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The cell refractive index has been proposed as a putative cancer biomarker

of great potential, being correlated with cell content and morphology, cell

division rate and membrane permeability. We used digital holographic

microscopy to compare the refractive index and dry mass density of two

B16 murine melanoma sublines of different metastatic potential. Using sta-

tistical methods, the distribution of phase shifts within the reconstructed

quantitative phase images was analyzed by the method of bimodality coef-

ficients. The observed correlation of refractive index, dry mass density and

bimodality profile with the metastatic potential of the cells was validated

by real time impedance-based assay and clonogenic tests. We suggest that

the refractive index and bimodality analysis of quantitative phase image

histograms could be developed as optical biomarkers useful in label-free

detection and quantitative evaluation of cell metastatic potential.

With cancer incidence rates increasing, early and accu-

rate diagnosis of malignancy is a major issue in

biomedical research. Malignant cells have well-known

features that include cell cycle distortions, increased

proliferation, anchorage independence and lack of con-

tact inhibition of their growth. Advanced stages of

malignancy are characterized by the ability to invade

normal tissues and produce metastasis [1]. Increased

nuclear and cellular size, high DNA content and irreg-

ularities in chromatin structure are also observed [2].

Electrical, mechanical, optical and other biophysical

techniques [3–5] have been used in the past decades to

identify cell characteristics that could indicate malignancy.

The cell refractive index (RI), for instance, was shown to

be an optical parameter with high biological significance,

being related to cell content and morphology [6]. Recent

advances in microscopy (especially confocal, scattering

and interference microscopy) allow single-cell measure-

ment of the RI [7,8]. Non-invasive measurements of the

RI have been made also with infrared refractometry [9],

optical cavity resonance [10], optical trapping [11] and

real time optical plasmon resonance [12].

Various quantitative phase microscopy techniques

such as digital holographic microscopy (DHM) have
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been used for biological sample imaging, using the

optical path delay as an endogenous ‘contrast agent’

[13]. As the observed phase shifts are determined by

both the refractive index and cell height, several meth-

ods have been established to determine each of them

individually [14–16].
Recent advances have made possible refractive index

mapping within the whole cell volume by optical

tomography [17,18]. As the RI is related to the cell

density, dry and wet cell content and cell metabolism,

a series of RI-based biological applications have been

proposed. Among these are monitoring transmem-

brane water fluxes [19,20], determining ionic channel

activity [21,22], studying the impact of various chemi-

cal and physical agents on the cell cytoskeleton [23],

detecting apoptosis [24], exploring cell dynamics

[25,26] and finding biomarkers for cancer and infec-

tious and genetic diseases [27–29].
In the field of cancer pathology, it has been reported

that the RI measured for individual cells is higher in

malignant than in normal cells; this characteristic was

attributed to the higher protein content of cancer cells

sustaining a fast cell division [10,17,30–34]. It was

shown that even ‘uninvolved cells’ (histopathologically

normal cells identified in tumors collected from cancer

patients) have an elevated RI [35,36]. The RI measure-

ment could be made on either adherent or suspended

cells [37,38].

Depending on the nature of the biological sample

(e.g. attached live cells, fixed biopsy slices), the rela-

tionship between the RI and malignancy may be com-

plex. Wang et al. found no differences in the RI of

cancer and normal cells in unstained biopsies, but sig-

nificant differences in RI spatial distribution in the

slice [39]. They proposed this distribution as a cancer

biomarker. Giannios et al. (2017) measured the RI on

freshly excised human intestinal specimens; they found,

in some patients, RI values of malignant mucosa tis-

sues to be lower than in normal tissue [40]. The

authors attributed this difference to the extracellular

matrix modification and fluid accumulation due to

inflammation, apoptosis and necrosis.

When analyzing those results that seem to be con-

tradictory, we have to keep in mind that measurement

of the RI is strongly dependent on the experimental

condition (live or fixed cells, single cell versus tissue,

temperature, osmolarity) and on the resolution of the

method (effective RI or 3D RI map) [30].

Apart from the RI and cell height, other cell param-

eters were defined based on reconstructed quantitative

phase images (QPIs): dry mass, dry mass density and

such shape-related characteristics as eccentricity and

sphericity indices. It was thus possible to monitor the

cell cycle and cell growth, based on the phase profile

parameters [41,42].

Statistical analysis of the phase shift distribution

within QPIs may be used to differentiate between nor-

mal and malignant cells: opto-mechanical characteris-

tics of malignant cells were investigated [43] and

circulating tumor cells were isolated and monitored

[44]. Fingerprints of tumor cells were introduced by in

line DHM, based on scattered light intensity and cell

size [45].

Another statistical approach is the bimodality analy-

sis of the frequency distribution of a parameter (al-

ready used in economics, psychology, agriculture and

medicine), which characterizes the population hetero-

geneity and reveals the presence of hidden subpopula-

tions [46]. Bimodality analysis of breast tumor

proliferative activity was correlated to prediction of the

overall survival rate [47]. Bimodality of blood glucose

distribution was also used to identify a subpopulation

with high prevalence of diabetes and obesity [48].

Here, we employed an off-axis DHM method to

reveal differences between two sublines (F1 and F10)

of murine melanoma B16 cells, characterized by differ-

ent metastatic potential. We computed the RIs of

adherent cells in specific zones and characterized the

phase shift distributions of the reconstructed QPIs of

cells using the bimodality coefficient. Dry mass density

of both sublines was also computed. The observed cor-

relations of the RIs, dry mass density and QPI

bimodality profiles with the cell metastatic potential

were validated by two other methods that quantify cell

proliferation rates, a clonogenic test and impedance-

based cell index recordings, which are standards for

cell malignancy evaluation [49–51].

Materials and methods

Cells

The B16F1 and B16F10 sublines of B16 murine melanoma

cells were kept in culture as recommended by the American

Type Culture Collection (Manassas, VA, USA) at 5% CO2

and 37 °C (with a Heracell 150i incubator, Thermo Fisher

Scientific, Waltham, MA, USA).

Cells were routinely cultured in 25 cm2 flasks (TPP,

Trasadingen, Switzerland), using Dulbecco’s modified

Eagle’s medium (DMEM) containing 4.5 g�L�1
D-glucose,

supplemented with 1 mM L-glutamine and 10% fetal bovine

serum (supplemented DMEM; cell culture components pur-

chased from Sigma-Aldrich, Steinheim, Germany). After

detaching the cells with trypsin/EDTA solution (0.5 g�L�1

porcine trypsin, 0.2 g�L�1 EDTA�4Na in Hanks’ balanced

salt solution with phenol red; Thermo Fisher Scientific), the
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cells were counted (TC10TM Automated Cell Counter, Bio-

Rad, Hercules, CA, USA).

The B16F1 and B16F10 sublines had the same passage

number (25) when the experiments began.

DHM experiments, image acquisition and data

processing

Cells were counted and seeded at (5–10) 9 104 cells�mL�1,

on round glass microscope slides of 2 cm diameter, 24 h

prior to the holography experiments. The slides with

attached cells were mounted in a custom made manual per-

fusion chamber (Fig. 2A).

Holograms were recorded in an off-axis experimental set-

up based on a Mach Zehnder interferometer, working in

transmission [52], schematically presented and described in

Fig. 2B. For the decoupling procedure, two holograms were

acquired for the same cell bathed in two iso-osmotic, neutral

pH media having different refractive indices (Abbe refrac-

tometer, Euromex, Arnhem, the Netherlands): (a) DMEM

without phenol red, with 1 g�L�1
D-glucose and pyruvate

(Thermo Fisher Scientific), RI = 1.3360 � 0.0001; (b)

300 mM mannitol solution (Sigma-Aldrich, Saint-Quentin-

Fallavier, France), prepared using ultrapure water

(18.2 MΩ�cm at 25 °C, Smart2Pure Ultrapure Water Sys-

tems, TKA, Niederelbert, Germany), RI = 1.3411 � 0.0002.

Quantitative phase images were reconstructed using the

dedicated commercial software KOALA (Lync�ee Tec SA,

Lausanne, Switzerland) following standard routines of the

software [53]. A QPI represents a phase map that associates

to each pixel of the image a phase shift in degrees

(Fig. 2D). Cell projections are delivered in the horizontal

plane, and the phase shift introduced by the cell is repre-

sented on the vertical axis. The phase shift corresponds to

the real optical path of the laser beam travelling through

the cell, containing thus combined the cell RI and thickness

information for each pixel of the cell image [54]. For inde-

pendent computation of these two parameters the decou-

pling procedure was applied, using two perfusion media

with different refractive indices [15]. Cell RI and height

were computed on a square area of 3 9 3 pixels, identified

by a MATLAB (Mathworks, Natick, MA, USA) code in the

region of maximum phase shift, following the procedure

described in our previous work [52].

Dry mass density of the cellular matter was computed

from QPIs according to [19], as phase shift values in each

pixel occupied by the cell, multiplied by the constant factor

k/2pa, where k = 635 nm and is the laser wavelength, and

a = 0.2 mL�g�1 and is the refractive increment of proteins

[6]. Average dry mass density values were computed for

each cell.

Histograms of the phase shift value distribution within

each cell image were built. Phase shift values were normal-

ized as 8-bit maps, attributing to the lowest phase shift

value a pixel value of 0 and to the highest a pixel value of

255. Sarle’s formula (Eq. 1) for the multimodality coeffi-

cient b was used to characterize the differences between the

F1 and F10 sublines [46]:

b ¼ m2
3 þ 1

m4
ð1Þ

where m3 and m4 are the skewness and the kurtosis of the

histograms, respectively. A perfectly flat distribution has

b = 0.555. A coefficient b greater than 0.555 indicates multi-

modal distributions, the maximum b = 1 being obtained for

a distribution with two distinct populations; a b value smal-

ler than 0.555 indicates single-peaked distribution with the

theoretical minimum b = 0 for a single valued population.

Impedance-based cell index real time recordings

and proliferation rate evaluation

Cells were counted, diluted, seeded at 5000 cells/well in 16-

well E-Plates and incubated at 5% CO2, 37 °C. Cell prolifer-
ation rates were recorded using an xCELLigence� DP real

time cell analysis (RTCA) instrument (ACEA Biosciences,

San Diego, CA, USA) equipped with real time cell analysis

software v.2.0.0.1301. The cells adhering to a gold microelec-

trodes placed on the bottom of the culture well determine an

impedance increase when low voltage alternating current is

applied [55]. The output of RTCA is the non-dimensional

parameter cell index (CI), which represents the difference

between the measured impedance and the impedance with-

out cells, normalized to the nominal impedance of the instru-

ment. CI was recorded every 30 min during 5 days.

For each subline, the slope parameter was calculated

over an interval between the recording time moment of

480 min (when the CIs of both sublines were similar:

0.4260 and 0.3993) and the moment of maximal CI value

(6180 min, CI = 5.5562 for B16F1 cells and 5520 min,

CI = 6.3842 for B16F10 cells).

Clonogenic test and colony data processing

Cells were counted, diluted and seeded at 100 cells/dish in

6 cm diameter Petri dishes (TPP, Switzerland) using supple-

mented DMEM and incubated at 5% CO2, 37 °C for

2 weeks. The colonies were fixed with formaldehyde (di-

luted with H2O to 6%) (36.5–38% in H2O, Sigma-Aldrich,

Germany) and stained with crystal violet (0.5% in H2O)

(Fisher Chemicals, Zurich, Switzerland).

The differences between the sublines as number of colo-

nies and average area of each colony (Fig. 1A,E) were eval-

uated by using the open-source software CELLPROFILER

v.2.1.1 [39,56]. An image processing pipeline was developed

by taking as entry one image or bulk images of the cell

colonies (Fig. 1B–D,F–H). Briefly, the working modules

allowing automatic extraction of the programmed output

data were the following.
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(a) Image processing modules: the images were cropped to a

circle corresponding to the borders of the Petri dish, con-

verted to grayscale (8 bit), then converted to a black and

white binary image (Fig. 1B) by applying a threshold fil-

ter; images were subsequently inverted to white and black

(Fig. 1C); the program identified the edges of all objects

(Fig. 1D) then completed the contour for the objects with

incomplete edges, by applying a Fourier transform

(Fig. 1F).

(b) Object identification module: the objects were identified

as all the completed edges (Fig. 1G).

(c) Measurement module: the program sorted all objects hav-

ing the diameter in the range of 10–300 pixels; the area

of all sorted objects was calculated using a numeric com-

putation of all pixels inside the sorted object edges and

divided by the initial cropped area; the output metadata

consisted of the number of colonies and total area of

colonies (as percentage of the Petri dish area; Fig. 1H).

Statistics

Five independent DHM experiments were performed for

each subline. Three experiments in duplicate were made

for RTCA evaluation and in triplicate for clonogenic

tests.

Results are presented as the mean � SD. Statistical sig-

nificance was analyzed using the nonparametric Mann–
Whitney U test for two independent samples. Differences

were considered significant at P < 0.05.

Results

Digital holographic microscopy

Examples of holograms and quantitative phase images

that were acquired and reconstructed for cell speci-

mens from each B16 subline are presented in Fig. 2C,

D. Using the decoupling procedure, the cellular RI

and height were calculated in a square area of 3 9 3

pixels characterized by maximum phase shift in QPIs.

We found that the refractive index of the F10 sub-

line was significantly higher than that of F1 (P = 0.01)

in the specified area (Fig. 3A). The average dry mass

density of F1 cells had a significantly higher value

compared with F10 cells (P = 0.02) (Fig. 3B). The

cells’ heights calculated in the maximum phase shift

area were similar for both sublines, ranging between

4.60 and 11.14 lm (data not shown).

Fig. 1. Images of cell colonies of sublines B16F1 (A) and B16F10 (E). One hundred cells were seeded per 6 cm diameter Petri dish and

incubated at 5% CO2, 37 °C for 2 weeks; colonies were fixed with formaldehyde and stained with crystal violet. A schematic CELLPROFILER

pipeline was created for measuring the number of colonies and the total area occupied by the colonies and is presented as an example for a

B16F1 covered Petri dish shown in (A). After the Petri dish image was cropped to a circle and converted to an 8 bit grey image, it was

converted to a black and white binary image (B) by applying a threshold filter. Then the image was inverted to white and black (C); the program

identified the edges of all objects (D) and completed the incomplete edges by applying a Fourier transform (F). The colonies were identified as

all complete-edge objects (G) having a diameter in the range of 10–300 pixels. The output metadata consisted of number of colonies (# of

accepted objects) and total area occupied by colonies (Area covered by objects) calculated as a percentage of the Petri dish area (H).
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Bimodality analysis

The distribution of the phase shifts within the whole

cell area was different for the F1 and F10 sublines: in

the case of F1 cells, the corresponding phase shift his-

tograms exhibited a multimodal distribution with sepa-

rated groups of dominant peaks (Fig. 4A) while the

tendency to a single peaked distribution was character-

sistic of F10 cells (Fig. 4B).

Real time cell analysis

The 5 days’ evolution of the cellular index of B16 cells

is presented in Fig. 5A. The CIs recorded for the two

sublines behaved quite similarly, reflecting cell adhe-

sion, proliferation and detachment from the microelec-

trodes due to cell death. The evolution of the CI signal

showed several phases. First, a rapid increase (1–2 h)

of the signal occurred, caused by the cells coming to

lie on the microelectrode array and by the normal

adhesion process after seeding (cells were attaching,

recovering from the stress of seeding and resuming

their cell cycle). In a second phase, which lasted

approximately 20 h, the signal increased at a slow rate

(since the cell number was still low) corresponding to

cell growth and incipient division. In a third phase, a

faster increase of the CI signal occurred, generated by

cell proliferation. Once the electrodes were fully

Fig. 2. (A) Image of a custom made perfusion chamber containing 24 h cultured B16 cells. (B) Scheme of the digital holographic

microscopy experimental set-up based on the Mach–Zehnder interferometer, working in transmission. (C) Holograms of a B16F1 cell (left)

and a B16F10 cell (right). (D) 3-D quantitative phase images of the same B16F1 (left) and B16F10 (right) cells reconstructed using KOALA

dedicated software [52].

Fig. 3. (A) Refractive Index of B16 cells calculated in an area of 3 9 3 pixels selected in the maximum phase shift zone of QPIs. (B) Dry

mass density of B16 cells calculated using the phase shift value of each pixel multiplied by the constant factor k/2pa (k = 635 nm is laser

wavelength, a = 0.2 mL�g�1 is refractive increment of proteins [19]). Mean values � SD were calculated for five cells for each subline.
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covered by cells, the culture stopped growing, and the

cells started dying and detaching from the bottom; this

led to a rapid signal decrease in the last phase.

In spite of the comparable shape of CI curves of the

two sublines, the maximum CI value was higher and

was reached faster in the case of the F10 subline (as a

result of the higher division capacity) as compared

with F1. Moreover, in Fig. 5B, one can observe the

higher slope values in the case of B16F10.

Clonogenic test

Information about grown colonies is presented in

Fig. 6. The counted number of colonies produced by

the two sublines was similar, around 60 colonies per

dish. The total area of colonies (and consequently the

average area per colony) was, however, more than

double in the F10 subline as compared with F1.

Discussion

Measurements of the refractive index and size of living

adherent cells were made using digital holographic

microscopy in the off-axis configuration, without using

any exogenous contrast agents. The cell refractive

index and the dry mass density were compared for two

sublines of B16 murine melanoma cells of different

metastatic potential. Further, using the bimodality

analysis, we identified different characteristics of the

phase shift distribution in the reconstructed quantita-

tive phase images of the two sublines.

In our study we have used the B16F1 and B16F10

cell sublines, from the series selected by Isaac Fidler in

1973 [57]. The existence of the B16 murine melanoma

sublines differentiated on the base of metastatic behav-

ior offers a good in vitro model for studying the bio-

physical characteristics of malignant cells and their

changes in the course of cell transformation. The selec-

tion of B16 variants was based on their increasing

potency to form lung colonies after intravenous injec-

tion in mice. For this purpose, Fidler performed intra-

venous administration of B16 cells followed by

subculturing of the induced pulmonary tumors in

repetitive cycles [57]. In this way, sublines with differ-

ent metastatic behavior were differentiated, the meta-

static potency increasing with the attributed index:

B16F1 has the lowest potency to form pulmonary

tumors while B16F10 has the highest. Fidler demon-

strated also that selected sublines keep their metastatic

properties after many passages [58]. During the last

40 years, B16 variants have been characterized from

morphological, biophysical and biochemical perspec-

tives. B16F10 cells were characterized as being more

adherent and having a higher tendency to aggregate

(to adhere to each other or to other cell types) as com-

pared with the F1 subline [59,60]. As concerns

Fig. 4. (A,B) Examples of quantitative phase shift maps and their corresponding histograms for B16F1 (A) and B16F10 (B) cells. The values

of skewness (s), kurtosis (k) and multimodal coefficient (b) are presented. Histograms were computed based on the reconstructed QPIs (for

the clarity the histograms are presented here with fewer bins on the abscissa; calculations were, however, performed using unitary

resolution). (C) Statistics of multimodal coefficients for B16F1 and F16 F10 (five cells from each subline were used for calculations).
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biochemical differences, higher levels of proteases and

glycosidases were reported in F10 as compared with

subline F1 [61]. B16F10 has a much lower cholesterol/

phospholipid ratio than F1 [62]. Higher levels of the

Sfrs1 protein, which promotes cancer growth and

development of metastasis, were found in the cyto-

plasm and cell surface in the case of F10, as compared

with F1; galactin-3, associated with cell migration and

invasion in melanoma, was also found in higher

amounts in B16F10 cells [63].

Briles and Kornfeld found no difference in morphol-

ogy and detachment properties between the B16F1

and B16F10 lines [64]. As regards the cell morphology,

in our work we found the cell height to be in the range

4.60–11.14 lm, similar for both sublines. The large

range of height values may be explained by the

heterogeneity of cell populations as they were in differ-

ent stages of the cell cycle. A similar observation was

made by Polo-Prada et al. regarding the cell diameter:

they found it to be 19.56 � 6.57 and 20.79 �
10.55 lm for B16F1 and B16F10 adherent cell subli-

nes, respectively [65]. They highlighted that cells com-

ing from the same source exhibit height variability.

This makes it difficult to identify a specific cell type, in

view of cancer detection based only on morphological

features.

As regards the optical properties, we found that, in

the maximum phase shift area, F10 cells have a higher

RI than F1. The maximum phase shift area has been

associated, in many works, with the nucleus area,

which is also the region of maximum cell height. The

cellular RI is known to be influenced by the protein

Fig. 5. (A) Cell index was recorded for 5 days starting from the moment of cell seeding (5000 cells/well); the CI signal was measured every

30 min. (B) Slope parameter was computed for each subline; it was calculated between the recording time of 480 min (when the CIs of

both sublines were similar: 0.4260 and 0.3993) and the recording time of maximal value (6180 min, CI = 5.5562 for B16F1 cells; and

5520 min, CI = 6.3842 for B16F10 cells); these times are indicated with arrows.

Fig. 6. The ability of the two sublines to form colonies. Aliquots of 100 cells were plated in Petri dishes; after 2 weeks, the colonies were

fixed and stained. The following parameters were computed using CELLPROFILER software: total number of colonies per plate (A) and total

area of colonies per plate (B). The area per colony was computed (C).
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concentration, increasing by 0.002 units for each per-

centage of protein content [6]. The RI was found to be

heterogeneous within the cell and it is assumed that

regions with high RIs correspond to organelles, but

the RIs of each organelle are, however, still under

study [30].

There is an abundant literature investigating the dif-

ferences in the RI of cancer and normal cells. Choi

et al. described that RI is higher in malignant cells,

proposing the RI as a biomarker for cancer diagnosis

[17]. Using full-field optical coherence microscopy,

they reconstructed RI maps of adherent living cells for

pairs of normal and cancerous cell lines from the

same origin (normal kidney epithelial RK3E and k-

ras-transformed RK3E rat cell lines, respectively nor-

mal immortalized oral keratinocytes INOK and oral

squamous carcinoma YD-10B human cell lines). Mean

RI values were found to be 1.353 � 0.008 for normal

and 1.371 � 0.014 for cancer cells. By using different

cell types, it has been shown that irrespective of the

cell type, RI is higher in malignant cells [10,33]. The

RI difference was attributed to the high protein accu-

mulation into the cell organelles (mainly the nucleus)

due to the rapid cancer cell division and higher prolif-

eration rate. Moreover, Bista et al. proposed the

nuclear RI to be a measure of the nuclear mass den-

sity; they reported values of nuclear RI above 1.5496

that vary during the cell cycle caused by the variations

in DNA content [32]. Hartman et al. assessed the

nanomorphology of various cells’ nuclei from biopsies

of pancreatic–biliary tumors, by measuring the average

optical path delay; they showed that this parameter

may be used to differentiate between cancer, uninvolved

and normal cells [66]. The differences were attributed to

changes in nuclear density and spatial rearrangements

in chromatin structure following the genetic mutations

responsible for cancer transformation. Presently, RI

mapping with high resolution can be performed, con-

tributing to cancer risk evaluation [34].

The RI values found in our study (1.3610 � 0.0039

for B16F1 and 1.3989 � 0.0112 for B16F10) are in

good agreement with the results summarized above.

The higher RI values of F10 could be a potential tool

to discriminate not only between normal and malig-

nant cells, but also between malignant cells with differ-

ent metastatic potential.

Moreover we found that the dry mass density, which

characterizes the protein content of entire cells, is

higher for F1 than for F10 cells (Fig. 3B). The mean

values (1.4261 � 0.0844 pg�lm�2 for F1 and 0.8003 �
0.1771 pg�lm�2 for F10) are in agreement with those

reported in studies where this parameter was followed

up during the cell cycle [41,67].

Dry mass density is correlated to the non-aqueous

content of the cell, quite similar to the classical den-

sity. Using gradient density separation technique,

Baniyash et al., showed that in unselected B16 tumor

cells there are cell populations with different densities

[68]. A lower density population proved to be more

successful in lung colonization and was selected as

F10, while a high density population had lower lung

colonization capacity and was selected as F1. Our

result confirms the observation that a higher metastatic

capability is associated with a lower density; the dry

mass density could thus act as an early biomarker for

cell metastatic potential.

We looked for another optical biomarker for meta-

static potency using the bimodality coefficient method

to analyse the QPIs. Examining Fig. 4, it can be seen

that the F1 cell histogram shows a bimodal distribution

of the phase shift within the cells, while the F10 cell his-

togram shows a tendency to a single-peaked distribu-

tion. Although we worked only on five cells belonging

to each subline, the kurtosis and skewness parameters

were computed for all pixels of each phase image pro-

viding a reliable amount of data, suitable for high order

analysis. Degree of bimodality is an important feature

of a frequency distribution, because it suggests irregu-

larities, such as polarization or two underlying distribu-

tions combined into one. Sharp phase shifts,

corresponding to the refractive indices of the compact

nuclei, characterize normal cells, which differ from

abnormal cells with irregularly enlarged nuclei [69,70].

Normal cells exhibit multimodal distributions with

clearly separated groups of dominant peaks (nucleus

and cytoplasm peaks) while the tendency to single

peaked distribution might be a sign of abnormality.

Our results from RTCA and clonogenic tests con-

firm a higher proliferation capacity of the B16F10 rela-

tive to the B16F1 subline (higher CI and larger

colonies as can be seen in Figs 5 and 6).

Our findings lead to the conclusion that QPI

bimodality analysis combined with the refractive index

and dry mass density measurements show promise for

discriminating between cells with different metastatic

potential.

Conclusions

This work proposes new optical biomarkers to charac-

terize cell metastatic potential: QPI bimodality analysis

combined with refractive index and dry mass density

computations. Our results show that the subline with

higher metastatic potential presents a unimodal his-

togram signature, higher refractive index and lower

dry mass density. Here we presented data to illustrate
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the principle of the approach, further develop-

ments (synchronized cells and automatic detection

algorithms) being in progress. The possibility of

extending the method from single cell analysis to a lar-

ger number of attached cells and even to tissues is to

be considered. Measuring the phase shift by using a

miniaturized portable device based on the interfero-

metric technique and the subsequent data processing

might have clinical potential, contributing to optimiza-

tion of cancer medicine.
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