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A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is
the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory,
reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil
interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is
designed based on the goal of optimal drive efficiency. An equation of state is established using the coordinated slip as the desired
input and the actual slip as a state variable. To improve the robustness and adaptability of the control system, an adaptive neural
network is designed. Analytical results and those of a simulation using Vortex demonstrate the significantly improved mobile
performance of the WMR using the proposed control system.

1. Introduction

Wheeled mobile robots (WMRs) used in outdoor applica-
tions, such as for planetary exploration, often have to navigate
loose sloped terrain. WMRs traversing on loose terrain will
inevitably encounter the problem of slip between the rigid
wheels and the loose soil [1]. An increase in this slip beyond
a certain degree will cause the WMR to deviate from the
predetermined trajectory and the power consumption to
increase and possibly cause failures. Such adverse incidents
have been reported for WMRs traversing on loose terrain.
For example, the 2005 Opportunity Rover relapsed into loose
sand dunes of Purgatory and took five weeks to escape
[2]. Similarly, the 2009 Spirit Rover was jammed into the
sandy soil of the Home Plate plateau of Mars, owing to
which its “mobile” life ended and it became a fixed research
platform [3].The conventional controlmechanism of aWMR
is designed mainly for navigation in indoor environments,
typically by assuming the wheel-terrain interaction as being
rigid, that is, without considering the slip or considering
it an external disturbance [4]. Indubitably, this assumption
of rigidity is reasonable when the velocity and acceleration
of WMRs are small or the surface of the traversing path
is hard (both of which correspond to a large coefficient

of friction) [5]. However, a WMR’s wheel-soil mechanics
is substantially different in outdoor applications such as
planetary exploration [6, 7], and, hence, the conventional
rigidity-based control mechanism could cause loss of control
of the WMR [8]. Thus, the control of WMRs on loose terrain
is faced with unique challenges.

With this background, many researchers have focused on
wheel-soil mechanics and considered it to be an important
factor for achieving proper control of WMRs traversing on
loose terrain and therefore conducted extensive research
in this direction. For example, Iagnemma and Dubowsky
verified throughnumerical analysis and tests that the rigidity-
based conventional motion planning and control algorithm
can cause severe slip and sinkage problems inWMRs [1]; they
thenmodeledwheel-soil mechanics based on terramechanics
[9] and also established the multiple-physical-based control
mechanism for the navigation of WMRs on flat, loose terrain
[9]. Further, Yoshida et al. extended the multiple-physics-
based approaches and proposed a traction control method
for reducing the slip ratio to a small value [10]. The method
was verified through tests on dry sand, thus confirming that
the wheel-slip-based control mechanism is effective in pre-
venting severe sinkage and energy waste [10]. Furthermore,
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in order to avoid incoordination among the wheels, Baum-
gartner et al. proposed a velocity synchronization algorithm
[11]; they verified through experiments using field integrated
design and operation rovers that the proposed method can
reduce the required power and wheel slippage [11]. Ding et
al. proposed an online soil parameter estimation method
using the linear least-squares method [12] and a modified,
simplified model for wheel-terrain interaction [13], and they
compared the simplified model with the original one by
numerical analysis [14] to proof the precision of themodified,
simplified model. Now, with the development of wheel-soil
interaction terramechanics for WMRs, the influence of the
wheel slip ratio on the energy consumption and traction
efficiency of WMRs is well understood [15]. Moreover, it
has become feasible to develop more efficient control algo-
rithms for both minimizing the energy consumption and
compensating for the traction efficiency loss of WMRs as
caused by wheel slip. However, current research is mainly
focused on flat, loose terrain [16–19], and research on the
control of WMRs traversing loose sloped terrain is rare. The
presently available wheel-soil interaction mechanics models
are too complex for control design [9]. The wheel-soil inter-
action model developed previously [10] involves numerous
unknown dynamic time-varying parameters, which easily
causes computation delay and control error. Therefore, the
design of an effective control mechanism based on wheel-soil
mechanics is considered a key research issue in the control of
WMRs on loose terrain.

To this end, the present study investigates longitudi-
nal slip-ratio-coordinated control of WMRs while they are
climbing up a loose slope, through the planning and tracking
of the slip based on an analysis of the wheel-soil inter-
action mechanism. First, experimental motion analysis is
conducted to establish a model for the wheel-soil interaction
mechanism. Second, an online planning algorithm for slip
ratio that is based on the goal of optimizing drive efficiency
is built. Third, a dynamic model is developed for a six-
wheel mobile robot climbing loose sloped terrain for the
design of its control mechanism. Furthermore, a tracking
control method is proposed, wherein individual wheels’ slip
ratios are used as state variables and the planning slip ratios
obtained by the drive efficiency optimization algorithm are
used as the desired input. To improve the robustness and
adaptability of the proposed tracking control method, an
adaptive neural network designed with a weight error in its
weight rate is used. Finally, the stability of the control law is
proved using the Lyapunov method. Full-scale simulations
are performed in real time using the simulation platform
RoSTDyn for a six-wheel lunar rover climbing loose sloped
terrain to demonstrate the effectiveness of the proposed
control scheme.

The rest of this paper is organized as follows. Section 2
presents the development of a slope-based wheel-soil
dynamic model and experimental motion analysis is
conducted to amend the model for the wheel-soil interaction
mechanism. Section 3 describes the establishment of a slip
planning algorithm based on the goal of drive efficiency
optimization. Section 4 presents a simplified model used for
the mobility control of a planetary rover. Section 5 describes
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Figure 1: Wheel-soil interaction mechanism on loose sloped ter-
rain.

the establishment of an equation of state using the optimal
slip as the desired input and the real slip as a state variable;
a coordinated slip tracking system is designed using an
adaptive neural network. Section 6 demonstrates the
effectiveness of the developed control system via full-scale
simulations performed using a six-wheel robot climbing
sloped deformable terrain. Finally, Section 7 concludes the
study.

2. Slope-Based Wheel-Soil Dynamic
Interaction Model

When WMRs traverse loose sloped terrain, the wheels may
undergo rolling, slip, and sliding movements. The slip ratio
is usually used to describe wheel slip and sliding and is
expressed as follows:

𝑠 =

𝑟
𝑠
𝜔 − V
V
𝑙

V
𝑙
= {

𝑟
𝑠
𝜔, ∀𝑟𝜔 ≥ V

V, ∀𝑟𝜔 < V,
(1)

where 𝑠 is the slip ratio, which means the wheel slip ratio in
our study;𝜔 is the actual angular velocity of thewheel; 𝑟

𝑠
is the

effective radius of the wheel; V
𝑙
is the theoretical translational

velocity of the wheel axis; and V is the actual translational
velocity of the wheel axis. From (1), one can see that −1 ≤

𝑠 ≤ 1. The condition 𝑠 = 0 indicates pure rolling, wherein
the wheel touches the ground at the wheel’s instantaneous
velocity center; the relationship V = 𝑟𝜔 is satisfied in this
condition. The condition 𝑠 = 1 indicates that the wheels are
in a pure slip state, that is, corresponding to time when V = 0.
When −1 < 𝑠 < 1, the wheel is in the slip state, and, at this
time, V < 𝑟𝜔. When −1 ≤ 𝑠 < 0, the wheel is in the sliding
state.

When the robot is climbing loose sloped terrain, the
wheel-soil interaction is as shown in Figure 1. Here, 𝐹

𝑁
is

the normal force, 𝐹DP is the draw pull force, and 𝑇 is the
driving torque. Further, 𝜃

1
denotes the wheel-soil interaction

entry angle, 𝜃
2
denotes the departure angle, and 𝜃

𝑚
denotes

the angle of maximum normal stress. 𝜏 and 𝜎 are the shear
stress and normal stress, respectively, when the wheel-soil
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interaction occurs at any point on the surface; 𝑧 is the wheel
sinkage, and 𝛼 is the slope angle.

On the basis of the Reece formula [15], the normal stress
is expressed as

𝜎 = (𝑘
1
+ 𝑘
2
𝑏) (

ℎ

𝑏

)

𝑛

, (2)

where 𝑘
1
, 𝑘
2
are soil bearing characteristic parameters, ℎ is

the sinkage, 𝑛 is the soil deformation index, and 𝑏 is the wheel
width.

Considering the influence of slope angle on the distribu-
tion of stress on the surface, the normal stress model for a
robot climbing a loose slope is expressed as follows:
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𝜃
𝑚

is calculated by the empirical formula in (4). 𝑛
 is the

modified index for the condition of a robot climbing loose
sloped terrain. These variables are calculated as
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, (4)
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In (6), 𝑐
1
, 𝑐
2
are constants determined by soil properties.

Generally, 𝑐
1

≈ 0.35, 0 ≤ 𝑐
2

≤ 0.25. 𝑐
3
is the correction

coefficient and is usually in the range 0 ≤ 𝑐
3
≤ 0.075 [15].

On the basis of the Janosi formula [15], we can determine
the tangential stress, when the wheel is climbing the loose
sloped terrain, as follows:

𝜏 (𝜃) = [𝑐 + 𝜎 (𝜃) tan𝜑] {1 − exp [−

𝑗 (𝜃)
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]} ,
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1
− sin 𝜃)] .

(7)

In (7), 𝑐 denotes the soil cohesion coefficient, 𝜑 denotes
the soil friction angle, and 𝐾 denotes the soil shear modulus
of deformation.

Through the analysis of the wheel-soil interaction on
loose sloped terrain, the correction equation for the concen-
trated force or torque of the wheel for WMRs climbing such
a terrain can be established as
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(8)

In the horizontal direction, the balance equation is
expressed as follows:

𝐹DP = 𝐹
𝐻

− 𝐹
𝑅

= 𝑚V̇. (9)

Here, 𝐹
𝐻
is the soil thrust force and 𝐹

𝑅
is the resistance

force, and these are expressed, respectively, as
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Then, the drawbar pull force can be obtained by the
summation of 𝐹

𝐻
and 𝐹

𝑅
as

𝐹DP = −𝑟𝑏∫

𝜃
1

𝜃
2

𝜎 (𝜃) sin 𝜃 d𝜃 − 𝐺 sin𝜑 + 𝑟𝑏∫

𝜃
1

𝜃
2

𝜏 (𝜃) cos 𝜃 d𝜃.

(12)

According to the balance of Euler equations for each
wheel, we get
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Here, 𝑇
𝑖
is the motor driving torque and 𝑇

𝑅𝑖
is the resistance

moment, expressed as
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3. Slip Planning for Six-Wheel Robot
Climbing Loose Sloped Terrain

3.1. Relationship between Wheel Slip and Key Performance
Indexes of WMR. The key performance indexes of a WMR
include its traction efficiency (see Figure 18), thrust coef-
ficient and traction coefficient, and drive efficiency. These
indexes are indicators of the mobile performance of a WMR.
From the literature [20], a linear combination of draw-pull
force and the wheel supporting force approximately gives the
equivalent driving torque as

𝑇 = 𝐹DP ⋅ 𝑙 + 𝐹
𝑁

⋅ 𝑒 ≈ 𝐹DP ⋅ 𝑟
𝑠
+ 𝐹
𝑁

⋅ 𝑒, (15)
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⋅

𝑒

𝑟
𝑠

. (16)

Here, 𝐹
𝑡
= 𝑇/𝑟

𝑠
is the thrust force, which is produced by the

soil deformation caused by the rotation of the motor-driven
wheel. 𝐹

𝑁
⋅ 𝑒/𝑟
𝑠
is the resistance of the soil, and 𝑒/𝑟

𝑠
is the

wheel resistance coefficient that reflects the resistance of the
soil to prevent the rotation of the wheel.The wheel traction is
the drawbar pull force minus the soil resistance generated by
the traction. The wheel-soil interaction generates draw-pull
force that drives the movement of the robot.

Equation (16) can be transformed as

𝐹DP
𝐹
𝑡

+ 𝐹
𝑁

⋅

𝑒
𝑠

𝑟𝐹
𝑡

≈ 1. (17)
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Table 1: Geometrical parameters of wheels.

Wheel Radius 𝑟 (mm) Width 𝑏 (mm) Lug height ℎ (mm)
Wh1 157.4 165 15
Wh2 135 110 15
Wh3 135 165 15
Wh4 135 165 10
Wh5 135 165 10

Let PE = 𝐹DP/𝐹𝑡 = 𝐹DP𝑟𝑠/𝑇 denote the traction efficiency.
It indicates how much driving force transforms into the
effective draw-pull force. From (17), it is understood that the
force generated by the motor rotation and thrust force is
partly used to generate traction force and partly to overcome
the resistance of the soil. Dividing (16) by the normal load 𝐹

𝑁

gives

𝐹DP
𝐹
𝑁

≈

𝑇

(𝐹
𝑁
𝑟
𝑠
)

−

𝑒

𝑟
𝑠

. (18)

Let PC = 𝐹DP/𝐹𝑁 be the traction coefficient, which
indicates the draw-pull force for providing traction under a
unit load, and let TC = 𝑇/(𝐹

𝑁
𝑟
𝑠
) be the thrust coefficient,

which indicates the motor-provided thrust force under a unit
load. Then, we have

PC ≈ TC −

𝑒

𝑟
𝑠

,

PE =

(𝐹DP/𝐹𝑁)

(𝑇/𝐹
𝑁
𝑟
𝑠
)

=

PC
TC

.

(19)

TE is an important index that denotes the wheel’s drive
efficiency. Combining with (1), we can express TE as

TE = 𝐹DP ⋅

V
𝑇𝜔

= 𝐹DP ⋅

𝑟
𝑠
(1 − 𝑠)

𝑇

= PE (1 − 𝑠) . (20)

From the above analysis, we can say that the variables PE,
PC, TC, and TE reflect the relationship between the WMR’s
mobile performance and the slip ratio.

To confirm the influence of the slip ratio on the WMR’s
mobile performance, experiments on the wheel-soil interac-
tion were conducted for the scenario of a WMR climbing
a sloped test bed developed at the State Key Laboratory
of Robotics and System at Harbin Institute of Technology,
China. In the experiment, five kinds of wheels with different
dimensions and wheel lugs were used on different loose soils.
Tables 1 and 2 list the parameters of the wheels and of the
terrain mechanics, respectively, where 𝑟 is the wheel radius, 𝑏
the wheel width, and ℎ the lug height. The travelling velocity
of the WMR was 10mm/s.

A six-wheel robot was considered an example rover and
was made to climb loose sloped terrain angled at 0∘, 5∘, 10∘,
15∘, 20∘, and 25∘ to study the relationship between the slip
ratio and the key performance indexes (Figure 2). Figure 3
shows the relationship of the performance indexes PE, PC,
TC, and TEwith the wheel slip ratio in this climbing scenario,
with different ground mechanics parameters and different
wheel parameters.

Table 2: Parameters of terrainmechanics of sand and lunar soil [14].

Terrain parameter Sand Lunar soil
𝑛 1.10 1.0
𝑘
𝑐
(kPa/m𝑛−1) 0.95 1.4

𝑘
𝜑
(kPa/m𝑛) 1528.43 820

𝑐 (kPa) 1.04 0.52 (0.1∼2.7)
𝜑 (∘) 28 42 (25∼50)
𝐾 (m) 0.0254 0.0178

Figure 2: Photograph of six-wheel robot climbing loose sloped
terrain in an experiment.

From Figure 3, we can see that the key performance
indexes of the WMR are optimal at a wheel slip ratio in the
range of 0.1 to 0.4. The index TE is a function of PE, PC, and
TC; therefore, if we use an optimization algorithm for TE, we
can perform dynamic programming at each wheel slip ratio
to ensure the least possible wheel sinkage and thus obtain
maximal TE of the WMR.

3.2. Slip Ratio Planning Algorithm Based on Optimal Drive
Efficiency. When robots climb loose sloped terrain with
constant angular control (CAC), each parameter of thewheel-
soil mechanics is likely to be different, implying that the
wheel slip ratios would also possibly be different. This would
inevitably lead to “incoordination” between wheels. There-
fore, we aim to optimize the drive efficiency for achieving
the desired wheel slip ratio and to control the drive torque
of all wheels in a coordinated manner, to be able to track
the desired slip ratio and reduce the wheel sinkage. Through
tracking of the desired slip ratio for coordinating the energy
distributions of each wheel, the drive efficiency of all the
wheels can be ensured to be maximal. If the wheel width,
radius, payload, and contact angle of the wheel with the
terrain are known for a particular WMR, it is possible to
determine the desired wheel slip ratio for climbing loose
sloped terrain through drive efficiency optimization.The slip
ratio planning goal based on drive efficiency optimization
is as follows: minimum energy consumption and maximum
drive efficiency for a unit running distance of a WMR. The
following factors/conditions need to be considered to meet
this goal: (1) the force equilibrium equation, (2)maintenance
of contact of each of the wheels with the ground and a normal
force greater than zero, (3) a soil resistance moment less than
the maximum motor torque, and (4) wheel-soil mechanics.
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Figure 3: Key performance indexes of robot climbing loose sloped terrain versus wheel slip ratio.

Based on the factors/conditions of optimal TE, the expected
slip ratio planning algorithm for a target WMR, that is,

min 𝐽 (𝑠
𝑖
) =

6

∑

𝑖=1
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(22)

When the ground mechanics parameters are known, the
flowchart of the planning algorithm for the optimal-TE-based
desired slip ratio is as shown in Figure 4.

4. Dynamics Modeling of Six-Wheel Robot
Climbing Loose Sloped Terrain Based on
Wheel-Soil Mechanics

An optimal-TE-based slip ratio can ensure minimum energy
consumption and maximum driving efficiency. To design the
tracking control law for the optimal-TE-based desired slip
ratio that would be in agreement with the actual slip ratio,
we first perform dynamics modeling of climbing of WMRs
on loose sloped terrain based on wheel-soil mechanics. Here,
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Figure 4: Flowchart of desired slip ratio based on optimal drive
efficiency.
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Figure 5: Schematic of six-wheel rocker-type mobile robot.

again, a six-wheel mobile robot is the research object; owing
to its six independent drives and rocker mechanism, it can
passively adapt to loose sloped terrain. Figure 5 shows the
schematic of the six-wheel rocker-type mobile robot.

This mobile robot has the following features when climb-
ing loose terrain: (a)when the robot is in longitudinalmotion,
the system dynamics model is a linear combination of the
wheel-soilmechanics; (b) the robot forces on the left and right
sides influence each other; (c) sinkage of wheels caused by
wheel slip causes the tilting of the robot body.

Figure 6 shows the dynamics model based on the wheel-
soil mechanics in the case of the six-wheel robot climbing
loose sloped terrain.

Equation (23) represents the control-based wheel-soil
dynamics model for a six-wheel robot while climbing up
deformable slopes with longitudinal slip; it was obtained by
the simplification of (9), (12), and (13):

𝑚V̇ =

6

∑

𝑖=1

𝐹DP𝑖 (𝜃1𝑖, 𝜃2𝑖) − 𝐺 sin (𝛼 + Δ𝛼) ,

𝐼
𝑊
�̇�
𝑊𝑖

= 𝑇
𝑖
− 𝑇
𝑅𝑖

(𝜃
1𝑖
, 𝜃
2𝑖
) .

(23)

Δ𝛼 is the sinkage incline angle, |Δ𝛼| ≤ 𝜁, and 𝜁 is a constant.
A small 𝜁 implies linearized derivation, sin(𝛼 +Δ𝛼) = sin𝛼+

sinΔ𝛼, and, using (11)–(13),

̇𝑠
𝑖
= −

(1 − 𝑠
𝑖
) [∑
6

𝑖=1
𝐹DP𝑖 (𝜃1𝑖, 𝜃2𝑖) − 𝐺 sin (𝛼 + Δ𝛼)]

𝑀V

+

𝑟
𝑠
(1 − 𝑠

𝑖
)
2

[𝑇
𝑖
− 𝑇
𝑅𝑖

(𝜃
1𝑖
, 𝜃
2𝑖
)]

𝐼
𝑊
V

.

(24)

Next, we define the output function as

h (x) = [𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6
]

𝑇

= [𝑠
1

𝑠
2

𝑠
3

𝑠
4

𝑠
5

𝑠
6
]

𝑇

.

(25)

Combining (23) and (24), we can obtain the standard
form of affine nonlinear systems as

ẋ = f (x) + g (x) u + d (x) ,

h (x) = x,
(26)

where

x = [𝑠
1

𝑠
2

𝑠
3

𝑠
4

𝑠
5

𝑠
6
]

𝑇

,

u = [𝑇
1

𝑇
2

𝑇
3

𝑇
4

𝑇
5

𝑇
6
]

𝑇

,

f (x) = [𝑓
1
(𝑥) 𝑓

2
(𝑥) 𝑓

3
(𝑥) 𝑓

4
(𝑥) 𝑓

5
(𝑥) 𝑓

6
(𝑥)]

𝑇

,

𝑓
𝑖
(𝑥) = −

(1 − 𝑠
𝑖
) [∑
𝑛=6

𝑖=1
𝐹DP𝑖 (𝜃1𝑖, 𝜃2𝑖) − 𝐺 sin𝛼]

𝑀V

−

𝑟
𝑠
(1 − 𝑠

𝑖
)
2

𝑇
𝑅𝑖

(𝜃
1𝑖
, 𝜃
2𝑖
)

𝐼
𝑊𝑖
V

,

g (𝑥) = [𝑔
1

⋅ ⋅ ⋅ 𝑔
6
] 𝑔

𝑖
(𝑥) =

𝑟
𝑠
(1 − 𝑠

𝑖
)
2

𝐼
𝑊𝑖
V

,

d (x) = [𝑑
1
(𝑥) 𝑑

2
(𝑥) 𝑑

3
(𝑥) 𝑑

4
(𝑥) 𝑑

5
(𝑥) 𝑑

6
(𝑥)]

𝑇

,

𝑑
𝑖
(𝑥) =

(1 − 𝑠
𝑖
) 𝐺 sinΔ𝛼

𝑀V
.

(27)

Then, (26), that is, an equation for a multiple-input,
multiple-output (MIMO) system, can be decomposed into
(28) for six single-input, single-output (SISO) subsystems.
Further, we can design a controller for a SISO subsystem:

�̇�
𝑖
= 𝑓
𝑖
(𝑥) + 𝑔

𝑖
(𝑥) 𝑢
𝑖
+ 𝑑
𝑖
(𝑥) , 𝑖 = 1, . . . , 6. (28)

5. Radial Basis Function-Based
Adaptive Sliding Tracking Control for
Desired Slip Ratio

5.1. Approximation Properties of Radial Basis Function Net-
work. A radial basis function (RBF) network is a kind of
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Figure 6: Lateral view of dynamics model based on wheel-soil
mechanics during climbing of WMR on loose sloped terrain.

a three-layer forward neural network. The first layer is the
input, made up of source nodes. The input vector map is
directly connected to the second hidden layer, and the third
layer is the output. The hidden layer is a transformation
function unit, called a Gaussian function. Generally, an RBF
network is expressed as the excitation function of a hidden
unit as follows:

𝜙
𝑖
(𝜅) = exp[−

1

2𝑏
2

𝑖





𝜅 − 𝜉
𝑖






2

] , 𝑖 = 1, 2, . . . , 𝑛. (29)

Here, 𝑛 is the hidden unit number, 𝜅 is the network input
vector, and 𝜉

𝑖
and 𝑏
𝑖
are the 𝑖th basis functions for the center

and radius, respectively. The output layer node is the 𝑖th for
nodes in the hidden layer output linear weighted sum:

𝑦
𝑖
=

𝑚

∑

𝑗=1

𝑤
𝑖𝑗
𝜙
𝑗
(𝑥) , (30)

where 𝑤
𝑖𝑗
is the weight between 𝜙

𝑗
and 𝑦

𝑖
.

For any continuous nonlinear function𝑓(𝑥), one can use
the approximate representation of the RBF network as

𝑓 (𝑥) = W𝑇𝜙 (𝑥) + 𝜀 (𝑥) , (31)

whereW is the weight matrix of the RBF network and 𝜀(𝑥) is
the reconstruction error of the neural circuits.The literatures
[21, 22] have proved that the RBF network can approximate
any continuous nonlinear function of arbitrary precision.

5.2. RBF-Based Adaptive Sliding Tracking Control Law. For
the system given in (28), if 𝑓

𝑖
and 𝑔

𝑖
are precisely known,

one can design the general sliding mode control system for
tracking the desired slip ratio. When WMRs climb loose
sloped terrain, the optimal slip ratio tracking error for the 𝑖th
wheel is 𝑒

𝑖
= 𝑠
𝑖
− 𝑠
𝑖𝑑
, where 𝑠

𝑖
is the 𝑖th actual feedback wheel

slip ratio and 𝑠
𝑖𝑑
is the wheel’s desired slip ratio.

We express the sliding-mode surface as

𝑆
𝑖
= 𝜌
𝑖
𝑒
𝑖
= 𝜌
𝑖
(𝑠
𝑖
− 𝑠
𝑖𝑑
) , (32)

where 𝜌
𝑖
is a proportional coefficient, generally a normal

number, and is used to determine the attenuation speed of
the tracking error.The ideal slidingmode can be expressed as

̇𝑆
𝑖
= 𝜌
𝑖
( ̇𝑠
𝑖
− ̇𝑠
𝑖𝑑
) = 0. (33)

In order to meet the arrival condition of sliding mode
variable structure control and in the shortest time to reach the
slidingmode surface, to ensure high robustness of the system,
the following is the improved index-based control law:

̇𝑆
𝑖
= −𝜀
𝑖





𝑆
𝑖





sgn (𝑆

𝑖
) − 𝑘
𝑖
𝑆
𝑖
. (34)

Here, 𝜀
𝑖
> 0,𝐾

𝑖
> 0, and sgn(𝑆

𝑖
) is a symbolic function. Upon

substituting (28) into (33), we obtain the system control law
as

𝑢
𝑖
=

1

𝜌
𝑖
𝑔
𝑖
(𝑥, V)

[𝜌
𝑖
𝑓
𝑖
(𝑥, V) + 𝜀

𝑖





𝑆
𝑖





sgn (𝑆

𝑖
) + 𝑘
𝑖
𝑆
𝑖
− 𝜌
𝑖
𝑠
𝑑𝑖
] .

(35)
At this point, consider the following Lyapunov function
candidate:

𝑉 =

6

∑

𝑖=1

𝑉
𝑖
, 𝑉
𝑖
=

1

2

𝑆
2

𝑖
. (36)

Differentiating it gives

�̇�
𝑖
= 𝑆
𝑖

̇𝑆
𝑖
= 𝑆
𝑖
(−𝜀
𝑖





𝑆
𝑖





sgn (𝑆

𝑖
) − 𝑘
𝑖
𝑆
𝑖
)

= −𝜀
𝑖
𝑆
𝑖





𝑆
𝑖





sgn (𝑆

𝑖
) − 𝑘
𝑖
𝑆
2

𝑖

= −𝜀
𝑖
𝑆
2

𝑖
− 𝑘
𝑖
𝑆
2

𝑖
< 0,

(37)

where 𝑉 ≥ 0 and �̇� < 0 are guaranteed to be negative,
implying 𝑉 → 0 and also 𝑆 → 0 and ̇𝑆 → 0 as 𝑡 →

∞. Therefore, global stability is guaranteed by the Lyapunov
theorem.

However, in actual circumstances,𝑓
𝑖
and 𝑔
𝑖
containmany

unknown parameters, some of which are dynamic time-
varying and therefore cannot be known precisely. Hence,
this problem imposes a major limitation on the ideal sliding
mode controller given in (35). An RBF neural network
possesses the property of an approximate arbitrary nonlinear
function, which is not applicable for precision parameters.
Therefore, we consider using neural networks with dynamic
approximate values ̃

𝑓
𝑖
and 𝑔

𝑖
of variables 𝑓

𝑖
and 𝑔

𝑖
with

unknown parameters, based on the RBF neural network
function approximation theory.

Let us assume that ̃
𝑓
𝑖
, 𝑔
𝑖
have approximation weights𝑤

𝑓𝑖
,

𝑤
𝑔𝑖
and that the 𝑓

𝑖
, 𝑔
𝑖
approximation errors are 𝜀

𝑓𝑖
and 𝜀
𝑔𝑖
,

respectively. That is,
̃
𝑓
𝑖
(𝑥) =

̃
𝑓 (𝑥 | 𝑤

𝑓𝑖
) = 𝑤

𝑇

𝑓𝑖
𝜙 (𝑥) + 𝜀

𝑓𝑖
, (38)

𝑔
𝑖
(𝑥) = 𝑔 (𝑥 | 𝑤

𝑔𝑖
) = 𝑤

𝑇

𝑔𝑖
𝜙 (𝑥) + 𝜀

𝑔𝑖
. (39)

Because the RBF neural network is used to approximate
an unknownnonlinear function in the system, an approxima-
tion error inevitably exists. The neural network fitting error
should be reduced as possible, so we define𝑤

𝑓𝑖
and𝑤

𝑔𝑖
as the

optimal weights to estimate 𝑤
𝑓𝑖
and 𝑤

𝑔𝑖
:

𝑤
𝑓𝑖

= arg min
𝑤
𝑓𝑖
∈Ω
𝑓𝑖

[ sup
𝑥∈Ω
𝑥












̃
𝑓
𝑖
(𝑥 | 𝑤

𝑓𝑖
) − 𝑓
𝑖
(𝑥)] , (40)

𝑤
𝑔𝑖

= arg min
𝑤
𝑔𝑖
∈Ω
𝑔𝑖

[ sup
𝑥∈Ω
𝑥












𝑔
𝑖
(𝑥 | 𝑤

𝑔𝑖
) − 𝑔
𝑖
(𝑥)] . (41)
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Figure 8: Schematic of simulation using RoSTDyn system.

In (40) and (41), Ω
𝑥

⊂ 𝑅
𝑛, Ω
𝑓𝑖
and Ω

𝑔𝑖
⊂ 𝑅
𝑚. Ω
𝑥
, Ω
𝑓𝑖
,

and Ω
𝑔𝑖

all are compact sets further and 𝑛 and 𝑚 are the
input layer and hidden layer nodes, respectively. As a result,
̃
𝑓
𝑖
(𝑥 | 𝑤

𝑓𝑖
) and 𝑔

𝑖
(𝑥 | 𝑤

𝑔𝑖
) are the optimal approximations of

𝑓
𝑖
(𝑥) and 𝑔

𝑖
(𝑥), respectively. Then, we define the weights of

the neural network error as

𝜂
𝑓𝑖

= 𝑤
𝑓𝑖

− 𝑤
𝑓𝑖
, 𝜂

𝑔𝑖
= 𝑤
𝑔𝑖

− 𝑤
𝑔𝑖
, (42)

where ̇𝜂
𝑓𝑖

=
̇

�̃�
𝑓𝑖

− �̇�
𝑓𝑖
, ̇𝜂
𝑔𝑖𝑖

=
̇

�̃�
𝑔𝑖

− �̇�
𝑔𝑖
.

Taking the weights of the neural network, 𝑤
𝑓𝑖
and 𝑤

𝑔𝑖
, as

the adaptive control law, we get

�̇�
𝑓𝑖

= −𝛾
𝑓𝑖
𝑆
𝑖
𝜙
𝑓𝑖
, �̇�

𝑔𝑖
= 𝛾
𝑔𝑖
𝑆
𝑖
𝜙
𝑔𝑖
𝑢
𝑖
. (43)

Based on (35), (39), (40), and (43), we get the slip ratio
tracking control law using RBF neural network adaptive
sliding method, expressed as

𝑢
𝑖
=

1

𝜌
𝑖
𝑔
𝑖
(𝑥)

[𝜌
𝑖

̃
𝑓
𝑖
(𝑥) + 𝜀

𝑖





𝑆
𝑖





sgn (𝑆

𝑖
) + 𝑘
𝑖
𝑆
𝑖
− 𝜌
𝑖
𝑠
𝑑𝑖
] .

(44)

5.3. Stability Analysis. Let us define the minimum approxi-
mation error of a neural network as

𝛿
𝑖
= [

̃
𝑓
𝑖
(𝑥 | 𝑤

𝑓𝑖
) − 𝑓
𝑖
(𝑥)] + [𝑔

𝑖
(𝑥 | 𝑤

𝑔𝑖
) − 𝑔
𝑖
(𝑥)] 𝑢

𝑖
.

(45)
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Figure 9: Six-wheel lunar rover climbing sloped terrain in RoSTDyn 3D simulation.

Then, substituting (44) and (45) into (37) gives

̇𝑆
𝑖
= 𝜌
𝑖
(𝑓
𝑖
(𝑥) + 𝑔

𝑖
(𝑥) 𝑢
𝑖
) − 𝜌
𝑖
̇𝑠
𝑑𝑖

= 𝜌
𝑖
(𝑓
𝑖
(𝑥) + 𝑔

𝑖
(𝑥 | 𝑤

𝑔𝑖
) 𝑢
𝑖
+ 𝑔
𝑖
(𝑥) 𝑢
𝑖
)

− 𝑔
𝑖
(𝑥 | 𝑤

𝑔𝑖
) 𝑢
𝑖
− 𝜌
𝑖
̇𝑠
𝑑𝑖

= 𝑓
𝑖
(𝑥) −

̃
𝑓
𝑖
(𝑥 | 𝑤

𝑓𝑖
) + 𝜌
𝑖
�̇�
𝑑𝑖

− 𝑘
𝑖
sign 𝑆

𝑖
+ 𝑔
𝑖
(𝑥) 𝑢
𝑖

− 𝑔
𝑖
(𝑥 | 𝑤

𝑔𝑖
) 𝑢
𝑖
− 𝜌
𝑖
̇𝑠
𝑑𝑖

= 𝑓
𝑖
(𝑥) −

̃
𝑓
𝑖
(𝑥 | 𝑤

𝑓𝑖
) + [𝑔

𝑖
(𝑥) 𝑢
𝑖
− 𝑔
𝑖
(𝑥 | 𝑤

𝑔𝑖
) 𝑢
𝑖
]

− 𝑘
𝑖
sgn 𝑆
𝑖

=
̃
𝑓
𝑖
(𝑥 | 𝑤

𝑓𝑖
) −

̃
𝑓
𝑖
(𝑥 | 𝑤

𝑓𝑖
)

+ [𝑔
𝑖
(𝑥 | 𝑤

𝑔𝑖
) − 𝑔
𝑖
(𝑥 | 𝑤

𝑔𝑖
)] 𝑢
𝑖
− 𝛿
𝑖
− 𝑘
𝑖
sgn 𝑆
𝑖

= (𝑤
𝑇

𝑓𝑖
− 𝑤
𝑇

𝑓𝑖
) 𝜙
𝑓𝑖

(𝑥) + (𝑤
𝑇

𝑔𝑖
− 𝑤
𝑇

𝑔𝑖
) 𝜙
𝑔𝑖

(𝑥) 𝑢
𝑖

− 𝛿
𝑖
− 𝑘
𝑖
sgn 𝑆
𝑖

= 𝜂
𝑇

𝑓𝑖
𝜙
𝑓𝑖

(𝑥) + 𝜂
𝑇

𝑔𝑖
𝜙
𝑔𝑖

(𝑥) 𝑢
𝑖
− 𝛿
𝑖
− 𝑘
𝑖
sgn 𝑆
𝑖
.

(46)

Consider the following Lyapunov function candidate:

𝑉 =

6

∑

𝑖=1

𝑉
𝑖
,

𝑉
𝑖
=

1

2

(𝑆
𝑖

2

+

1

𝛾
𝑓𝑖

𝜂
𝑇

𝑓𝑖
𝜂
𝑓𝑖

+

1

𝛾
𝑔𝑖

𝜂
𝑇

𝑔𝑖
𝜂
𝑔𝑖
) .

(47)

Differentiating it gives

�̇�
𝑖
= 𝑆
𝑖

̇𝑆
𝑖
+

1

𝛾
𝑓𝑖

𝜂
𝑇

𝑓𝑖
̇𝜂
𝑓𝑖

+

1

𝛾
𝑔𝑖

𝜂
𝑇

𝑔𝑖
̇𝜂
𝑔𝑖

= 𝑆
𝑖
(𝜂
𝑇

𝑓𝑖
𝜙
𝑓𝑖

(𝑥) + 𝜂
𝑇

𝑔𝑖𝑖
𝜙
𝑔𝑖𝑖

(𝑥) 𝑢
𝑖
− 𝛿
𝑖
− 𝑘
𝑖
sgn (𝑆

𝑖
))

+

1

𝛾
𝑓𝑖

𝜂
𝑇

𝑓𝑖
̇𝜂
𝑓𝑖

+

1

𝛾
𝑔𝑖

𝜂
𝑇

𝑔𝑖
̇𝜂
𝑔𝑖

= 𝑆
𝑖
𝜂
𝑇

𝑓𝑖
𝜙
𝑓𝑖

(𝑥) +

1

𝛾
𝑓𝑖

𝜂
𝑇

𝑓𝑖
̇𝜂
𝑓𝑖

+ 𝑆
𝑖
𝜂
𝑇

𝑔𝑖
𝜙
𝑔𝑖

(𝑥) 𝑢
𝑖

+

1

𝛾
𝑔𝑖

𝜂
𝑇

𝑔𝑖
̇𝜂
𝑔𝑖

− 𝛿
𝑖
𝑆
𝑖
− 𝑆
𝑖
𝑘
𝑖
sgn (𝑆

𝑖
)

=

1

𝛾
𝑓𝑖

𝜂
𝑇

𝑓𝑖
( ̇𝜂
𝑓𝑖

+ 𝛾
𝑓𝑖
𝑆
𝑖
𝜙
𝑓𝑖

(𝑥))

+

1

𝛾
𝑔𝑖

𝜂
𝑇

𝑔𝑖
( ̇𝜂
𝑔𝑖

+ 𝛾
𝑔𝑖
𝑆
𝑖
𝜙
𝑔𝑖

(𝑥) 𝑢
𝑖
) − 𝛿
𝑖
𝑆
𝑖
− 𝑘
𝑖





𝑆
𝑖






2

= −𝛿
𝑖
𝑆
𝑖
− 𝑘
𝑖





𝑆
𝑖






2

.

(48)

Based on the approximation theory of the RBF neural
network, as long as numerous hidden layer nodes exist, the
adaptive RBF neural network can give an infinitesimal value
of the approximation error. Then,

�̇�
𝑖
≤ 0, �̇� ≤ 0. (49)
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Figure 10: Front-wheels slip ratio comparison of different control
strategy.

Then, to reduce chattering that occurs usually, boundary
layer methods are used, wherein a saturation function is
employed instead of a signum function:

sat (𝑆
𝑖
, 𝜙
𝑖
) =

{
{

{
{

{

1, 𝑆
𝑖
> 𝜙
𝑖

𝑘
𝑖
𝑆
𝑖
,





𝑆
𝑖





≤ 𝜙
𝑖
, 𝑘
𝑖
𝜙
𝑖
= 1

−1, 𝑆
𝑖
< −𝜙
𝑖
,

(50)

where 𝜙
𝑖
is the normal to the boundary layer thickness.

The flowchart for optimal slip ratio tracking control based
on the RBF neural network adaptive sliding mode in the case
of aWMR climbing loose sloped terrain is shown in Figure 7.

6. Simulation Experiment Based on
RoSTDyn Platform

6.1. RoSTDyn. RoSTDyn is amultibody dynamics simulation
platform for WMRs moving on loose sloped terrain; it uses a
Vortex engine and VC++ and was developed by the RCAMC
Laboratory. Here, VC++ was used to generate the WMR
system, terrainmodule, andwheel-soil interactionmechanics
model, and the kinetic function and scene function provided
by the Vortex engine were used for calculations and 3D
realization. The basic simulation outline is as shown in
Figure 8. From the literature [23], it is known that the
RoSTDyn robot provides precise simulations on loose sloped
terrain through comprehensive testing.

6.2. Simulation of Control of Six-Wheel Lunar Rover Climbing
Loose Sloped Terrain. Consider a six-wheel lunar rover as
an example. When it is climbing a slope on the moon, the
most influential factor is the slip ratio of the wheels. Using
the proposed control algorithm (RBFAS) to adjust the drive
torque to track the desired slip ratio, the lunar rover can
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Figure 11: Middle-wheels slip ratio comparison of different control
strategy.
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Figure 12: Behind-wheels slip ratio comparison of different control
strategy.

effectively climb up a slope with the least possible wheel
sinkage and maximum drive efficiency of all the wheels.

This simulation is performed as follows. The lunar rover
is started from its initial stationary state. Then, the desired
slip ratio based on the optimal TE is input into the slip ratio
tracking algorithm. The wheel drive moment is adjusted to
control the wheel slip ratio and obtain the optimal slip ratio.

The system parameters for the simulation are set as
follows.

(a) Robot parameters are the following: 𝑀 = 120 kg,
𝑚
𝑤

= 1.75 kg⋅m2, 𝑟 = 0.15m, 𝑏 = 0.15m, and
ℎ = 0.01m.
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Figure 13: Front-wheels driving torque comparison of different
control strategy.
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Figure 14: Middle-wheels driving torque comparison of different
control strategy.

(b) Sandy soil characteristic parameters are the following:
𝑘
1

= 1800, 𝑘
2

= 820000, 𝑔 = 1.6333m/s2, 𝑐 = 520,
𝜑 = 42

∘, 𝐾 = 0.01732, 𝑐
1

= 0.35, 𝑐
2

= 0.042, and
𝑐
3
= 0.012.

(c) Control parameters are the following: 𝜌
𝑖
= 10, 𝜎

𝑖
=

0.17, 𝑏
𝑖
= [10 10 10 10 10]

𝑇, 𝛾
𝑓𝑖

= 5, 𝛾
𝑔𝑖𝑖

= 1, and
𝑤
𝑓𝑖

= 𝑤
𝑔𝑖

= [6 6 6 6].

Figure 9 shows images of the six-wheel lunar rover
climbing the sloped terrain in the RoSTDyn 3D simulation
platform. Figures 10, 11, 12, 13, 14, 15, and 16 show the key
performance indices ofWMR comparisons climbing up a 25∘
slope under RBFAS and CAC control strategies.
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Figure 15: Behind-wheels driving torque comparison of different
control strategy.
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strategy.

The simulation results in Figures 10–15 show that the
RBFAS control algorithm given in (45) is superior to those
using CAC. Figure 17 shows that the RBFAS control algo-
rithm in (45) significantly reduces the energy consumption
and drive efficiency of the six-wheel lunar rover.

7. Conclusion

In this study, we analyzed wheel-soil interaction based on
traditional terrain mechanics for WMRs climbing loose
sloped terrain and determined the influence of key perfor-
mance indexes of the WMRs on the wheel slip ratio. We
developed an online slip ratio planning algorithm based on
the optimal drive efficiency (TE) of the WMRs. Next, using
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strategy.

the optimal-TE-based slip ratio as the input, the actual slip
ratio as the state variable, and the wheel drive moment as
the control input, we established a tracking system for the
optimal-TE-based slip ratio using the method of nonlinear
decoupling design. This was done with the aim of improving
the robustness and adaptability of the tracking system. An
adaptive neural network was used and a weight error in
the weight rate was introduced in this network. The control
stability of the system was confirmed using the Lyapunov
method. Finally, full-scale simulations were performed to
verify that the proposed control scheme not only retains the
stability of the system but also improves the robot’s mobile
performance significantly.
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