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Nature is rife with networks that are functionally optimized to
propagate inputs to perform specific tasks. Whether via genetic
evolution or dynamic adaptation, many networks create func-
tionality by locally tuning interactions between nodes. Here we
explore this behavior in two contexts: strain propagation in
mechanical networks and pressure redistribution in flow net-
works. By adding and removing links, we are able to optimize
both types of networks to perform specific functions. We define
a single function as a tuned response of a single “target” link
when another, predetermined part of the network is activated.
Using network structures generated via such optimization, we
investigate how many simultaneous functions such networks can
be programed to fulfill. We find that both flow and mechan-
ical networks display qualitatively similar phase transitions in
the number of targets that can be tuned, along with the same
robust finite-size scaling behavior. We discuss how these proper-
ties can be understood in the context of constraint–satisfaction
problems.

multifunctionality | network optimization | mechanical networks |
flow networks | constraint–satisfaction problems

Many naturally occurring and synthetic networks are
endowed with specific and efficient functionality. For

example, allosteric proteins globally adjust their conformation
upon ligand binding to control the activity of a distant active
site (1, 2). Venation networks in the leaves of plants are highly
optimized for water and nutrient transport (3). In some cases,
networks can change their function depending on the needs of
the system; vascular networks in animals (4–6), fungi (7), and
slime molds (8) can reroute the transport of fluids, enhancing
or depleting nutrient levels to support local growth or activity.
Modern power grids must precisely distribute electrical energy
generated from a limited number of sources to a large number
of consumers with widely varying consumption needs at different
times (9). All of these networks are optimized to some degree,
by evolution via natural selection, dynamic reconfiguration, or
human planning.

A key aspect of such functionality is the complexity of a spe-
cific task. We define a “function” as an optimized response of
a localized component of a network when another predefined,
localized component of the system is activated. A “task” is then
defined as the collective response of a set of individual functions
due to a single input. The number of functions representing a
specific task is the task complexity.

In this work we address the limits of complexity for a sin-
gle task: How many functions composing a single task can
be programed into a network? We consider two examples: (i)
mechanical networks—in which nodes are connected by central-
force harmonic springs—locally flexing in response to an applied
strain and (ii) flow (or resistor) networks—in which nodes are
connected by linear resistors—locally producing a pressure drop
due to an applied pressure at the source. These systems are
related; flow networks are mathematically equivalent to mechan-
ical networks embedded in one spatial dimension—but with a
nontrivial node topology (10).

Macroscopic properties of mechanical networks, such as their
bulk and shear moduli, can be tuned by modifying only a tiny
fraction of the springs between nodes (11–13) [in contrast to
random removal (14)]. This idea was extended to show that
such networks can be tuned to develop allosteric behavior via
selective spring removal (15–17). Allostery in these systems is
a single-function task in which a randomly selected spring (the
target) responds in a specified way to a strain imposed on a sep-
arate pair of nodes (the source). Here we study complex tasks in
which multiple targets are controlled by a single source. We study
the scaling of the maximal complexity of a task with network
size by asking how many individual targets can be successfully
tuned simultaneously and show that in both flow and mechan-
ical networks, the limit of task complexity is set by a phase
transition.

Network Tuning Protocol
Our method for tuning networks follows the general scheme
described in our previous work (15) with slight modifications.
We start with 2D configurations of soft spheres with peri-
odic boundary conditions created using standard jamming algo-
rithms. We construct networks by placing nodes at the center
of each sphere and links (edges) between nodes corresponding
to overlapping particles. This ensemble of networks is used for
both spring networks, in which edges are unstretched central-
force springs, and flow networks, in which edges are resis-
tive conduits. By using the same set of nodes and edges for
both systems, we can directly compare results. We chose this
ensemble because it is disordered and provides initial networks
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with properties reminiscent of the corresponding biological
systems. Elastic networks with close-range interactions have
often been used to model proteins (18), while many natu-
ral flow networks have high numbers of closed loops (19)
and are highly interconnected (20). However, our networks
do not exhibit modular topologies which can appear in some
systems (9). While we briefly touch on modularity, an in-
depth study of modular networks is outside the scope of this
work.

For each network, a pair of source nodes is chosen randomly,
along with a set of NT target edges. Our goal is to tune the
extension (or pressure drop) eα of each target edge, indexed
by α, in response to an extension (pressure drop) eS applied
to the source nodes by adding and removing edges from the
network. We explore two different types of sources: pairs of
nodes connected by a randomly chosen edge and pairs of nodes
that are each chosen randomly anywhere in the network (see SI
Appendix for global compression and shear sources in mechanical
networks).

To control the response of the targets, we define the response
ratio ηα≡ eα/eS for each target. Each ηα is in general a collec-
tive property of the network; the response of each target is a
function of the total network structure. Before tuning the net-
work, we measure the initial extension (pressure drop) e

(0)
α to

obtain the initial response ratio of each target η(0)α = e
(0)
α /eS . We

then tune the response ratio of each target so that its relative
change compared with the initial state is greater than or equal
to a specified positive constant ∆; that is, we tune each response
ratio to satisfy the constraint

ηα− η(0)α

η
(0)
α

≥∆, α= 1, . . . ,NT . [1]

Thus, for mechanical networks we require contracting edges to
contract more and expanding edges to expand more. For flow
networks, we require the magnitude of the pressure drop to
increase without changing the direction of the flow through each
target link.

Our optimization scheme involves minimizing a loss func-
tion which penalizes deviations from the constraints in Eq. 1
(Materials and Methods). Each optimization step consists of
either removing a single link or reinserting a previously removed
link to modify the network topology in discrete steps. More
specifically, at each step we measure the resulting change in
the loss function for each single-link removal or reinsertion
and remove or reinsert the link to most decrease the loss
function.

Fig. 1 depicts examples of both flow and mechanical networks
which have been tuned using our prescribed method for the two
different types of applied sources. Fig. 1 A and B shows flow and
mechanical networks, respectively, tuned to respond to a source
applied to a pair of nodes connected by an edge. Fig. 1 C and D
shows the same networks, but with a pair of source nodes that
are not connected by an edge.

Results
For both flow and mechanical networks, we explore the effects
of various aspects of the tuning problem, with particular focus
on task complexity. Fig. 2 A and B displays typical results for the
fraction of networks that can be tuned successfully, PSAT , for flow
and mechanical networks, respectively. Data are shown for a ran-
domly chosen edge source and NT randomly chosen target edges
with a desired relative change in target response of ∆ = 0.1. Sys-
tem sizes range from N = 8 to 4,096 nodes. Each value of PSAT
is calculated by tuning at least 512 independent randomly gen-
erated networks. At low NT , PSAT ≈ 1 while at large NT , PSAT
drops to zero.

A B

C D

Fig. 1. Networks tuned to display multifunctional responses. Each network
starts with the same initial topology and the same choice of four target
edges (corresponding nodes shown in green). A and C are flow networks
while B and D are mechanical networks. For each network a source exten-
sion (pressure drop) is applied to a pair of source nodes (shown in red).
In A and B the pair of source nodes is connected by an edge, while in C
and D the source nodes are not connected by an edge. For flow networks,
response ratios are tuned to ηα≥ 0.5, while for the mechanical networks
they are ηα≥ 1.0. The edges removed by tuning are shown as thick blue
lines. For flow networks, the magnitude of the pressure on each node is
indicated by the node size and the sign of the node pressure is represented
by the shape. For mechanical networks, the node displacements are shown
as black arrows.

In Fig. 2C, we plot the transition curves for all system sizes for
the four cases studied on the same axes. Using the smoothing
spline interpolations shown in Fig. 2 A and B (SI Appendix), we
estimate the number of targets N c

T at which PSAT = 0.5. Next, we
estimate the width of the transition, w , taken as the interval in
NT over which 0.25<PSAT < 0.75. We attempt to collapse each
curve by plotting PSAT vs. (NT −N c

T )/w . We find a similar func-
tional form for all cases, with only a slight difference between
flow and mechanical networks near (NT −N c

T )/w ≈−1.
Fig. 2 D and E shows that flow networks and mechanical net-

works have similar power-law behaviors for N c
T and w . Both

the transition location and width scale approximately as N ν with
ν≈ 0.7. Because the scaling exponent for N c

T is less than 1, the
critical fraction of functions that can be tuned simultaneously
approaches zero as N goes to infinity, even though the num-
ber of simultaneously tuned functions diverges with system size.
Thus, small networks are relatively more tunable than large ones.
In addition, the sublinear scaling of the transition width shows
that PSAT drops more rapidly with NT/N as N increases, imply-
ing that the crossover becomes sharp as N →∞. At the same
time, Fig. 3 shows that the average number of links that need
to be removed for a successful tuning operation grows approxi-
mately linearly with the number of targets. Thus, those networks
that can be tuned successfully typically require only removal
of a constant fraction of edges. Together, our results suggest
PSAT(NT/N )∼F [(NT/N − ρ∞)N 1−ν ] with ρ∞ consistent with
zero. For ν < 1, this implies a random first-order transition in the
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Fig. 2. (A and B) The fraction of satisfied configurations PSAT for (A) flow networks and (B) mechanical networks as a function of number of targets NT

for systems of N nodes. Results are shown for a pressure or extension applied to a single source edge with a desired response ratio of ∆ = 0.1. Curves
are smoothing splines and estimated error bars are shown for binomially distributed data (SI Appendix). (C) Scaling collapse for all N for four cases: flow
networks with an edge source (red circles) and with a node pair source (blue triangles) and mechanical networks with an edge source (green squares)
and with a node pair source (black triangles). In each case, we plot PSAT vs. (NT −Nc

T )/w, where PSAT = 1
2 at Nc

T and w is the interval in NT over which
0.25< PSAT < 0.75. (D and E) The transition points NC

T (D) and width of the transition w (E) are reasonably described by power laws in N with fits for Nc
T

giving exponents 0.67 and 0.65 for flow networks and 0.71 and 0.74 for mechanical networks with an edge and node pair source, respectively. In the same
order, the power-law fits for w have exponents of 0.71, 0.66, 0.74, and 0.66.

thermodynamic limit, with a discontinuity in PSAT and power-
law finite-size scaling. Such hybrid transitions are typical of
constraint–satisfaction problems.

Discussion
We framed the problem of the maximum number of target edges
that can be tuned successfully in a mechanical or flow net-
work as a type of discrete constraint–satisfaction problem, in
which we asked how many inequality constraints can be satis-
fied simultaneously. This places the tuning of multifunctionality
in the context of a variety of other problems including jam-
ming (21), spin glasses (22), the k -SAT problem (23), k -core
percolation (24), and the perceptron (25). Much progress has
been made by linking such transitions to the statistical physics
of critical phenomena. The hallmark of these systems is the
emergence of a SAT–UNSAT transition between regions in
parameter space where the constraints can always (or with high
probability) be satisfied and regions where the system is frus-
trated, such that not all constraints can be satisfied simultane-
ously (25). In mean-field and in some cases in finite dimensions,
the SAT–UNSAT transition is a random first-order transition,
with a discontinuous jump in the order parameter (the frac-
tion of satisfied configurations PSAT) as in a first-order phase
transition, but with power-law scaling as in a second-order
transition.

We have demonstrated a SAT–UNSAT transition in the
complexity of a single task that can be tuned into disordered
mechanical and flow networks. In both cases, the maximum task
complexity diverges with a power law that is sublinear in N , the
number of nodes in the network. The width of the SAT–UNSAT
transition (relative to N ) vanishes as N diverges, showing that
the transition is a true phase transition.

Although we find PSAT(NT/N )∼F [(NT/N − ρ∞)N 1−ν ] for
the four cases displayed in Fig. 2, both F (x ) and ν can vary,

depending on a variety of factors. These factors include (i) the
local or global nature of the source, (ii) the magnitude of desired
change in target response ∆, (iii) disorder in the link topology,
(iv) initial coordination of the network, and (v) the choice of
whether to tune the link tensions (currents) or extensions (pres-
sure drops) (SI Appendix). The values of ν lie in the range of
0.6–0.8, with the exception of one case of 1.0 for a very large
relative change in target response of ∆ = 1,000 (SI Appendix,
Table S1). We find that the behavior is not well described by a
power law for tuning negative relative changes in target response
(∆< 0) and for tuning small changes in current or tension. The
former case is still under investigation, while the latter exception
has a simple explanation (SI Appendix).

Overall, the divergence of the maximum number of tun-
able targets with system size and the corresponding vanishing
of the transition width (indicating the existence of a phase
transition) are very robust observations for positive and suf-
ficiently large relative changes in target responses. We note
also that both mechanical networks and flow networks exhibit
very similar quantitative behavior despite the fact that flow
networks are purely topological, requiring no explicit spatial
embedding.

The SAT–UNSAT transition of the task complexity problem
introduced here represents a distinct class of discrete constraint–
satisfaction transitions due to a complication that arises in the
form of the constraints. When tuning a mechanical network, the
removal of links can introduce soft modes, making it impossible
to uniquely evaluate the network response and subsequently tune
a given target. Similarly, in a flow network the tuning process
can lead to regions being disconnected from the source, mak-
ing it impossible to tune any target in that region. To avoid such
cases, at each step of the tuning process we are forced to exclude
specific link removals (Materials and Methods). In both mechan-
ical and flow networks, we find that it becomes more and more
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Fig. 3. (A and B) Power-law behavior of the average number of removed
edges as a function of number of targets NT for (A) flow networks and (B)
mechanical networks for various system sizes N. Included networks corre-
spond to those that have been tuned successfully in Fig. 2 A and B with an
edge source and desired change in target response of ∆ = 0.1. Error bars
indicate the error on the mean. Power laws with an exponent of 1.0 are
depicted as black dashed lines for comparison.

likely to introduce a soft mode/disconnected region as the task
complexity increases. This makes the problem more difficult to
tackle both numerically and analytically compared with previ-
ously studied constraint–satisfaction transitions and may lead to
differences in the nature of the transition.

For mechanical functions, a perfectly engineered mechanism
(e.g., a pair of chopsticks, which creates a large displacement
at the tips in response to strain applied where they are held)
may perform exactly one function superlatively well, but we have
shown that more complex network structures are able to adapt to
a number of functions that diverge with the system size. The same
argument holds for flow networks: An optimally engineered dis-
tribution network is a topological tree, perfectly suited for a
specified task but at the same time “rigid,” in the sense that it
cannot easily adapt to other tasks. The networks that we have
studied are more complex than a pair of chopsticks or a topolog-
ical tree, and this allows them to be tuned successfully to perform
arbitrarily complex tasks.

Our finding that a disordered network topology allows for
tunability may have relevance to real biological networks. For
example, the development of certain vascular structures within
animals is characterized by the initial appearance of a tightly
meshed disordered network of veins (the vascular plexus) that
is subsequently pruned and tuned to its function (26). The initial
disordered network may be a prerequisite of the great variability
and versatility seen in natural networks. The tuned mechanical
networks serve as simple models for multifunctional allostery
in proteins (with a single regulatory site that can control more
than one active site, e.g., refs. 27 and 28) or multifunctional
metamaterials. Our flow network results give insight into how
to control, for example, blood and oxygen distribution in vascu-
lar systems or power in an electrical network. Indeed, we find
very similar behavior in a flow network with nonplanar topol-
ogy derived from the United Kingdom (UK) railroad network,

which exhibits a high degree of modularity. PSAT exhibits a qual-
itatively similar transition in the number of targets that can be
tuned compared to the transitions in the networks studied here
(SI Appendix).

Our results raise a number of issues for future investigation.
The divergence in the task complexity and vanishing of the
transition width with system size are reasonably well approxi-
mated by power laws but may deviate for larger system sizes
(SI Appendix). The measured exponents appear to depend on
many specific properties of the problems studied. This may
be due to corrections to scaling or to a more fundamental
deviation from power-law scaling. Also, it is not clear what con-
ditions on the network topology are necessary to observe the
transition we see. For example, networks with high degrees of
modularity may not be able to support tasks spanning multi-
ple neighborhoods. However, our results for the UK railroad
network suggest that even in this case, we observe identical
qualitative behavior, but with an overall decreased PSAT corre-
sponding to the possibility of choosing sources and targets in
different neighborhoods (SI Appendix, SI Text). More generally,
it has not been investigated how the results depend on network
structure/topology and dimensionality nor how they depend on
the tuning algorithm. For instance, the values of N c

T/N and
ν might be higher for simulated annealing, which explores a
wider region of solution space than the minimization algorithm
studied here.

One further aspect of our results deserves mention: A sim-
ple function that controls only a single pair of target nodes can
be achieved in an extremely large number of ways. We have
shown that a task can be complex with NT randomly chosen
target nodes controlled by a single source. However, if one is
interested in controlling only a single target, one can create dif-
ferent paths for its control by choosing any of the N other nodes
in the system also to be a target. Likewise, one could specify a
third node to be controlled as well, etc. That means that there
are at least∼(N − 1)!/(N −N c

T )!(N c
T − 1)! ways of creating that

simple function. Because we find N c
T ∼N ν , for ν < 1 this lower

bound is smaller than the prediction of eO(N ) solutions in the
large-N limit (16).

Here we studied the limits of the complexity of a single task.
It would be interesting to understand how many different tasks
can be designed successfully and whether that is controlled by
a similar SAT–UNSAT transition. Finally, we note that for the
mechanical and flow networks studied here, the behavior is
governed by a discrete Laplacian operator (29)—mechanical net-
works obey force balance on each node and flow networks obey
Kirchhoff’s laws. However, many networks, such as gene regu-
latory networks, metabolic networks, social networks, etc., are
nonconservative. Moreover, the problems we have studied are
linear in their couplings but ecological networks or neural net-
works, for example, are typically nonlinear. It is known that even
nonconservative and/or nonlinear networks, such as the Hopfield
model and jammed packings, can support SAT–UNSAT transi-
tions as well (30, 31). It would interesting to study systematically
how conservation constraints and linearity affect the nature of
the transition.

Materials and Methods
Linear Response. Our networks are described by a set of N nodes and NE

edges. The response of a flow network to external stimuli is represented by
a pressure pi on each node i. Analogously, the response of a d-dimensional
mechanical network is the d-dimensional displacement vector ~ui of each
node. Each edge linking nodes i and j is characterized by either a con-
ductance or stiffness, denoted kij in both cases. For mechanical networks,
kij =λij/`ij , where λij is the stretch modulus per unit length and `ij is the
rest length. Initially, we set all stretch moduli λij identically to one. Similarly,
for flow networks we set all conductivities kij to one. Removing an edge ij
corresponds to setting kij to zero, whereas reinserting an edge corresponds
to setting kij back to its original value.
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To calculate the response of each type of network, we minimize the cor-
responding functional. In the case of flow networks, we minimize the power
loss through the network,

P =
∑
〈ij〉

kij
(
pj − pi

)2, [2]

where 〈ij〉 indicates a sum over all edges. For mechanical networks, we
minimize the elastic energy

E =
1

2

∑
〈ij〉

kij

[
b̂ij · (~uj −~ui)

]
2, [3]

where b̂ij is a unit vector pointing from node i to node j in the undeformed
configuration. The power loss for a flow network can be mapped to the
energy of a mechanical network for d = 1 by mapping the pressure on each
node to a 1D displacement (10). In this case, the unit vectors b̂ij are scalars
with values of either ±1, which drop out when squared; the embedding of
the network in space does not matter as is expected for flow networks.

Minimizing Eq. 2 for a flow network in the presence of externally applied
boundary currents qi on each node i, we obtain a system of linear equations
characterized by a graph Laplacian L,

L |p〉= |q〉, [4]

where |p〉 is an N-dimensional vector of node pressures and |q〉 is an N-
dimensional vector of external currents on nodes. We define the vector |i〉
so that the pressure and current on the ith node are pi = 〈i |p〉 and qi =

〈i |q〉, respectively. Similarly for mechanical networks, minimizing Eq. 3 in
the presence of externally applied forces, we obtain

H |u〉= |f〉, [5]

where |u〉 is a dN-dimensional vector of node displacements and |f〉 is a
dN-dimensional vector of external forces on nodes. Again we define the
N× d matrix |id〉 to pick out the displacement and force on the ith node,
~ui = 〈id |u〉 and~fi = 〈id |f〉. The matrix H is the matrix of second derivatives
known as the dynamical or Hessian matrix and can be interpreted as graph
Laplacian where each element is a d× d matrix. We define the d Lapla-
cian, denoted Ld , as a generalized version of the standard Laplacian matrix.
The case d = 1 corresponds to the Laplacian of a flow network (or a 1D
mechanical network) such that L1 = L, while for d> 1, Ld is a Hessian for a
d-dimensional mechanical network; i.e., Ld>1 = H. The ijth d× d block of
the d Laplacian is

〈id| Ld | jd〉=


∑
l 6=i

kilb̂ilb̂
T
il if i = j

−kijb̂ijb̂
T
ij if i 6=j

, [6]

where kij is nonzero only if edge ij exists.
Consequently, the response of either type of network is calculated by

solving the corresponding set of linear equations rewritten as

Ld |u〉= |f〉, [7]

where |u〉 and |f〉 are the appropriate dN-dimensional response and source
vectors, respectively. To apply a pressure drop or edge extension source, we
use a bordered Laplacian formulation.

Bordered Laplacian Formulation. Calculating the linear response requires
solving Eq. 7. However, there are two complications. The first is that the
Laplacian operator is in general not invertible due to the presence of global
degrees of freedom. For a periodic network, in d dimensions, there are d
global translational degrees of freedom. Second, we apply edge extension
(pressure drop) sources, rather than tension (current) sources. These sources
can be applied as constraints on the system. Using a bordered Laplacian
formulation, we add a constraint for each global translation and for the
source.

First, we define the extension (or pressure drop) of the source as

eS = b̂S · (~uS2
−~uS1 ) = 〈S|u〉 [8]

with source nodes S1 and S2. The unit vector b̂S points from node S1 to S2 and
is a scalar in the case of a flow network. The vector |S〉 is defined to extract
the extension of the source from the full vector of node displacements. We

specify the desired extension as e*
S. Additionally, we define the vectors |Gi〉

for i = 1, . . . , d corresponding to translations of the entire system uniformly
along the ith axis. We define the Lagrangian

L= E−
d∑

i=1

λi 〈Gi|u〉−λS(eS − e*
S ), [9]

where the parameters λi and λS are Lagrange multipliers. We include the
Lagrange multipliers as additional unknown parameters that must be deter-
mined in our calculations. We find solutions by extremizing the Lagrangian
with respect to both the displacements and the Lagrange multiplier. We
rewrite the Lagrangian in matrix form:

L=
1

2
〈u| Ld |u〉− 〈λG|GT |u〉−λS(〈S|u〉− e*

S ). [10]

The vector |λG〉 is size d with elements 〈i|λG〉=λi and G is a size dN× d
matrix with columns G |i〉= |Gi〉. In this context we can further condense
notation, writing the Lagrangian as

L=
1

2
〈u| Ld |u〉, [11]

where we define the bordered Laplacian Ld as a block matrix of second
derivatives of the Lagrangian:

Ld =

 Ld −G |S〉
−GT 0 0
〈S 0 0

. [12]

We also define the bordered displacement and force vectors |u〉 and
∣∣∣f〉,

respectively, each of size dN + d + 1 as

|u〉=

 |u〉|λG〉
λS

,
∣∣∣f〉=

 |f〉0
−e*

S.

. [13]

As a result, the system of equations we must solve is now Ld |u〉=
∣∣∣f〉.

The bordered Laplacian is invertible due to the presence of the constraints
and solving this equation is straightforward.

Tuning Loss Function. Framed according to Eq. 1, the problem of tuning a
complex task can be viewed as a constraint–satisfaction problem. The goal
is to find a set of stiffnesses (conductivities) that simultaneously satisfy each
constraint in Eq. 1. To study this problem numerically, we recast it as an
optimization problem in the style of ref. 25, in which we define an objective
function that penalizes deviation of the system’s behavior from the desired
multifunctionality. Thus, we introduce the loss function

F [{kij}] =
1

2

NT∑
α=1

r2
αΘ(−rα), [14]

which is a function of the set of all of the spring constants (conductivities)
{kij} and is composed of a sum over the set of NT target edges to be tuned.
For each target edge α we define the residual

rα =
ηα− η(0)

α

η(0)
α

−∆, [15]

which measures how close each target is to being tuned successfully. The
Heaviside function Θ(−rα) is included so that if rα> 0, i.e., the response
ratio has increased at least by the desired proportion ∆, then the residual
does not contribute to the loss function.

Optimization Method. Our method for tuning a network involves mini-
mizing the loss function in Eq. 14. In the spirit of refs. 11 and 15, our
optimization consists of removing or reinserting previously removed edges
from the network one at a time, modifying the network topology in discrete
steps. More specifically, we use a greedy algorithm in which we remove
or reinsert the edge which minimizes the loss function at each step. This
requires a calculation of the new response for each possible move.

Suppose we have a network whose stiffnesses at the current step are {kij}
for all valid ij where some kij might already be zero, having been removed
at previous steps. Our goal is to measure the change in response when the
stiffness of edge ij is changed by an amount ∆kij . We note that the Laplacian
can be decomposed as
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Ld = QKQT , [16]

where the equilibrium (or incidence) matrix Q of size dN×NE defines the
mapping of nodes to edges (29, 32) and K is a size NE ×NE diagonal matrix
of edge stiffnesses such that 〈ij|K |lm〉= kijδij,lm. We can define a bordered
incidence matrix Q by appending d + 1 rows of zeros to Q, giving us a corre-
sponding decomposition of the bordered Laplacian Ld = QKQ

T
. The change

in response is

|∆u〉=
[(

Ld + ∆Ld

)
−1− L

−1
d

]∣∣∣f〉 [17]

with the corresponding change in the bordered Laplacian ∆Ld =

∆kij
∣∣qij
〉 〈

qij
∣∣ with the vector

∣∣qij
〉

= Q |ij〉. We now need to calculate the
inverse of the updated bordered Laplacian. This can be done using the
Sherman–Morrison formula (33)

(
Ld + ∆Ld

)
−1

= L
−1
d −

L
−1
d ∆kij

∣∣qij
〉 〈

qij
∣∣ L
−1
d

1−∆kij
〈
qij
∣∣ L
−1
d

∣∣qij
〉 . [18]

The change in response is then

|∆u〉=−
L
−1
d ∆kij

∣∣qij
〉 〈

qij
∣∣ L
−1
d

∣∣∣f〉
1−∆kij

〈
qij
∣∣ L
−1
d

∣∣qij
〉 . [19]

The new response is then used to calculate an updated loss function.

To reduce numerical error and maintain the numerical invertibility of the
bordered Laplacian, we define the quantity

S2
ij ≡ 1−∆kij

〈
qij
∣∣ L
−1
d

∣∣qij
〉
. [20]

If S2
ij is less than 10−4, we do not remove an edge. This quan-

tity can be shown to be the contribution of an edge to the states
of self-stress in mechanical systems (12, 34). By ensuring that every
removed edge has some contribution to the states of self-stress, then by
Maxwell–Calladine counting, we are guaranteed that no zero modes are
introduced (35).

We repeatedly add or remove edges until either the loss function is explic-
itly zero (i.e., all constraints are satisfied) or the relative change in the
objective function is less than 10−8.
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