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Abstract: In a CNN (convolutional neural network) accelerator, to reduce memory traffic and power
consumption, there is a need to exploit the sparsity of activation values. Therefore, some research
efforts have been paid to skip ineffectual computations (i.e., multiplications by zero). Different from
previous works, in this paper, we point out the similarity of activation values: (1) in the same layer of
a CNN model, most feature maps are either highly dense or highly sparse; (2) in the same layer of a
CNN model, feature maps in different channels are often similar. Based on the two observations, we
propose a block-based compression approach, which utilizes both the sparsity and the similarity of
activation values to further reduce the data volume. Moreover, we also design an encoder, a decoder
and an indexing module to support the proposed approach. The encoder is used to translate output
activations into the proposed block-based compression format, while both the decoder and the
indexing module are used to align nonzero values for effectual computations. Compared with
previous works, benchmark data consistently show that the proposed approach can greatly reduce
both memory traffic and power consumption.

Keywords: compression formats; convolutional neural networks; data volume; digital circuits; edge
computing; logic design

1. Introduction

Nowadays, convolutional neural networks (CNNs) [1,2] have been widely used in
many application fields, such as computer vision [3,4], signal processing [5,6] and image
processing [7,8]. Note that a CNN is composed of multiple layers. Most of the layers in
a CNN are convolutional (CONV) layers, which consume a large portion of the overall
execution time. To speed up the intensive computations of the CONV layers, a lot of
customized hardware accelerators [9–18] have been proposed to deal with this problem.

In addition to the intensive computations, the large data volume of a CNN model
is also an important issue for the design of a hardware accelerator [19–21]. As discussed
in [19], for a hardware accelerator, most of the energy consumption is spent on off-chip
memory (i.e., DRAM). To reduce the energy consumption of a hardware accelerator, there
is a demand to reduce the data movement to off-chip memory. In particular, for the edge
computing, since the hardware accelerator is designed with a stringent power constraint
(energy constraint), this issue becomes more important.

In many CONV layers, as a consequence of the Rectified Linear Unit (ReLU), a large
fraction of the activations are zero values. Here, we use six pre-trained CNN models
in Keras [22], including vgg16, ResNet50, ResNet50v2, MobileNet, MobileNetv2 and
DenseNet121, for illustration. As shown in Table 1, for each CNN model, the activation
sparsity (i.e., the percentage of zero value among all activations) is at least 33.1%. Note
that ineffectual multiplications (i.e., multiplications by zero) can be skipped. Therefore,
Cnvlutin [23] tries to exploit the activation sparsity to reduce the data volume.
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Table 1. An analysis to the activation sparsity of CNN models.

vgg16 ResNet50 ResNet50v2 MobileNet MobileNetv2 DenseNet121

49.0% 33.1% 39.5% 49.4% 65.7% 48.7%

In Cnvlutin [23], the sparse activations are represented by a compression format,
which only records the values and the indices (i.e., the spatial information) of the nonzero
activation values. As a result, the data volume (that needs to be transferred from off-chip
memory) can be significantly reduced. To handle the compression format (i.e., to handle
the alignment of irregularly distributed nonzero activation values), an indexing mechanism
is used in Cnvlutin [23].

To increase the sparsity of weights, weight pruning [24,25] can be used to remove all
weights below a certain threshold value (it is noteworthy to mention that, to minimize
the loss on accuracy, a costly retraining step may be required after weight pruning [24,25]).
Cambricon-X [9] proposes a compression format (with corresponding indexing mecha-
nisms) to exploit the sparsity of weights. Compared with the GPU (with the sparse library),
on average, Cambricon-X [9] can achieve 10.60× speedup and 29.43× energy reduction.

Lin and Lai [26] consider both the sparsity of activations and the sparsity of weights.
In their approach [26], both activations and weights are kept in a compression format.
Then, a dual indexing module is proposed to check the indices of activations and weights
in parallel. By using the dual indexing module, the effectual activation/weight pairs can
be identified for computations. Furthermore, in [27], a single-output dual indexing module
is proposed to identify the effectual activation/weight pairs in a fine-grained manner.

Previous works [9,23,26,27] exploit the sparsity to reduce both memory traffic and
power consumption. Different from these previous works, in this paper, we point out
the similarity of activation values. With an analysis of CNNs, we have the following two
observations of activation values.

• In the same layer of a CNN model, most feature maps are either highly dense or highly
sparse. Take the feature maps in layer 2 of the CNN model vgg16 for illustration.
Figure 1 gives the feature maps of the first eight channels in layer 2 of the CNN model
vgg16. In Figure 1, a zero value is displayed in a white color, while nonzero values
are displayed in a black color. Then, we can find: channels CH2, CH3 and CH5 are
highly dense, while channels CH1, CH4, CH6, CH7 and CH8 are highly sparse. In
other words, for the same feature map, two adjacent pixel locations are often in the
same color. Thus, there is a high possibility that two adjacent pixel locations, called a
block, can share the same indication bit.

• In the same layer of a CNN model, feature maps in different channels are often similar.
Take the first eight feature maps in layer 2 of the CNN model vgg16 for example. As
displayed in Figure 1, channels CH2, CH3 and CH5 are white dog pictures, while
channels CH1, CH4, CH6, CH7 and CH8 are black dog pictures. In other words, these
eight feature maps are essentially dog pictures. In particular, if the colors of CH2, CH3
and CH5 are reversed, we can obtain the eight feature maps, as shown in Figure 2.
Note that these eight feature maps (displayed in Figure 2) are similar. Owing to the
similarity of feature maps, we can try to consider multiple channels at the same time
for compression.

Based on these two observations, we are motivated to utilize the similarity of activation
values to further reduce the data volume. In other words, in addition to utilizing the
sparsity, we also try to utilize the similarity of activation values to further reduce the
data volume.
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Figure 1. Feature maps in layer 2 of CNN model vgg16.

Figure 2. Colors of CH2, CH3 and CH5 are reversed.

In this paper, to exploit both the sparsity and the similarity of activation values, we
develop a block-based compression approach (i.e., block-based compression format) to
store activation values. Furthermore, to support the proposed block-based compression
format, we also develop an encoder, a decoder and an indexing module. The encoder is
used to translate output activations into the proposed block-based compression format.
Both the decoder and the indexing module are used to align nonzero activation values for
effectual multiplications. Compared with previous works, benchmark data consistently
show that the proposed approach can greatly reduce both memory traffic and power
consumption (energy consumption).

The rest of this paper is organized as follows. Section 2 gives a survey on related
works. In Section 3, we present the proposed block-based compression format and its
corresponding hardware designs (including an encoder, a decoder and an indexing module).
Then, in Section 4, we report the experiment results. Finally, some concluding remarks are
given in Section 5.

2. Related Works

To exploit the parallelism in CNNs, many CNN accelerators [9–14,16–18,23,26,27] are
designed based on the single-instruction–multiple-data (SIMD) architecture. Note that the
core of convolution operation is multiplication and accumulation. Therefore, in the SIMD
architecture, multiply-accumulate (MAC) engines [28–30] are used to support convolution
operations between input activations and kernel weights. No matter if a CNN is sparse or
not, the compression format cannot be directly applied to the SIMD architecture; otherwise,
irregularly distributed nonzero values will break the alignment of input activations and
kernel weights. To handle the compression format (i.e., to handle the alignment of input
activations and kernel weights), an indexing mechanism is required.

Owing to its simplicity, direct mapping [9,26,27] is widely used as the compression
format. Note that direct mapping is implemented with a bit string (called an indication
string). In the indication string, each bit corresponds to an activation (or a weight) and
indicates if the value is zero or not (“1” for nonzero value and ”0” for zero value). For
example, in Cambricon-X [9], weights are stored in the compression format. Only nonzero
weights are stored in the memory, and an indication string is used to indicate if each
weight is zero or not. Figure 3 gives the hardware design of the direct indexing module.
In Figure 3, weights w0, w1, w4 and w6 are nonzero values. Thus, the indication string is
11001010. We add each bit in the indication string to obtain an accumulated string. In the
accumulated string, each element denotes the corresponding location. By enforcing the
“AND” operation between the indication string and the accumulated string, the indexes of
nonzero weights can be obtained. Therefore, as shown in Figure 3, activations a0, a1, a4 and
a6 are selected. The pairs (a0,w0), (a1,w1), (a4,w4) and (a6,w6) are sent to the processing
engine (PE) for performing convolution operations.
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Figure 3. The hardware design of the direct indexing module [9].

In [26], both activations and weights are stored in the compression format. To deter-
mine effectual activation/weight pairs, a dual indexing module [26] is proposed. Figure 4
gives the hardware design of the dual indexing module. In Figure 4, activations a1, a2,
a3, a5 and a6 are nonzero values, and weights w1, w3, w4 and w6 are nonzero values.
Thus, the indication string of activations is 01110110, and the indication string of weights is
01011010. A bit-wise “AND” operation is applied on the two indication strings to obtain
the co-activated index 01001010. Note that the co-activated index is used to mask out
ineffectual activations and weghts. Therefore, as shown in Figure 4, activations a1, a3 and
a6 and weights w1, w3 and w6 are selected. The pairs (a1,w1), (a3,w3) and (a6,w6) are sent
to the processing engine (PE) for performing convolution operations.

Note that output activations are dynamically generated during the inference process.
Therefore, as described in [26], an encoder is needed to dynamically encode output activa-
tions into the direct indexing format. Figure 5 gives the hardware design of the encoder.
In Figure 5, a zero-comparator is used to scan through output activations. Then, all the
nonzero activation values and the indication string can be stored. It is noteworthy to
mention that, although the process of encoding is sequential, it does not cause any extra
cycle since it is not on the critical path [26].
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Figure 4. The hardware design of the dual indexing module [26].

Figure 5. The hardware design of the encoder [26].

3. Proposed Approach

In this section, we propose a block-based compression format, which utilizes both
the sparsity and the similarity of activation values, to reduce the data volume. Then, we
design an encoder, a decoder and an indexing module to support the proposed block-based
compression format.

In the proposed approach, an indication matrix is split into a number of 2 × 1 size
blocks. Take the indication matrix shown in Figure 6 for illustration. This indication matrix
is split into 16 blocks. As displayed in Figure 7, each block contains 2 indication bits. Note
that, in each block, the values of the two indication bits are often the same. If the values of
the two indication bits are the same, we can replace the two indication bits with a single
indication bit. In other words, in a block, if the value of each indication bit is “1”, the two
indication bits can be reduced to be a single indication bit with a binary value of “1”; if
the value of each indication bit is “0”, the two indication bits can be reduced to be a single
indication bit with a binary value of “0”. Figure 8 gives the corresponding compressed
indication matrix.
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Figure 6. An indication matrix example.

Figure 7. Split the indication matrix into 16 blocks.

Figure 8. The compressed indication matrix.

Note that the compressed indication matrix is irregular. As shown in Figure 8, some
blocks have two indication bits, while others have only one indication bit. Thus, we also
need a look-up table (LUT) to identify the number of indication bits of each block. Note
that the LUT is a table of 1-bit marks. For each block in the compressed indication matrix,
there is a corresponding mark bit in the LUT. Using the compressed indication matrix
displayed in Figure 8 as an example, Figure 9 gives the corresponding LUT. For each mark
bit in the LUT, the binary value “0” means two indication bits, while the binary value “1”
means a single indication bit.

Figure 9. The corresponding LUT of the compressed indication matrix.

Note that, in the same layer of a CNN model, feature maps in different channels are
often similar. Therefore, to reduce the LUT size, an LUT is shared by multiple channels.
The proposed sharing method is below. For each block of a feature map (i.e., a channel), we
can specify its position by a coordinate value. We say two blocks in two different feature
maps (i.e., two different channels) are in the same group if and only if the two blocks have
the same coordinate value. Then, for the blocks in the same group, they share the same
mark in the LUT.

Take the indication matrices shown in Figure 10 for example. Here we consider eight
channels at the same time for compression. For each block in Figure 10, its two indication
bits are the same. Thus, we can replace the two indication bits with a single indication
bit. As a result, we can obtain the compression result as shown in Figure 11. Note that,
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in Figure 11, there are two groups: each group has eight blocks, which are from different
channels and in the same coordinate value. For each group, there is a corresponding mark
bit in the LUT. For each mark bit in the LUT, the binary value “0” means each block in this
group uses two indication bits, while the binary value “1” means each block in this group
uses a single indication bit.

Figure 10. Indication matrices of eight channels.

Figure 11. The proposed compression format.

It is noteworthy to mention that, since each block in the same group shares the same
mark bit in the LUT, each block in the same group should use the same number of indication
bits. In other words, a block in a group can use only one indication bit, if and only if all the
blocks in this group can only use one indication bit. If a block in a group needs to use two
indication bits, then all the blocks in this group need to use two indication bits. Fortunately,
owing to the similarity of feature maps, there is a high possibility that each block in a group
only needs to use one indication bit. Using CNN model vgg16 for illustration, even if we
consider eight channels at the same time, there are 48.7% groups in which each block only
needs to use one indication bit. In other words, for 48.7% of the groups, their corresponding
mark bit value is “1”.

Algorithm 1 gives the pseudo code of the proposed block-based compression algo-
rithm. Without loss of generality, here we assume that the number of channels is eight. In
Algorithm 1, the notations X1, X2, X3, X4, X5, X6, X7 and X8 denote the eight original indi-
cation matrices, the notations Y1, Y2, Y3, Y4, Y5, Y6, Y7 and Y8 denote the eight compressed
indication matrices and the notation LUT denotes the LUT. We use one-dimensional arrays
to represent these indication matrices and the LUT. The notation N denotes the length of
each original indication matrix, while the notation c denotes the length of each compressed
indication matrix. For the sake of brevity, here we assume N is an even number. Thus, for
each original indication matrix, the number of 2 × 1 size blocks is N/2. In other words, the
length of the LUT is N/2.
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Algorithm 1: Proposed Block-Based Compression

1 c = 0;
2 for i = 1 to N

2 do
3 if (X1[2i − 1]==X1[2i]) & (X2[2i − 1]==X2[2i]) & (X3[2i − 1]==X3[2i]) &

(X4[2i − 1]==X4[2i]) & (X5[2i − 1]==X5[2i]) & (X6[2i − 1]==X6[2i]) &
(X7[2i − 1]==X7[2i]) & (X8[2i − 1]==X8[2i]) then

4 LUT[i] = ’1’;
5 c = c + 1;
6 Y1[c] = X1[2i − 1];
7 Y2[c] = X2[2i − 1];
8 Y3[c] = X3[2i − 1];
9 Y4[c] = X4[2i − 1];

10 Y5[c] = X5[2i − 1];
11 Y6[c] = X6[2i − 1];
12 Y7[c] = X7[2i − 1];
13 Y8[c] = X8[2i − 1];
14 else
15 LUT[i] = ’0’;
16 c = c + 1;
17 Y1[c] = X1[2i − 1];
18 Y2[c] = X2[2i − 1];
19 Y3[c] = X3[2i − 1];
20 Y4[c] = X4[2i − 1];
21 Y5[c] = X5[2i − 1];
22 Y6[c] = X6[2i − 1];
23 Y7[c] = X7[2i − 1];
24 Y8[c] = X8[2i − 1];
25 c = c + 1;
26 Y1[c] = X1[2i];
27 Y2[c] = X2[2i];
28 Y3[c] = X3[2i];
29 Y4[c] = X4[2i];
30 Y5[c] = X5[2i];
31 Y6[c] = X6[2i];
32 Y7[c] = X7[2i];
33 Y8[c] = X8[2i];

In the proposed block-based compression algorithm (as displayed in Algorithm 1),
indication bit X1[2i − 1] and indication bit X1[2i] are in the same 2 × 1 size block, where
i = 1, 2, . . ., and (N/2). Here we use the pair (X1[2i − 1], X1[2i]) to represent this 2 × 1
size block. The eight blocks (X1[2i − 1], X1[2i]), (X2[2i − 1], X2[2i]), (X3[2i − 1], X3[2i]),
(X4[2i − 1], X4[2i]), (X5[2i − 1], X5[2i]), (X6[2i − 1], X6[2i]), (X7[2i − 1], X7[2i]) and (X8[2i −
1], X8[2i]) belong to the same group, where i = 1, 2, . . . and (N/2). For the sake of brevity,
we say the group formed by blocks (X1[2i − 1], X1[2i]), (X2[2i − 1], X2[2i]), (X3[2i − 1],
X3[2i]), (X4[2i − 1], X4[2i]), (X5[2i − 1], X5[2i]), (X6[2i − 1], X6[2i]), (X7[2i − 1], X7[2i]) and
(X8[2i − 1], X8[2i]) is the i-th group. The corresponding mark bit of the i-th group is LUT[i].
The value LUT[i] is set to be “1”, if and only if, in each block of the i-th group, the two
indication bits are the same. Otherwise, LUT[i] is set to be “0”.

Note that the proposed approach focuses on reducing the data volume for the indica-
tions. With the advance of quantization techniques [31,32], low-bit weights and activations
have been widely used in modern CNN accelerators. As a result, for modern CNN acceler-
ators, the percentage of indications in the overall data volume is relatively enlarged. Thus,
it is important to reduce the data volume for the indications.
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Next, we design an encoder, a decoder and an indexing module to support the
proposed compression format. Figure 12 gives the corresponding encoder circuit. Here we
consider eight channels at the same time. Thus, the bit-width of activation indication is
8. For each channel, we consider two activations (i.e., a block) simultaneously. Two zero-
comparators are used to determine if the activations are zero or not. As shown in Figure 12,
each zero-comparator scans eight activations, which are in the same group and from eight
channels, and then records an indication string and nonzero activation values. All nonzero
activation values are sent to the nonzero activation bank. The two indication strings, which
are from two zero-comparators, are compared using an XNOR function. Note that the
output of the XNOR function, called signal Mark, corresponds to the binary value of the
mark bit (of this block). The binary value of the mark bit (i.e., the signal Mark) is stored in
the LUT.

In Figure 12, the 1-bit counter (i.e., the signal SW) is used to control the mutiplexer
(i.e., MUX). The signal Write determines whether the activation indication (i.e., the output
of the multiplexer) is stored in the activation indication bank or not. Note that the binary
value of the signal Write becomes “0” if and only if both signal SW and signal Mark are “1”.
Therefore, if the binary value of the signal Mark is “0” (i.e., the two indication strings are
different), the two indication strings are sequentially stored into the activation indication
bank. On the other hand, if the binary value of the signal Mark is “1” (i.e., both the
two indication strings are exactly the same), only one indication string is stored into the
activation indication bank.

Figure 12. The proposed encoder circuit.

Figure 13 gives the corresponding decoder circuit. At each time, eight mark bits (i.e.,
one byte) are loaded from the LUT and then stored in the Mark buffer. The multiplexer is
used to select a mark bit (as the signal Mark) from the Mark buffer. For each mark bit, we
use two cycles to handle the loading of activation indications. Thus, a 4-bit counter is used
to control the multiplexer. The signal SW2 corresponds to the least significant bit of the
4-bit counter. Thus, if the binary value of the signal Mark is “0”, two indication strings are
sequentially loaded from the activation indication bank. On the other hand, if the binary
value of the signal Mark is “1”, only one indication string is loaded from the activation
indication bank.
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Figure 13. The proposed decoder circuit.

In the proposed approach, only nonzero activations are stored in the nonzero activa-
tion bank. Thus, there is a need to handle the alignment of irregularly distributed nonzero
activations. Figure 14 gives the hardware design of the corresponding indexing module. In
fact, the proposed indexing module is similar to the direct indexing module of Cambricon-
X [9]. The main difference between the proposed indexing module and Cambricon-X is
below: the proposed indexing module is to determine the indexes of nonzero activations,
while Cambricon-X is to determine the indexes of nonzero weights.

We use Figure 14 as an example to explain the function of the proposed indexing
module. In Figure 14, activations a0, a1, a4 and a6 are nonzero values. In other words,
the indication string is 11001010. Each bit in the indication string is added to obtain an
accumulated string. By enforcing the “AND” operation between the indication string and
the accumulated string, the indexes of nonzero activations can be derived. Thus, as shown
in Figure 14, weights w0, w1, w4 and w6 are selected. The pairs (a0,w0), (a1,w1), (a4,w4)
and (a6,w6) are sent to the PE to perform convolution operations.

Figure 14. The proposed indexing module.
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4. Experiment Results

We have used the TSMC 40 nm cell library to implement the corresponding hardware
circuits, including the encoder, the decoder and the indexing module, to support the com-
pression format. For comparisons, we also implemented the corresponding hardware cir-
cuits of previous works, including Cnvlutin [23], Cambricon-X [9] and Dual Indexing [26],
to support their compression formats.

In the experiments, we assume the clock frequency is 1 GHz. In addition, we assume
that the CNN accelerator is in the SIMD architecture [9–14,16–18,23,26,27] . In Cnvlutin [23],
Cambricon-X [9] and Dual Indexing [26], the number of PEs is 16. Therefore, without loss
of generality, here we also assume that the number of PEs is 16. Note that each PE requires
an indexing module and a decoder. Thus, to support the proposed compression format,
the circuit area overhead of a CNN accelerator is 16 indexing modules, 16 decoders and
1 encoder. Table 2 tabulates the circuit area overheads of different approaches (to support
their compression formats in 16 PEs). Since Cambricon-X [9] focuses on the sparsity of
weights, it does not need an encoder. Thus, Cambricon-X has the smallest circuit area
overhead. On the other hand, compared with Cnvlutin [23] and Dual Indexing [26], the
circuit area overhead of the proposed approach is smaller. The reason is that the indexing
module of the proposed approach is simpler than those of Cnvlutin and Dual Indexing.

Table 2. The circuit area overheads of different approaches (in 16 PEs).

Cnvlutin [23] Cambricon-X [9] Dual Indexing [26] Ours

16,208 µm2 12,112 µm2 30,108 µm2 13,599 µm2

Then, we use six pre-trained CNN models in Keras [22], including vgg16, ResNet50,
ResNet50v2, MobileNet, MobileNetv2 and DenseNet121, to test the effectiveness of the
proposed approach. Note that we use the following methods to measure the memory traffic
(i.e., the data movement to off-chip memory) and the power consumption. We extract
the intermediate data during the CNN inference process (i.e., during the TensorFlow
simulation). For each layer of a CNN model, the number of input channels, the input
activations, the kernel weights, the output activations and the number of output channels
are reported. According to this information, we can calculate the number of read accesses
and the number of write accesses. As a result, the amount of memory traffic is derived.
Note that the power consumption per read access and the power consumption per write
access can be obtained from the TSMC 40 nm cell library. Therefore, we can also derive the
total power consumption of all the memory accesses. Moreover, according to the number
of input channels, the input activations and the kernel weights, we can derive the test
patterns for the gate-level simulation. Based on gate-level switching activities (obtained
by gate-level simulation), we can use Synopsys Design Compiler to report the power
consumption of hardware circuit.

First, we report the energy consumption of the required hardware circuits (i.e., to sup-
port the compression format). Note that, in the proposed approach, the required hardware
circuits are 16 indexing modules, 16 decoders and 1 encoder. Figure 15 makes comparisons
on the energy consumption (of the required hardware circuits) among different approaches
with respect to different CNN models. For example, in the CNN model vgg16, the energy
consumption of Cnvlutin [23], Cambricon-X [9], Dual Indexing [26] and the proposed
approach are 1563.1 µJ, 1095.0 µJ, 1832.5 µJ and 886.4 µJ, respectively.

As shown in Figure 15, in each CNN model, the proposed approach achieves the
smallest energy consumption. The reason is because of the sharing of indication strings, in
the proposed approach, the number of calculations in each indexing module can be greatly
reduced. As a result, the power consumption (the energy consumption) can be greatly
saved. With a detailed analysis to these six CNN models, we find that: compared with
Cambricon-X [9], on average, the proposed approach can save 18% of energy consumption.
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Figure 15. Energy consumption of the required hardware circuits in different approaches.

Next, we report the memory traffic (i.e., the data movement to off-chip memory). Note
that here we consider both the access of activations and the access of weights. Figure 16
makes comparisons on the memory traffics among different approaches with respect to
different CNN models. As shown in Figure 16, in each CNN model, the proposed approach
achieves the smallest memory traffic. The reason is that the proposed approach exploits
both the sparsity and the similarity of activation values. Therefore, even compared with
Dual Indexing [26], the memory traffic of the proposed approach is still smaller. With a
detailed analysis of these six CNN models, we find that: compared with Dual Indexing, on
average, the proposed approach can save 9% of memory traffic.

Finally, we report the power consumption of all the memory accesses. Note that here
we consider both the access of activations and the access of weights. Figure 17 makes
comparisons on the power consumptions of all the memory accesses among different
approaches with respect to different CNN models. As shown in Figure 17, in each CNN
model, the proposed approach also achieves the smallest power consumption.

We also implement a C program, which is integrated into the TensorFlow simulation,
to simulate the behaviors of the different approaches (i.e., different compression mech-
anisms) during the CNN inference process. Table 3 tabulates the top-1 accuracies with
respect to different approaches. Note that these approaches do not introduce any accuracy
loss. Therefore, as shown in Table 3, these approaches achieve the same top-1 accuracies in
each CNN model.
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Figure 16. Memory traffic of different approaches.

Figure 17. Power consumption of all the memory accesses in different approaches.

Table 3. Top-1 accuracies of different approaches.

CNN Model Approach
Cnvlutin Cambricon-X Dual Indexing Ours

vgg16 71.3% 71.3% 71.3% 71.3%
ResNet50 74.9% 74.9% 74.9% 74.9%

ResNet50v2 76.0% 76.0% 76.0% 76.0%
MobileNet 70.4% 70.4% 70.4% 70.4%

MobileNetv2 71.3% 71.3% 71.3% 71.3%
DenseNet121 75.0% 75.0% 75.0% 75.0%

5. Conclusions

This paper demonstrates both the sparsity and the similarity of feature maps. Based
on these observations, we propose a block-based compression format, which utilizes both
the sparsity and the similarity, to reduce the data volume of indications. Compared with
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the dual indexing mechanism, the experiment results show that the proposed approach
can save 9% of memory traffic.

Moreover, we also develop the corresponding hardware circuits, including an encoder,
a decoder and an indexing module to support the proposed compression format. Compared
with the corresponding hardware circuits of previous works (to support their compres-
sion formats), the power consumption of the proposed approach (i.e., the corresponding
hardware circuits of the proposed compression format) is the smallest.

As low-bit activations are used in modern CNN accelerators, the percentage of indica-
tions in the overall data volume is relatively enlarged. Thus, it becomes more important
to reduce the data volume for the indications. With the trend of low-bit quantization in
the edge computing, the proposed approach (for reducing the data volume of indications)
is promising.
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