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Differences in individual drug responses are an obstacle to progression in

cancer treatment, and predicting responses would help to plan treatment.

The accumulation of cancer molecular profiling and drug response data pro-

vides opportunities and challenges to identify novel molecular signatures and

mechanisms of tumor responsiveness to drugs. This study evaluated drug

responses with a competing endogenous RNA (ceRNA) system that

depended on competition between diverse RNA species. We identified drug

response-related ceRNA (DRCEs) by combining the sequence and expres-

sion data of long noncoding RNA (lncRNA), microRNA (miRNA), and

messenger RNA (mRNA), and the survival data of cancer patients treated

with drugs. We constructed a patient–drug two-layer integrated network and

used a linear weighting method to predict individual drug responses. DRCEs

were found to be significantly enriched in known cancer and drug-associated

data resources, involved in biological processes known to mediate drug

responses, and correlated to drug activity in cancer cell lines. The dysregula-

tion of DRCE expression influenced drug response-associated functions and

pathways, suggesting DRCEs as potential therapeutic targets affecting drug

responses. A further case study in breast invasive carcinoma (BRCA) found

that DRCE expression was consistent with the drug response pattern and the

aberrant expression of the two NEAT1-related DRCEs may lead to poor

response to tamoxifen therapy for patients with TP53 mutations. In sum-

mary, this study provides a framework for ceRNA-based evaluation of clini-

cal drug responses across multiple cancer types. Understanding the

underlying molecular mechanisms of drug responses will allow improved

response to chemotherapy and outcomes of cancer treatment.
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1. Introduction

The ability to predict the response of individual

patients is important for successful cancer treatment.

With the development of pharmacogenomics, a large

number of cancer molecular profiling and drug

response data have been accumulated, which provides

opportunities and challenges to identify novel molecu-

lar signatures and mechanisms of tumor responsiveness

to drugs.

Most previous studies have identified protein-coding

genes as biomarkers of response to drug treatment.

Geeleher et al. (2014) fitted a ridge regression model

of whole-genome gene expression in cell lines against

in vitro drug half maximal inhibitory concentration

(IC50) values and then used the model with tumor

expression data from a clinical trial to estimate drug

response. Chang et al. (2003) identified 92 differen-

tially expressed genes in biopsy samples from primary

breast tumor patients before and after docetaxel treat-

ment and used them to predict the response to doc-

etaxel. The importance of noncoding genes, including

miRNA and lncRNA, in drug responses has also been

demonstrated (Majidinia and Yousefi, 2016; Mishra,

2012). For example, miR-30c, a prognostic marker in

human breast cancer, can control doxorubicin resis-

tance by directly targeting TWF1 and IL-11, which are

two protein-coding genes that regulate drug sensitivity

(Bockhorn et al., 2013). The p53-regulated lincRNA-

p21 plays a physiological role in regulating cell

viability following DNA damage (Huarte et al., 2010).

Nevertheless, these studies did not investigate the

interactions between protein-coding and noncoding

RNA.

In a newly proposed ceRNA hypothesis, lncRNA

function as decoys that compete for miRNA binding

sites and ultimately derepress all target genes of the

respective miRNA (Salmena et al., 2011). Different

species of RNA transcripts can communicate with

each other, which have been symbolically referred to

as letters of a new language. The competing regulation

of lncRNA, miRNA, and gene is not only of funda-

mental importance in physiological conditions (Cesana

et al., 2011), but also relevant in various cancers

(Wang et al., 2015) and may also influence genes asso-

ciated with drug responses and the development of

resistance to cancer therapy (Ling et al., 2013). For

example, Cao et al. (2017) found that the lncRNA,

SNHG6-003, functions as a ceRNA to promote cell

proliferation and induce drug resistance in hepatocellu-

lar carcinoma, and targeting the ceRNA network

involving SNHG6-003 may be used as a treatment

strategy against hepatocellular carcinoma. Zheng et al.

(2016) demonstrated that ceRNA networks of

CYP4Z1 and pseudogene CYP4Z2P confer tamoxifen

resistance in breast cancer. Feng et al. (2017) indicated

that CASC2 up-regulates PTEN as a ceRNA of miR-

21 and plays an important role in cervical cancer sensi-

tivity to cisplatin. Therefore, understanding this novel

RNA cross talk will lead to significant insight into

gene interactions and has implication in drug

responses.

Here, we performed a systematic analysis to predict

clinical drug responses using a ceRNA network con-

sisting of lncRNA, miRNA, and gene competing regu-

lations. DRCEs were identified by combining the

sequence, expression, and survival data across various

cancer types extracted from The Cancer Genome Atlas

(TCGA). Although the DRCEs had a high degree of

cancer specificity, they were involved in common bio-

logical processes known to mediate drug responses. A

patient–drug two-layer integrated network and a linear

weighting method were used to predict drug responses,

and the dysregulation of DRCE expression was

inferred to trigger functions and pathways associated

with differences in the response to drugs. A case study

in BRCA was performed to identify DRCEs involved

in tamoxifen response. The DRCEs may be potential

therapeutic targets to influence individual drug

responses. Understanding the underlying molecular

mechanisms of drug responses will allow improved

response to chemotherapy and outcomes of cancer

treatment.

2. Materials and methods

2.1. Molecular expression and clinical information

of cancer patients

Large-scale mRNA and miRNA expression profiles

(Illumina HiSeq level 3), clinical follow-up survival

time, and clinical drug treatment records of cancer

patients were obtained from TCGA data portal (Can-

cer Genome Atlas Research et al., 2013). lncRNA

expression profiles were retrieved from TANRIC (Li

et al., 2015), which is an open-access web resource

containing the expression data of lncRNA in large

patient cohorts of 20 cancer types, including those in

TCGA. Cancer patients with drug treatment that had

lncRNA, miRNA, and mRNA expression information,

and clinical survival data were retained for subsequent

analysis. A total of 13 tumor types include sample

sizes of 7–377 patients. For details, see Table S1. To

filter lncRNA, miRNA, and genes not expressed across
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all samples, the items with expression values of 0 in all

of the samples were excluded. To allow log transfor-

mation, any remaining expression values of 0 were set

to the minimum value of all samples and all values

were log2-transformed.

2.2. Molecular expression and drug activity data

of cancer cell lines

The NCI60 is a panel of 60 human cancer cell lines

that has been used by the Developmental Therapeutics

Program of the U.S. National Cancer Institute to

screen over 100,000 chemical compounds for anti-

cancer activity (Shoemaker, 2006). We downloaded the

normalized Affymetrix HuEx 1.0 mRNA microarray

expression data, Agilent miRNA microarray expres-

sion data, and drug activity data measured for IC50

for the NCI60 cell lines from CELLMINER (version 1.6)

(Reinhold et al., 2012). To assay lncRNA expression,

the mRNA expression profile was repurposed by probe

level re-annotation (Du et al., 2013). The probe

sequences provided by Affymetrix (http://www.affyme

trix.com/) were aligned to the lncRNA transcript

sequences derived from the Ensembl database (Homo

sapiens GRCh37, release 67) (Flicek et al., 2012) and

Cabili et al. (2011) and to protein-coding and pseudo-

gene transcript sequences derived from the Ensembl

(Flicek et al., 2012) and UCSC (Kuhn et al., 2013)

databases. The alignment results were filtered by

probes that mapped uniquely and perfectly to lncRNA

transcripts, removing probes that mapped to protein-

coding and pseudogene transcripts, and retaining

lncRNA covered by at least four probes. A total of

202,449 probes and 10,207 corresponding lncRNA

were obtained. If multiple probes corresponded to the

same lncRNA, then the average expression value was

used to represent the lncRNA expression level.

2.3. Method overview

The workflow was divided into four phases and is

shown in Fig. 1. First, DRCEs were identified by com-

bining the sequence and expression data of lncRNA,

miRNA, and mRNA and the survival data of patients

treated with drugs. Second, a patient–drug two-layer

integrated network was constructed. The upper layer

was a patient expression similarity network, and the

lower layer was a drug structural similarity network.

The upper and the lower networks were linked using

the actual patient–drug relationships retrieved from

clinical drug treatment records, and each edge weight

was drug response score (DRS) based on the DRCEs.

Third, to score a particular patient–drug pair (Pt, Dk),

the patient sample similarity between the query patient

and all patients was extracted directly from the patient

expression similarity network. The drug similarity

between the query drug and all drugs was extracted

directly from the drug structural similarity network.

Fourth, a linear weighting method was used to predict

individual drug responses. The responses of each

patient to all drugs were calculated and assigned as

the DRS. All drugs were ranked based on the DRS.

2.4. Identification of DRCEs across various cancer

types

Identifying cancer DRCEs began with screening the

ceRNA, which referred to a triplet of a lncRNA, an

miRNA, and a gene. We identified ceRNA by reference

to previous studies (Ala et al., 2013; Karreth et al., 2011;

Sumazin et al., 2011; Tan et al., 2015). The miRNA–
lncRNA and miRNA–gene interactions were obtained

by combining sequence matching and expression negative

correlation. The ceRNA triplet consisted of miRNA–
lncRNA and miRNA–gene interactions sharing at least

one miRNA. The expression of lncRNA and mRNA in a

ceRNA triplet was positively correlated with each other.

For more details, see in supplementary data.

Response to drug treatment is generally character-

ized by an increase in patient survival (Lei et al., 2013;

Pazdur, 2000; Zheng et al., 2015). In this study,

ceRNA associated with survival of patients treated

with drug were considered to be DRCEs. The associa-

tion of survival time and the expression of lncRNA,

miRNA, and genes in ceRNA were tested by univari-

ate Cox regression analysis. The association between

survival and each ceRNA was scored by combining

the Cox regression P-values of the lncRNA, miRNA,

and gene in individual ceRNA using Fisher’s combined

probability test method (Hwang et al., 2005). The

score of each ceRNA was calculated as:

score ¼ �2
Xk
i¼ 1

logðpiÞ

where k = 3 represents three nodes in a ceRNA, an

lncRNA, an miRNA, and a gene, and pi is the P-value

of node i from univariate Cox regression analysis. The

score ~ v22k determined the association significance P-

value for v2. The DRCEs were defined using a P-value

threshold of 0.05.

2.5. Proposing a drug response scoring system

We proposed a drug response scoring system based on

the DRCEs. The DRS was calculated by considering
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the cumulative effect of lncRNA, miRNA, and mRNA

with competing interactions in the DRCEs. For each

cancer type, each nonredundant node in all DRCEs

was assigned a Cox regression coefficient. A positive

regression coefficient indicated that increased expres-

sion was associated with poor survival, and a negative

regression coefficient indicated that increased expres-

sion was associated with good survival. The DRS for

each patient was calculated taking into account both

the strength and positive or negative association of

lncRNA, miRNA, and genes of all DRCEs with sur-

vival.

DRS ¼ �
Xn
i¼ 1

bi � Expi

where n was the number of nonredundant nodes in

all DRCEs in the given cancer, bi was the univariate

Cox regression coefficient of node i in the DRCE

(Wang et al., 2015, 2017), and Expi was the

Fig. 1. The workflow for predicting individual drug responses based on DRCEs. Step 1: Identification of DRCEs by combining the sequence,

expression, and survival data. Step 2: Construction of a patient–drug two-layer integrated network. Step 3: Extraction of information for

scoring the DRS of a particular patient–drug pair. Step 4: Prediction of individual drug responses using a linear weighting method.
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expression level of node i of the given patient.

Patients were stratified into high or low-DRS groups

using the median as the cutoff. Overall survival in

both groups was estimated by the Kaplan–Meier

method, and statistical significance was assessed using

the log-rank test. Survival analysis was performed

using R package ‘survival’.

2.6. Constructing patient–drug two-layer

integrated network

LncRNA, miRNA, and gene expression, drug struc-

ture, and clinical drug treatment records were com-

bined to construct the patient–drug two-layer

integrated network that could be used to predict indi-

vidual drug responses.

We curated the records of drug treatments from

TCGA clinical data. In the ‘clinical_drug_cancer.txt’

table, each row or entry recorded one pair of patient

and drug. After deleting the pairs with missing drug

name, we manually standardized the drug names

according to NCI drug dictionary and DrugBank

(Wishart et al., 2006). To eliminate the influence of

multiple drugs on the survival and simplify the drug

response prediction model, we chose the records of

those patients who corresponded to one drug, estab-

lished the list of actual patient–drug pairs, and anno-

tated first-line, second-line, or later therapy in each

cancer (Table S2).

The upper of the two layers was a sample expres-

sion similarity network that was a complete graph.

For each cancer type, the PCC between any two sam-

ples at lncRNA, miRNA, and gene expression levels

was calculated, respectively. The edge weight was the

minimum PCC to ensure a strict sample correlation.

The lower layer was a drug structural similarity net-

work that was also a complete graph. The chemical

structures (SDF files) of the drugs were downloaded

from the PubChem database (Wang et al., 2009).

Taking the SDF files as input, drug properties served

as numerical molecular descriptors were obtained

using the PaDEL-Descriptor with default settings

(Yap, 2011). The edge weight was the PCC of the

numerical molecular descriptors of drugs. Using

actual patient–drug pairs extracted from treatment

records, the upper and the lower layer network were

connected. The edge weight was the DRS of a patient

to a drug.

2.7. Predicting individual drug responses

It was hypothesized that cancer patients with similar

expression patterns would respond similarly to drugs

having similar chemical structures (Zhang et al., 2015).

Using the patient–drug two-layer integrated network,

a linear weighting method was developed to predict

the DRS of patient Pt to drug Dk based on an actual

patient–drug relationship (Pi, Dj) obtained from clini-

cal treatment records.

DRSðPt;DkÞ ¼

P
j

P
i

fðxPtPi
Þ �DRSðPi;DjÞ � fðxDjDk

Þ
P
j

P
i

fðxPtPi
Þ � fðxDjDk

Þ ;

where DRS (Pt, Dk) was the DRS of patient Pt to

drug Dk, xPtPi
and xDJDk

were the edge weights of Pt

� Pi and Dj � Dk in the network which were con-

verted by function fðxPtPi
Þ ¼ e�ðð1�xPtPi

Þ2=ð2r2ÞÞ;
fðxDjDk

Þ ¼ e�ðð1�xDjDk
Þ2=ð2r2ÞÞ, and r was a parameter

controlling the rate of variation in edge weight.

The leave-one-out method was used to determine

the parameter r and to assess the prediction perfor-

mance. Each actual patient–drug pair was singled

out in turn and the remaining pairs used to predict

the one that was left out. r was ranged from 0 to

1, and increment size was 0.001. For example, when

r was 0.001, a linear weighting method was used to

predict DRS of each actual patient–drug pair i,

which was represented by predictedDRSi
, and then,

compared with the corresponding observed DRS and

calculated the root-mean-squared error (RMSE), as

follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðpredictedDRSi
� observedDRSiÞ2

n

vuuut
;

where n represented the number of actual patient–
drug pairs. With the change of r, different RMSE

values were obtained. The parameter r was opti-

mized by minimizing RMSE. After determining r,
the prediction performance was evaluated using the

PCC of the predicted and observed DRS of all

actual patient–drug pairs. A high correlation indi-

cated good prediction performance of this approach.

2.8. Measurement of pathway activities in each

patient

To investigate whether DRCEs affected the activity of

pathways, we used a gene expression metric to identify

pathways associated with DRCE. For each cancer,

given a gene i, let �Xij be the expression value for gene i

in sample j. For sample j, �Xsj represented the mean of

Xij over the member genes in pathway s, and �Xj repre-

sented the mean expression level of all genes detected.
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The pathway activity score (PAS) of pathway s in the

sample j was assessed by the following function

(Levine et al., 2006):

PASsj ¼
�Xsj � �Xj

rj

ffiffiffiffiffi
jrj

p
;

where |r| was the number of genes in the pathway s

and rj was the standard deviation of Xij of all the

genes in the sample j. A high, positive PAS indicated

that genes in the pathway tended to be highly

expressed in the sample, and thus indicated high path-

way activity. A low, negative PAS indicated low path-

way activity.

2.9. Functional analysis of DRCEs

We performed gene ontology (GO) functional enrich-

ment analysis of the genes in the DRCEs to investigate

the functional roles of DRCEs in cancers. This analy-

sis was performed using the R package ‘GOstats’ (Fal-

con and Gentleman, 2007) with the human genome as

the reference set and the hypergeometric test to calcu-

late the statistical significance.

3. Results

3.1. Comprehensive characterization of DRCE

networks across diverse cancer types

A total of 49,207 ceRNA were identified in 13 cancer

types, 3854 of them were screened as DRCEs in 10

kinds of cancer (Fig. 2A) and were found to include

303 lncRNA, 135 miRNA, and 1173 genes. The

DRCE ranking lists based on shared miRNA number

in 10 cancers can be seen in Table S3.

Multiple topological and functional properties of the

DRCEs were analyzed against the background of a

pan-cancer ceRNA network (Fig. 2B). Two widely

used topological properties, degree and betweenness,

were calculated to investigate the important roles of

DRCEs. Network nodes with high degree are highly

connected and considered as hubs (Barabasi and Olt-

vai, 2004); nodes with high betweenness control the

Fig. 2. Network and function characteristics of DRCEs. (A) The pan-cancer ceRNA network is shown as follows: lncRNA as squares, miRNA

as triangles, and genes as circles. DRCEs include lncRNA (dark green), miRNA (yellow), and genes (violet). Red borders represent cancer-

associated lncRNA, miRNA, and genes. Light green borders represent drug-associated lncRNA, miRNA, and genes, and orange borders

represent both cancer- and drug-associated lncRNA, miRNA, and genes. Node size represents degree. (B) Multiple topological and

functional properties of pan-cancer DRCEs and ceRNA. (C) The fraction of top nodes of DRCEs (blue) and ceRNA (gray) ranked by the

degree that were included in the cancer- and drug-associated lncRNA, miRNA, and gene set. (D) DRCEs (rows) across 10 cancer types

(columns). Several DRCEs are indicated as examples. (E) GO functional enrichment analysis of the DRCEs in 10 kinds of cancer (P < 0.01).

The enriched functions that occurred in at least five cancer types are shown.
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extent of information flow and are referred to as bot-

tlenecks (Yu et al., 2007). We found that nodes in the

pan-cancer DRCEs had significantly higher degree (t-

test P = 1.10e-12) and betweenness (t-test P = 1.21e-

08) than those in the background pan-cancer ceRNA.

This comparison indicated that nodes in DRCEs

tended to be the network hubs and bottlenecks, imply-

ing important functions. Cancer-associated lncRNA,

miRNA, and genes from the Lnc2Cancer (Ning et al.,

2016), miRCancer (Xie et al., 2013), and Cancer Gene

Census (Futreal et al., 2004) databases, which are all

manually curated data resources. First, we compared

the proportion of cancer-associated lncRNA, miRNA,

and genes in DRCEs and background ceRNA. The

result indicated that the proportion of cancer-asso-

ciated lncRNA, miRNA, and genes in DRCEs was sig-

nificantly higher than background ceRNA (Fisher’s

exact test, P < 2.2e-16). Moreover, we performed

enrichment analysis. The result showed that the

lncRNA, miRNA, and genes in DRCEs were signifi-

cantly enriched in cancer-associated lncRNA, miRNA

and gene set (hypergeometric test P = 6.86e-54), but

the background ceRNA were not (hypergeometric test

P ~1). The results indicated that DRCEs were

probably cancer-associated. Finally, when the FDA-

approved drug target genes from the DrugBank data-

base (Law et al., 2014) and drug-affecting miRNA

from the SM2miR database (Liu et al., 2013) were

analyzed, the proportion of drug target genes and

affecting miRNA in the DRCEs was significantly lar-

ger than that in the background ceRNA (Fisher’s

exact test P = 2.2e-16). The miRNA and genes in the

DRCEs were also significantly enriched in drug-asso-

ciated miRNA and gene set (hypergeometric P =
1.74e-08), but background ceRNA were not (hypergeo-

metric P ~1). The results suggested that the DRCEs

were likely to be druggable.

Furthermore, the lncRNA, miRNA, and genes of

DRCEs with high network degree were significantly

enriched in known cancer and drug-related resources

(Fig. 2C). The DRCEs also had a high degree of speci-

ficity across different cancers. Most of DRCEs

occurred only in one specific cancer type; very few

were involved in two kinds of cancer (Fig. 2D). More-

over, examination of the degree distribution of the

DRCE network in each cancer type revealed a power-

law distribution, showing that the DRCE networks

were scale-free, similar to most biological networks

(Fig. S1). Interestingly, functional enrichment analysis

of DRCEs showed that the cancer-specific DRCEs

shared some metabolic and cell cycle activities known

to mediate drug responses (Fig. 2E) (Housman et al.,

2014).

3.2. DRCE networks contribute to the prognosis

of cancer patients treated with drug therapy

Drug responses can be characterized by survival time,

which is increased by effective treatment (Lei et al.,

2013; Pazdur, 2000; Zheng et al., 2015). If DRCEs

could be used to stratify prognosis, then that would

mirror their potential drug response signatures. Nota-

bly, the survival analysis showed that the DRCEs suc-

cessfully characterized patients into different prognosis

groups in almost all the cancer types (Fig. 3). Patients

with a high DRS tended to have a good prognosis;

those with a low-DRS tended to have poor prognosis.

These results indicated that the DRCE networks might

act as potential signatures of drug responses.

3.3. The DRCEs are correlated to drug activity in

cancer cell lines

The NCI60 cancer cell line collection is widely used as

a panel to evaluate in vitro drug activity (Shoemaker,

2006), with the –logIC50 reflecting the drug sensitivity

and resistance. The drug activity and expression data

of lung cancer cell line could be derived from NCI60.

Here, lung cancer cell lines were chosen to assess the

correlation of DRCE expression and drug activity,

which would further test the relevance of DRCEs to

drug responses. We extracted lncRNA, miRNA,

mRNA expression, and drug activity values of lung

cancer cell lines. A total of 69 DRCEs were identified

using TCGA lung squamous cell carcinoma (LUSC)

data, 65 of them had expression data in lung cancer

cell lines. In TCGA LUSC drug treatment records,

seven drugs (carboplatin, vinorelbine, paclitaxel, gemc-

itabine, cisplatin, docetaxel, and etoposide) had activ-

ity data. The mean absolute PCCs of drug activity and

lncRNA, miRNA, and gene expression of each DRCE

across nine lung cancer cell lines were calculated, and

a DRCE was considered to be associated with drug

responses if it was correlated with at least one of the

seven drugs. Nearly, all the DRCEs (98%) were corre-

lated with at least one drug with a PCC ≥0.3, 94%

had PCCs ≥0.4, and 60% had PCCs ≥0.5. In addition,

2335 LUSC non-DRCEs, which were ceRNA that did

not contain nodes in LUSC DRCEs, and 3388 non-

LUSC DRCEs, which were DRCEs in cancers other

than LUSC and did not contain nodes in LUSC

DRCEs, were also evaluated. LUSC DRCEs had a

significantly higher correlation with drug activity than

LUSC non-DRCEs (t-test P = 4.40e-07) and non-

LUSC DRCEs (t-test P = 2.10e-05, Fig. 4A). The

results suggest that DRCE expression was associated

with in vitro drug activity in cancer cell lines. Through
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Fig. 3. Drug response-related ceRNA networks as potential drug response signatures had high predictive performance (log-rank P < 0.05).

The significance of clinical outcome difference between high- and low-DRS groups was estimated by the Kaplan–Meier method, and the P-

value was calculated by the log-rank test. The DRCE networks in pan-cancer and individual cancer are shown. Each network is arranged as

outer, intermediate, and inner major competing layers. From outside to inside, they are lncRNA (dark green squares), miRNA (yellow

triangles), and genes (violet rounds). Edges represent competing regulation. The bar plot shows the number of miRNA, lncRNA, genes, and

DRCEs across various cancer types.
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literature review, we found two DRCEs NOP14-

AS1_hsa-miR-335_EGFR and NOP14-AS1_hsa-miR-

335_SREBF1 were associated with lung cancer drug

responses (Fig. 4B). Luo et al. (2017) reported hsa-

miR-335 served as a critical regulator of chemo/radio

resistance in lung cancer; Huang et al. (2012) found

that interaction of DNp63a and apoptosis-inducible

SREBF1 proteins influenced cisplatin chemoresistance

of LUSC. Epidermal growth factor receptor (EGFR)

mutations are prevalent and well characterized in lung

cancer and were shown by Gazdar (2009) to be associ-

ated with sensitivity and resistance to lung cancer

treatment. In addition, we performed GO functional

annotation analysis using David (Huang da et al.,

2009) and found that EGFR and SREBF1 were

annotated with drug responses related GO terms

(Table S4), such as DNA repair, cell proliferation, and

cellular response to drug. Thus, we inferred that

EGFR and SREBF1 condition drug responses through

competing regulation of NOP14-AS1 mediated by hsa-

miR-335.

Moreover, we checked the correlation of LUSC

DRCE expression and activity of all drugs in the

NCI60 panel except for seven known clinical lung can-

cer drugs which were stored in TCGA drug treatment

records of lung cancer (shown in Fig. 4B). The average

absolute PCC between activity of each drug and

expression of lncRNA, miRNA, and gene of each

DRCE in lung cancer cell lines was calculated. The

result showed that six drugs (vorinostat, celecoxib,

Fig. 4. Correlation of DRCEs and drug activity and its use for drug repurposing. (A) Correlation-density curves and box plots of LUSC

DRCEs, LUSC non-DRCEs, and non-LUSC DRCEs. (B) Expression of two DRCEs, NOP14-AS1_hsa-miR-335_SREBF1 and NOP14-AS1_hsa-

miR-335_EGFR (top), and the activity values (�log10IC50) of seven lung cancer drugs (bottom) across nine lung cancer cell lines. Numbers in

the matrix (C) and on the line (D) indicate the structural similarity of two drugs.
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lapatinib, vinorelbine, clofarabine, and simvastatin)

with PCCs ≥0.4 with about 50% or more DRCEs, in

which the first four drugs have been used to treat lung

cancer (Altorki et al., 2003; Fossella et al., 2000;

Ramalingam et al., 2010; Ross et al., 2010). Simvas-

tatin is a lipid-lowering drug, and previous study has

indicated that lipid metabolic pathways may be valu-

able as lung cancer therapeutic targets (Yano, 2012).

The chemical structure of simvastatin is highly similar

to that of five of seven drugs (Fig. 4C,D). To test

whether the chemical structural similarity is directly

correlated to drug activity, for lung cancer cell line, we

calculated the correlation of activity of any two drugs

and the similarity of chemical structure of any two

drugs in NCI60. The result showed that there was

significantly positive correlation between chemical

structural similarity and drug activity (PCC = 0.1, P-

value = 4.89e-15). In addition, we compared the corre-

lation of simvastatin’s drug activities with the expres-

sion of DRCEs and non-DRCEs and found DRCEs

had a significantly higher correlation with simvas-

tatin’s drug activities than non-DRCEs (t-test P <
0.001, Fig. S2). The percentage of lncRNA, miRNA,

and mRNA in DRCEs whose correlation with simvas-

tatin’s drug activities more than 0.5, 0.4, and 0.3 were

also greater than non-DRCEs (Fig. S3). Furthermore,

the drug activities of simvastatin were differences in

the two clusters classified by the expression of the two

favorable DRCEs NOP14-AS1_hsa-miR-335_SREBF1

and NOP14-AS1_hsa-miR-335_EGFR (fold change

>2), indicating that the expression of the two DRCEs

has effect on the efficacy of simvastatin on lung cancer

cell lines. However, the efficacy of simvastatin is no

difference between the two clusters classified by the

non-DRCEs. Thus, we infer that simvastatin could be

used to treat lung cancer. Our method can not only

predict drug response, but also optimize candidate

drugs for new indications.

3.4. Dysregulation of DRCE expression influences

drug response-associated functions and

pathways

The drug responses of individual patients in a specific

cancer were predicted with a patient–drug two-layer

integrated network. The leave-one-out method was

used to estimate parameter r and evaluate predictive

performance. The RMSE range with a change in r is

shown in Fig. S4 for 10 types of cancer. A high corre-

lation was found between the observed and predicted

DRS. Eight cancers had PCCs ≥0.4, and five had

PCCs >0.8; particularly kidney renal papillary cell car-

cinoma (KIRP) had a PCC >0.9 (Fig. S5). The results

indicated that this method had good, generalizable

performance, and effectively predicted drug responses.

For each patient in each cancer type, drugs were

ranked by their predicted DRS in descending order.

The drugs with 30% of the highest predicted DRS

were taken, acquiring the predicted patient–drug pairs

in a given cancer. An overall view of drugs across nine

of the cancers is shown in Fig. 5A. To investigate

which anticancer drugs could be widely used for can-

cer treatment, a width score was calculated for each

drug taking into account the percentage of patients

corresponding to the given drug in each cancer, the

average ranking of the given drug for the correspond-

ing patients in each cancer, and the number of cancer

corresponding to the given drug. Cisplatin had the

highest width score, suggesting that it is preferred for

most patients in most cancer types. This study intends

to understand the underlying mechanism of individual

differences in response to cisplatin. Cisplatin is widely

used to treat a variety of cancers and kills cells by

directly or indirectly inducing apoptosis, DNA dam-

age, and cell cycle arrest (Siddik, 2003). However, indi-

vidual differences in response to cisplatin are an

obstacle to effective cancer treatment. This study

results could be used to understand the underlying

mechanism.

The prediction results indicate that cisplatin could

be a preferred treatment in six cancer types, and five

or more patient–cisplatin pairs were found in four can-

cers [bladder urothelial carcinoma (BLCA), cervical

squamous cell carcinoma and endocervical adenocarci-

noma (CESC), head and neck squamous cell carci-

noma (HNSC), and STAD]. It is thus important to

determine whether any causes of differences in

response to cisplatin act across all four cancers. To

investigate the functions influenced by cisplatin-asso-

ciated DRCEs, first, the patients treated with cisplatin

were stratified by DRS with the median as a cutoff

value and the differentially expressed lncRNA,

miRNA, and genes were determined by t-test (P

<0.05); then, the cisplatin-associated DRCEs were

screened which contained at least one differentially

expressed lncRNA, miRNA, or gene; at last, the func-

tion of cisplatin-associated DRCEs was evaluated by

GO functional enrichment analysis (P-value < 0.05).

Performing the above analysis for the four cancers,

respectively. The results revealed that although the dif-

ferential genes were different in the four cancers, the

functions of the DRCEs are closely associated with

drug responses and sensitivity or resistance and have

effects on the cell cycle, cell death, apoptosis, DNA

damage, replication and repair, and drug transport

(Holohan et al., 2013; Housman et al., 2014). The
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cisplatin-associated DRCEs in at least two cancer

types are shown in Fig. 5B. The PAS of all Kyoto

Encyclopedia of Genes and Genomes (KEGG) path-

ways in each patient was measured, and those with a

PAS that was significantly different in the two patient

groups in at least one cancer were retained (Fig. 5C).

The 91 pathways in which the human diseases path-

way class accounted for the largest proportion are

shown in Fig. 5D. A literature search found that the

cellular processes pathway class included the most

drug response-associated pathways (Fig. 5E,

Table S5). The cell cycle pathway activity included

Fig. 5. Mechanisms common to drug response differences. (A) The bubble-bar plot provides an overall view of the predicted high-DRS

drugs ranked at the top 30% (rows) across the nine cancer types (columns). Bubble size represents the percentage of patients at each

drug. Bubble color shows the average ranking of each drug for the corresponding patients. The top bars show the number of drugs for a

given cancer. Bars on the right show the width score of corresponding drugs. (B) From outside to inside, the functional enrichment results

of the dysregulated expression of DRCEs in BLCA, CESC, HNSC and STAD arranged hierarchically with lncRNA, miRNA, genes, and

enriched drug response-associated GO biological process terms. Node size represents degree. (C) Pathway activity difference profile

affected by the dysregulated expression DRCEs in BLCA, CESC, HNSC, and STAD. Drug response-associated pathways are shown. P-value

was calculated by t-test to compare the PAS of high- and low-DRS patients treated with cisplatin in four cancers. The label on the left

shows six KEGG pathway classes. (D) The percentage of the pathways with differential PAS in the six KEGG pathway classes. (E) The

percentage of drug response-associated pathways in the six KEGG pathway classes. (F) The cell cycle pathway (hsa04110) affected by

dysregulated expression of DRCEs in BLCA and HNSC. The rectangles show genes in the pathway, and the genes of DRCEs with

dysregulated expression are shown in violet. Dark green ellipses show lncRNA, and yellow triangles show miRNA.
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with cellular processes was abnormal in both BLCA

and HNSC, and a total of 14 genes of 96 dysregulated

DRCEs were in that pathway (Fig. 5F). Therefore,

from the results, we could see that the individual dif-

ferences in drug response to cisplatin might thus be

caused by the dysregulation of DRCE expression.

Aberrant expression of lncRNA might result in the

dysregulation of gene expression by competing for

miRNA and ultimately lead to disorders of drug

response-associated functions and pathways. That

would make DRCEs potential therapeutic targets to

influence response to cisplatin. Understanding novel

mechanisms of drug responses allows development of

novel treatments that improve the effectiveness of

chemotherapy and clinical outcomes of cancer treat-

ment.

3.5. Case study: A patient treated with a high-

DRS drug has a good STAD prognosis

The number of drugs in STAD was the second-most

(Fig. 5A). We further verified whether this approach

could offer a promising drug treatment regimen for an

individual patient, thereby tailoring the right drug to

the right patient in STAD. Based on actual patient–
drug pairings in the TCGA clinical drug treatment

records, patients who were treated with drugs among

those with a DRS within the top 30% were defined as

the ‘consistent group’ and those treated with drugs in

the bottom 30% were defined as the ‘inconsistent

group’. The STAD two-layer integrated network with

the consistent and inconsistent groups and the actual

chemotherapy pairings is shown in Fig. 6A. The

STAD patients in the consistent group had longer sur-

vival and fewer deaths than those in the inconsistent

group (Fig. 6B,C), suggesting the effectiveness of a

predictive approach using in vivo tumors. Fig. 6A

shows that most patients were treated with 5-fluorour-

acil (5-FU). ATRX, CCND2, APC, and KLF8 have

been implicated in 5-FU resistance (Chen et al., 2009;

Conte et al., 2012; Schmidt et al., 2004; Shi et al.,

2015). Moreover, the GO functional annotation analy-

sis was performed and found that the four genes were

annotated with drug responses related GO terms

(Table S6), such as cell cycle, apoptotic process, and

DNA damage response. In the STAD DRCEs, four

Fig. 6. Drug response prediction in STAD. (A) The patient–drug two-layer integrated network for STAD. The patient–drug pairs of the

consistent and inconsistent groups shown in blue and orange edges, respectively. For simplicity, the sample–sample and drug–drug edges

are not shown. (B) Kaplan–Meier survival analysis for the consistent (blue) and the inconsistent (orange) groups. The P-value was calculated

using the log-rank test. (C) Survival and status of the consistent (blue) and the inconsistent (orange) groups.
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lncRNA, RP11-473O4.3, LINC01184, LINC00641,

and ENSG00000248175, competed for binding to

miR-331, miR-335, and miR-106b, which are known

to be associated with chemotherapy resistance (Feng

et al., 2011; Kim et al., 2015; Xia et al., 2008), thereby

regulating their target genes. Consequently, the six

DRCEs, hsa-miR-335_KLF8_LINC00641, hsa-miR-

106b_APC_ENSG00000248175, hsa-miR-106b_APC_

LINC01184, hsa-miR-106b_CCND2_ENSG00000

248175, hsa-miR-331_ATRX_ENSG00000248175, and

hsa-miR-331_ATRX_RP11-473O4.3, may affect 5-FU

drug responses (Fig. S6). These findings revealed that

the DRCEs could be used clinically to stratify patients

to receive specific drug therapeutic targets.

3.6. Case study: DRCE expression matches drug

response patterns in BRCA

In this study, the number of BRCA patients is the

most. Among the BRCA patients, 304 were treated

with a single drug; 16 drugs were used. The BRCA

two-layer integrated network predicted the DRS of all

patients for each drug and hierarchical clustering

analysis revealed that the patients and drugs were

globally grouped into two classes based on the DRS

(Fig. 7A). Differential analysis of lncRNA, miRNA,

and gene expression in BRCA DRCEs in the two drug

response classes found that all were differentially

expressed in the two classes (t-test P < 0.05). Cur-

rently, treatment decisions are guided by BRCA sub-

types that include estrogen receptor (ER),

progesterone receptor (PR), and human epidermal

growth factor receptor 2 (HER2) status. ER and PR

status could be obviously distinguished in the two

classes. TP53 mutation is the most frequent genetic

alteration in BRCA, and in the 304 patients, ER and

PR negative patients with a TP53 mutation had a high

DRS to carboplatin, clodronic acid, and letrozole,

indicating that the three drugs might be given treat-

ment priority. Tamoxifen is an anti-estrogen drug that

is commonly used to treat ER-positive patients. ER-

negative patients did not respond well to tamoxifen,

which is consistent with the previous studies of breast

tumor drug response prediction (Daemen et al., 2013).

As tamoxifen can target TP53, previous studies found

that TP53 mutation can result in tamoxifen resistance

Fig. 7. Alignment of DRCE expression and drug response pattern in BRCA. (A) DRCE expression (top panel) and drug response profile

(bottom panel). Patients with ER, PR, HER2 subtypes, and TP53 mutation status are shown. (B) The BRCA DRCE network. (C) Two DRCEs,

NEAT1_hsa-miR-130b_TP53INP1 and NEAT1_hsa-miR-18a_NBR1, that influence tamoxifen therapy for BRCA patients with TP53 mutation.

(D) The significance of clinical outcome difference between NEAT1 overexpression and underexpression groups was estimated by the

Kaplan–Meier method, and the P-value was calculated by the log-rank test.
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in BRCA (Elledge et al., 1995). Therefore, we tried to

explore the cause of the event based on the involve-

ment of DRCEs.

In cancer therapy, many chemotherapeutic agents

cause cell death by damaging DNA in replicating cells.

As we known, TP53 is involved in many important

cellular responses, such as apoptotic cell death, cell

cycle arrest, and DNA repair. A recent study reported

that TP53 induced formation of NEAT1 lncRNA-con-

taining paraspeckles that modulated the replication

stress response and chemosensitivity (Adriaens et al.,

2016). Consistent with this report, TP53 mutation trig-

gered down-regulation of NEAT1 expression and

resulted in poor response to tamoxifen (Fig. 7A). In

BRCA, 24 DRCEs were identified involving nine

lncRNA, eight miRNA, and 12 genes (Fig. 7B), and

NEAT1 were associated with seven DRCEs. Two of

them were previously found to be associated with drug

responses. They were NEAT1_hsa-miR-130b_TP53INP1

and NEAT1_hsa-miR-18a_NBR1 (Fig. 7C). Miao et al.

(2017) reported that hsa-miR-130b mediated chemore-

sistance and proliferation of BRCA cells, and Song

et al. (2011) reported that hsa-miR-18a impaired DNA

damage repair. TP53INP1 in autophagosomes was

shown to promote autophagy-dependent cell death

(Seillier et al., 2012), and NBR1 promotes autophago-

somal degradation of ubiquitinated substrates (Kirkin

et al., 2009). The induction of autophagy in response

to therapeutics can be seen as having a prodeath or a

prosurvival function that contributes to anticancer effi-

cacy and drug response (Sui et al., 2013). The expres-

sion dysregulated DRCEs NEAT1_hsa-miR-

130b_TP53INP1 and NEAT1_hsa-miR-18a_NBR1 are

thus likely to lead to poor response to tamoxifen ther-

apy for patients carrying TP53 mutations. We further

explored how the survival of the 304 BRCA patients

with drug treatment changes with the expression of

NEAT1. Patients were stratified into two groups using

first and third quartile of NEAT1 expression as the

cutoff. The survival analysis showed that NEAT1

expression successfully characterized patients into dif-

ferent prognosis groups (log-rank P = 0.02, Fig. 7D),

indicating that NEAT1 expression could impact on

drug response of BRCA patients.

4. Discussion

Chemotherapy is currently the primary treatment for

cancer, but its effectiveness is limited by individual dif-

ferences in drug responses. Therefore, how to evaluate

individual drug responses is an urgent need for cancer

treatment. Most current studies have predicted drug

responses using molecular biomarkers including

protein-coding mRNA or noncoding RNA (such as

miRNA and lncRNA). However, the interaction of

different RNA species as described by the ceRNA

hypothesis has broadened the scope of investigations

to include the effects that lncRNA, miRNA, and gene

have on drug responses. This study predicted individ-

ual drug response based on the ceRNA network across

various cancer types.

Our results revealed that cancer and drug-associated

data resources were enriched in the pan-cancer DRCE

network, in which lncRNA, miRNA, and genes also

tended to be hubs and bottlenecks. The DRCEs

emerged as potential drug response signatures and had

high specificity in different cancers but shared many

common drug response-related biological functions.

Furthermore, the DRCEs correlated with in vitro drug

activity in cancer cell lines were applied to drug repur-

posing or supported new indications. In addition, the

performance of the patient–drug two-layer integrated

network was generalizable and could be used to esti-

mate drug responses effectively. Furthermore, we

focused on cisplatin which is widely used to treat a

variety of cancers and kills cells by directly or indi-

rectly inducing apoptosis, DNA damage, and cell cycle

arrest (Siddik, 2003). However, individual differences

in response to cisplatin are an obstacle to effective

cancer treatment. This study results could be used to

understand the underlying mechanism. Our results

revealed that differences in individual drug response to

cisplatin might be triggered by dysregulation of DRCE

expression. Aberrant expression of lncRNA might

result in the dysregulation of gene expression by com-

peting for miRNA and ultimately lead to disorders of

drug response-associated functions and pathways. That

would make DRCEs as potential therapeutic targets to

influence response to cisplatin. Understanding novel

mechanisms of drug responses allows development of

novel treatments that improve the effectiveness of

chemotherapy and clinical outcomes of cancer treat-

ment. We inferred that differences in individual drug

responses might be triggered by dysregulation of

DRCE expression, ultimately leading to abnormalities

of drug response-associated functions and pathways.

The STAD case study patient survival and status

results demonstrated the effectiveness of this approach

using in vivo tumor and treatment characteristics. Two

DRCEs, NEAT1_hsa-miR-130b_TP53INP1 and

NEAT1_hsa-miR-18a_NBR1, were found that may

modulate the effect of tamoxifen therapy in BRCA

patients with TP53 mutation. The lncRNA NEAT1 as

a promising target might indirectly regulate TP53INP1

and NBR1 by competing for hsa-miR-130b and

hsa-miR-18a. These findings might be useful for the
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development of novel drugs that target NEAT1 for

use in combination with tamoxifen to prevent or delay

resistance.

This study opens a new avenue to leverage publicly

available molecular data to evaluate clinical drug

responses and contributes to realizing personalized med-

icine. Compared with conventional chemotherapy, per-

sonalized medicine may result in delivery of more

effective treatment and reduce unnecessary treatment,

suffering, and the economic burden of cancer patients in

the context of molecular diagnostics. The use of high-

throughput techniques combined with bioinformatics

and systems biology has aided the interrogation of clini-

cal samples and allowed the identification of molecular

signatures that predict treatment responses. With the

increase of drug response data in TCGA cohort, the

sample expression and drug structural similarity net-

work will become more extensive, which should make

this approach more powerful. The two-layer integrated

network model can be used to predict the response not

only to existing drugs but also to candidate drugs. At

the present stage, our model is appropriate for predict-

ing response of single drug, which is very important in

precision medicine. To make our approach more power-

ful, we will extend the prediction model to multidrugs

and concern on other types of ceRNA such as pseudoge-

nes(Salmena et al., 2011) in our future study.

5. Conclusions

In this study, we proposed an integrative systems biol-

ogy approach to predict individual drug responses

based on DRCEs across multiple cancer types. We

have indicated that DRCE dysregulation influenced

drug response-associated functions and pathways, sug-

gesting DRCEs as potential therapeutic targets affect-

ing drug responses. Our approach represents a

powerful technique for understanding the underlying

molecular mechanisms of drug responses and identify-

ing novel therapeutic targets in cancer.
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