57.22/4823 (1.19%) 14.07 44.07/4823 (0.91%) 168.47
5% 321.9/24111 (1.33%) 18.24 224.65/24111 (0.974%) 168.69
∗Error rates = number of error imputed entries/number of missing entries ∗100%.

Table 8: Error rates∗ and computation time for random missing SNPs of high LD for the CHB + JPT samples.

Method/missing rate Simpute BEAGLE
Error rate Running time (sec) Error rate Running time (sec)

0.1% 5.15/493 (1.04%) 10.90 4.64/493 (0.94%) 138.40
0.5% 27.29/2463 (1.10%) 11.08 24/2463 (0.97%) 139.79
1% 55.07/4925 (1.11%) 11.77 47.69/4925 (0.97%) 138.96
5% 322.38/24622 (1.31%) 16.113 242.26/24622 (0.98%) 140.96
∗Error rates = number of error imputed entries/number of missing entries ∗100%.

Table 9: Error rates∗ and computation time for random missing SNPs of high LD for the YRI samples.

Method/missing rate Simpute BEAGLE
Error rate Running time (sec) Error rate Running time (sec)

0.1% 2.57/271 (0.95%) 12.42 2.23/271 (0.82%) 187.80
0.5% 13.54/1353 (1.00%) 12.925 11.2/1353 (0.83%) 188.41
1% 27.19/2705 (1.00%) 13.08 22.89/2705 (0.85%) 187.45
5% 161.02/13525 (1.19%) 15.921 119.94/13525 (0.887%) 191.29
∗Error rates = number of error imputed entries/number of missing entries ∗100%.
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Although Simpute is unable to outperformmost software
for general purposes, it has shown its potential for specific
purposes.With the current trend ofmass parallel-sequencing
technologies, SNPswill soon be discoveredwith ease, without
requiring the use of predefined positions for their detection.
Furthermore, the availability of samples will accumulate in
the following few years. Thus, it is expected that most SNPs
will be highly linked in samples of moderate size.

Simpute has a strong advantage over more complicated
algorithms that use high LD regions. Moreover, it demon-
strates a distinct advantage in efficiency when handling large
data sets.This efficiency is of great benefit to genome centers,
which have increasing demands in the number of personal
genomes that must be sequenced and analyzed through a
real-time system.

Availability

Simpute is available from the following website: http://www.
cs.nthu.edu.tw/∼dr928307/Simpute.htm.We provide an inte-
grated interface to run all of these softwares. It can be
downloaded at http://kitty.2y.idv.tw/∼tcs/ASHG2009/ and
performed under Linux kernel 2.6 amd64 platform.
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