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Abstract: The role of proline dehydrogenase/proline oxidase (PRODH/POX) in the mechanism of
antineoplastic activity of metformin (MET) was studied in C32 melanoma cells. PRODH/POX is
a mitochondrial enzyme-degrading proline that is implicated in the regulation of cancer cell sur-
vival/apoptosis. The enzyme is activated by AMP kinase (AMPK). It has been found that MET
induced a significant decrease in cell viability and DNA biosynthesis accompanied by an increase
in the expressions of AMPK and PRODH/POX in C32 cells. The mechanism for MET-dependent
cytotoxicity on C32 cells was found at the level of PRODH/POX-induced ROS generation and ac-
tivation of Caspase-3 and Caspase-9 expressions in these cells. The effects were not observed in
MET-treated PRODH/POX knock-out C32 cells. Of interest is an MET-dependent increase in the
concentration of proline, which is a substrate for PRODH/POX. This phenomenon is due to the
MET-dependent inhibition of collagen biosynthesis, which is the main proline-utilizing process. It
has been found that the underlying mechanism of anticancer activity of MET involves the activation
of AMPK, PRODH/POX, increase in the cytoplasmic concentration of proline, inhibition of colla-
gen biosynthesis, and stimulation of PRODH/POX-dependent ROS generation, which initiate the
apoptosis of melanoma cells.

Keywords: PRODH/POX; proline dehydrogenase; proline oxidase; metformin; AMPK; melanoma

1. Introduction

Malignant melanoma is mostly a skin cancer that is derived from melanocytes [1,2].
According to epidemiological data, the number of newly diagnosed cases has increased
more than threefold in the last 30 years [1,2]. The etiopathogenesis of cutaneous melanoma
is not fully understood. It involves many genetic, metabolic, and environmental factors.
In most cases of skin cancer, surgical methods are ineffective; therefore, pharmacological
methods of treatment of the disease are considered [3,4].

Up to date, metformin (MET) is the first-line drug in the pharmacotherapy of type
II diabetes. It inhibits intestinal glucose absorption, gluconeogenesis, and stimulates
glycolysis and tissue sensitivity to insulin, contributing to hypoglycemia [5]. Studies of the
last decade indicate that MET could be considered as an approach to the pharmacotherapy
of melanoma. It has been well documented that MET inhibits melanoma cell growth both
in vitro and in vivo [6–9], which has been proved in several clinical trials [10,11].
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However, the link between MET-induced glycolysis and its anticancer potential is
poorly understood. One of the effects of metformin is the activation of AMP kinase
(AMPK) [7,12–15] and inhibition of mitochondrial respiration [5].

AMPK is activated by phosphorylation when the AMP/ATP ratio rises. This process
stimulates oxidative phosphorylation to restore normal ATP levels and inhibits energy
expenditure, such as cell proliferation [16,17]. Therefore, AMPK is regulated especially
in conditions of energy shortage (e.g., starvation) and hypoxia [17] to inhibit anabolic
processes and stimulate catabolism. One of the energy substrates in cancer cells is proline,
which is derived from protein degradation, mainly collagen. Proline is degraded in mito-
chondria by proline dehydrogenase/proline oxidase (PRODH/POX) [18,19]. The enzyme
is upregulated by AMPK [20].

PRODH/POX catalyzes the conversion of proline into ∆1-pyrroline-5-carboxylate
(P5C). During this process, electrons are transported to the electron transport chain, pro-
ducing ATP for survival [18,21,22], or they directly reduce oxygen, producing reactive
oxygen species (ROS) for apoptosis/autophagy [23–26]. Therefore, PRODH/POX may play
a dual role, but the mechanism that switches PRODH/POX from cancer growth-inhibiting
to growth-supporting factor is unknown. PRODH/POX-dependent inhibition of cancer
cell proliferation may result from ROS signaling [24,27,28]. The enzyme is upregulated by
p53. Transcriptional regulation of PRODH/POX by p53 was found in the PRODH/POX
promoter, containing a p53-response element [29–31].

Another factor that determines PRODH/POX-dependent functions is proline avail-
ability for the enzyme. Prolidase [E.C.3.4.13.9], the cytoplasmic enzyme releasing proline
from imidodipeptides, is an important regulator of free proline in the cytoplasm [32–36].
However, it seems that the most important role in the regulation of proline concentration
in the cytoplasm is collagen biosynthesis [37], which in this context may function as a sink
for free proline.

The aim of the study is the identification the mechanism of anticancer activity of MET.

2. Results

The hypothesis was provided that metformin (MET) evokes pro-apoptotic potential
by inducing PRODH/POX-dependent apoptosis in melanoma cells. The studies were
performed on melanoma C32 cells, expressing PRODH/POX and PRODH/POX knock-out
C32 cells (C32POX−).

As shown in Figure 1, MET inhibited cell viability (A) and DNA biosynthesis (B) in
both cell lines in a concentration-dependent manner. However, the inhibition was more
pronounced in C32 cells than in C32POX−. At 20 mM, MET decreased C32 cell viability
to about 40% and C32POX− to about 70% of control. DNA biosynthesis was similarly
affected by MET treatment in both cell lines; however, it was to a lower extent. Moreover,
as presented in Figure 1C,D, in C32 cells, MET increased in a dose-dependent manner the
number of cells in the sub-G1 phase (characteristic for apoptotic cells) and decreased the
number of cells in the G1 phase (characteristic for normal cells). In C32POX−, an opposite
effect of MET was found. The data suggest that MET cytotoxicity could undergo apoptosis
in C32 cells.

Since MET is known to induce AMPK [6,15] and this kinase upregulates PRODH/POX [21],
the expression of these proteins was measured in MET-treated cells by Western immunoblot-
ting. As shown in Figure 2A, MET in a dose-dependent manner strongly stimulated AMPK
and PRODH/POX expressions in melanoma C32 cells. In MET-treated C32POX−, AMPK ex-
pression was much higher than in C32 cells and PRODH/POX expression was not detected.
An increase in PRODH/POX expression in MET-treated C32 cells was accompanied by an
increase in ROS formation (Figure 2B) and a decrease in cell membrane integrity (Figure 2C).
These effects were also seen in C32POX−; however, it was to a much lower extent.
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Figure 1. Cell viability (A), DNA biosynthesis (B), analysis of sub-G1 (C) and G1 (D) phases of cell 
cycle in C32 and C32POX− cells upon treatment with metformin (0–20 mM, 24 h). The mean values 
with standard deviation (SD) from 3 experiments performed in duplicates are presented. Asterisks 
* indicate statistical differences between studied cells compared to controls at p < 0.001. 
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An increase in ROS generation in MET-treated cells was counteracted by THFA, 
which is a specific PRODH/POX inhibitor [38,39]. 

Figure 1. Cell viability (A), DNA biosynthesis (B), analysis of sub-G1 (C) and G1 (D) phases of
cell cycle in C32 and C32POX− cells upon treatment with metformin (0–20 mM, 24 h). The mean
values with standard deviation (SD) from 3 experiments performed in duplicates are presented.
Asterisks * indicate statistical differences between studied cells compared to controls at p < 0.001.

An increase in ROS generation in MET-treated cells was counteracted by THFA, which
is a specific PRODH/POX inhibitor [38,39].

Functional significance of MET-dependent cytotoxicity and ROS formation was found
at the level of expression of apoptosis (Caspase-3, Caspase-9, PARP) and autophagy (Beclin-
1, Atg7) markers. As shown in Figure 3A, active Caspases-3, -9, and PARP were strongly
expressed in MET-treated C32WT cells and slightly expressed in MET-treated C32POX−. MET
also stimulated Beclin-1 and Atg7 expressions in C32WT cells, while in C32POX−, Beclin-1
was not detected in contrary to Atg7, which was also stimulated by MET (Figure 3B). It
suggests that PRODH/POX-dependent ROS formation contributes to apoptosis and the
autophagic death of C32WT cells.

PRODH/POX-induced apoptosis is dependent on substrate availability for the en-
zyme. Since proline availability for PRODH/POX is regulated by prolidase (proline sup-
porting enzyme) and collagen biosynthesis (proline utilizing process), the effect of MET
on the processes was studied. As shown in Figure 4, MET similarly increased proline
concentration (Figure 4A) and inhibited collagen biosynthesis (Figure 4B) in both cell
lines. However, prolidase activity was inhibited by MET (in a dose-dependent manner) in
C32POX−, while in C32WT cells, the enzyme was significantly affected only at 20 mM of MET.
Nevertheless, this property of metformin did not reduce the concentration of free proline
in the cells. The data suggest that MET supports proline for PRODH/POX-dependent
functions by inhibiting collagen biosynthesis.
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Figure 2. AMPK and PRODH/POX expression (A), ROS formation (B), and cell membrane integra-
tion (C) in C32 and C32POX− cells treated with metformin (0–20 mM, MET) for 24 h. THFA 
(PRODH/POX inhibitor) was used at a concentration of 200 µM. Representative Western blot images 
were shown (the mean values of densitometric analysis after GAPDH normalization as a ratio ver-
sus control were presented below each blot). Supplementary Materials contain statistical analysis of 
the evaluated proteins (Supplementary Material, Figures S1 and S2). The mean values with standard 
deviation (SD) from 3 experiments performed in duplicates are presented. Asterisks* indicate sta-
tistical differences between studied cells compared to controls at p < 0.001. C—control, THFA—
tetrahydrofuroic acid, MET—metformin. 

Functional significance of MET-dependent cytotoxicity and ROS formation was 
found at the level of expression of apoptosis (Caspase-3, Caspase-9, PARP) and autophagy 
(Beclin-1, Atg7) markers. As shown in Figure 3A, active Caspases-3, -9, and PARP were 
strongly expressed in MET-treated C32WT cells and slightly expressed in MET-treated 
C32POX−. MET also stimulated Beclin-1 and Atg7 expressions in C32WT cells, while in 
C32POX−, Beclin-1 was not detected in contrary to Atg7, which was also stimulated by MET 

Figure 2. AMPK and PRODH/POX expression (A), ROS formation (B), and cell membrane integration
(C) in C32 and C32POX− cells treated with metformin (0–20 mM, MET) for 24 h. THFA (PRODH/POX
inhibitor) was used at a concentration of 200 µM. Representative Western blot images were shown
(the mean values of densitometric analysis after GAPDH normalization as a ratio versus control were
presented below each blot). Supplementary Materials contain statistical analysis of the evaluated
proteins (Supplementary Material, Figures S1 and S2). The mean values with standard deviation (SD)
from 3 experiments performed in duplicates are presented. Asterisks * indicate statistical differences
between studied cells compared to controls at p < 0.001. C—control, THFA—tetrahydrofuroic acid,
MET—metformin.
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Figure 3. Expression of (A) apoptosis markers (cleaved-Caspase-9, Caspase-9, cleaved-Caspase-3,
Caspase-3, cleaved-PARP, and PARP) and (B) autophagy markers (Beclin-1 and Atg7). Representative
Western blot images are shown (the mean values of densitometric analysis after GAPDH normal-
ization as a ratio versus control were presented below each blot). Supplementary Materials contain
statistical analysis of the evaluated proteins (Supplementary Material, Figures S3–S8).
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Figure 4. Proline concentration (A), collagen biosynthesis (B), and prolidase activity (C) in C32WT and
C32POX− cells upon treatment with metformin (0–20 mM) for 24 h. The mean values with standard
deviation (SD) from 3 experiments performed in duplicates are presented. Asterisks * indicate
statistical differences between studied cells compared to controls at p < 0.001.

3. Discussion

Several lines of evidence presented in this paper suggest that the mechanism of the
anticancer activity of MET involves PRODH/POX-dependent ROS generation in melanoma
cells. We suggest that important players in this process are AMPK, as an inducer of
PRODH/POX, and collagen biosynthesis, as a regulator of proline availability for the
enzyme. MET was found to (i) induce AMPK-stimulating PRODH/POX and (ii) inhibit
collagen biosynthesis, facilitating proline availability for PRODH/POX-dependent ROS
generation that induces apoptosis in melanoma cells.

It seems that MET induces the reprogramming of energetic metabolism in melanoma
cells. The melanoma cells, as well as many other cancer cells, are characterized by enhanced
aerobic glycolysis yielding lactate, which is known as a Warburg effect [40,41]. It ensures
the rapid production of ATP from glucose to support cancer cell proliferation [42,43]. The
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conversion of pyruvate into lactate ensures a high NAD+/NADH ratio that accelerates
glycolysis but deregulates redox potential [44]. The process of ATP production from glucose
by the Warburg effect is less efficient than during mitochondrial oxidative phosphorylation.
Therefore, cancer cells need another source of energy. Particularly, proline could serve as an
alternative source of energy. A large quantity of proline comes from protein degradation,
mostly from the most abundant extracellular protein—collagen. Warburg’s effect facili-
tates protein degradation as an alternative source of energy. Moreover, the Warburg effect
contributes to the augmentation of glutaminolysis, leading to an increase in proline con-
centration and its metabolites [45]. Proline, ornithine, and glutamate are interconvertible
amino acids with an intermediate of P5C, linking TCA and urea cycles with glutamine
metabolism. Therefore, proline could be an energetic substrate in a reaction catalyzed by
PRODH/POX. However, in cancer cells, proline metabolism by PRODH/POX is limited,
since lactate inhibits its activity [46]. In such conditions, energy shortage activates AMPK;
however, it is not effective in the stimulation of PRODH/POX [47,48] because of high
lactate concentration that inhibits PRODH/POX [46].

One of the well-recognized effects of MET is inhibition of respiratory complex I [6]. It
suggests that electrons from PRODH/POX-dependent proline degradation are directly ac-
cepted by oxygen, generating ROS-induced apoptosis. Since MET upregulates PRODH/POX,
as was shown in this report, the process is agitated in MET-treated melanoma cells. Whether
this is the universal mechanism in cancer cells needs to be explored. However, several lines
of evidence support such a mechanism of MET-dependent apoptosis.

Several studies showed that the proline concentration is increased in various can-
cers [49,50]. It seems that the increase in proline level is due to the degradation of extracel-
lular matrix collagen type I, which is the protein containing a high amount of proline [51].
Energy shortage induces matrix metallopreoteinases (MMP)-2 and -9 [20], suggesting the
mechanism for an increase in cellular proline concentration. In such a case, cancer cells may
select proline as an alternative energy source. In vivo proline has an advantage over fatty
acids and glutamine, which similar to glucose require delivery by circulation. Therefore,
proline may represent an energy sense molecule and energy substrate. However, a critical
factor that mediates adaptation for such metabolic change is AMPK [52,53]. This kinase
inhibits energy-consuming processes and activates energy-producing processes to restore
energy homeostasis during stress situations [54,55]. Proline could be also generated from
glutamine/glutamate as well as from ornithine [56], linking tricarboxylic acid (TCA) and
Urea cycles with proline metabolism.

In this report, evidence was provided that MET induced the expression of AMPK,
PRODH/POX, active Caspase 3, -9, and PARP in a dose-dependent manner. The effect was
not found in C32POX− cells deprived of PRODH/POX. It suggests that PRODH/POX rep-
resents an underlying mechanism for the initiation of apoptosis in MET-treated melanoma
cells. Interestingly, some autophagy markers (Beclin-1, Atg7) were also upregulated in
MET-treated melanoma cells. PRODH/POX was found to induce autophagy in some
micro-environmental conditions in breast cancer cells [57–59]. It cannot be excluded that
both processes run in parallel in MET-treated cells, and the result is determined by the
complex of metabolic processes in the melanoma cells. Probably the most important is
energetic metabolism, particularly involving glucose metabolism. Recently, it has been
found that MET inhibited glycolysis as demonstrated by a drastic increase in intracellular
glucose content and dependently on the presence or absence of glutamine, the drug af-
fected metabolites of TCA and urea cycles in breast cancer MCF-7 cells [60]. It suggests that
MET-induced glucose starvation contributes to the acquisition of energy from other sources,
e.g., proline. In fact, previously, we provided evidence that metformin induced apoptosis
in both WT and PRODH/POX knock-out MCF-7 cells, however only when cultured in the
absence of glutamine, while the presence of glutamine in cell culture medium facilitated the
pro-survival phenotype of the cells [60]. Metabolomic analysis suggested that glycolysis
is tightly linked to glutamine and proline metabolism in these cells, creating metabolic
conditions for energy production and proline availability for PRODH/POX-dependent
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functions. Metformin treatment of both cell lines (WT and PRODH/POX knock out MCF-7
cells) cultured in glutamine free medium contributed to glucose starvation, facilitating
the pro-apoptotic phenotype of these cells, as detected by increase in the expression of
active Caspase-7 and PARP. Caspase-7 is known as an executioner protein of apoptosis
activated by Caspase-8 (extrinsic pathway) and Caspase-9 (intrinsic pathway). These results
provided insight into the potential mechanism of anticancer activity of metformin and
suggested that PRODH/POX is an important player in the apoptosis. In further unpub-
lished studies on PRODH/POX-dependent apoptosis in MCF-7 cells, we found that the
stimulation of PRODH/POX (by PPAR-Υ activation) induced reactive oxygen species (ROS)
generation and ROS-dependent apoptosis (accompanied by an increase in the expression
of active Caspase-9), while PRODH/POX knock-out abolished ROS-dependent apoptosis;
however, it induced apoptosis by the extrinsic pathway (activation of Caspase-8). The
interplay between PRODH/POX-dependent extrinsic and intrinsic pathways is probably
metabolic context dependent. It seems that in conditions of PRODH/POX knock-out and
inhibition of collagen biosynthesis (proline consuming process), proline concentration
drastically increases activating extrinsic apoptosis. Whether this is the case is currently
under investigation.

Interestingly, in present studies, we found that metformin induced PRODH/POX-
dependent apoptosis in melanoma cells, which is characterized by an intense biosynthesis
of collagen [61]. In this case, PRODH/POX knock-out did not induce apoptosis. It seems
that in the melanoma cells with a high capacity to utilize proline for collagen biosynthesis,
the proline concentration is not high enough to induce extrinsic apoptosis. However,
the stimulation of PRODH/POX by metformin induced ROS-dependent apoptosis, while
PRODH/POX knock-out abolished the effect. Therefore, we suggest that the role of
PRODH/POX in the apoptosis/survival of cancer cells is not a zero-one system but rather
depends on metabolic context of a specific cell type.

PRODH/POX cooperate with P5C reductase (P5CR) participating in proline turnover
between mitochondria and cytoplasm. The conversion of proline to P5C that is shuttled
between mitochondria and the cytosol is coupled to glucose metabolism by the pentose
phosphate pathway [18–20,29]. It is vital in the maintenance of redox balance in a cell
due to the participation of NAD+/NADH in the conversion of P5C to proline. Moreover,
P5C is converted by P5C dehydrogenase (P5CDH) to glutamate, which is a precursor of
α-ketoglutaric acid—a component of the TCA cycle. Such a cycle of proline/P5C between
mitochondria and cytoplasm could be responsible for ROS generation and apoptosis induc-
tion. It may undergo in case of inhibition of proline utilization for collagen biosynthesis.
Although the role of collagen biosynthesis in the mechanism for switch between ATP and
ROS production in mitochondria is hypothetical, it is partially supported by data showing
that 2-metoxyestradiol, an inhibitor of collagen biosynthesis [62], induces apoptosis and
autophagy in adenocarcinoma cells [63]. The tendency was found in breast cancer tissue,
which evoked enhanced prolidase activity and decreased collagen content [64]. Recently,
metformin was shown to inhibit collagen biosynthesis in fibroblasts [65,66]. It seems
that metformin-dependent inhibition of collagen biosynthesis and metformin-induced
PRODH/POX expression accelerates the proline cycle, contributing to ROS generation and
apoptosis in cancer cells.

4. Materials and Methods
4.1. PRODH/POX Knock Out CRISPR-cas9 DNA Plasmid Purification

The sgRNAs for PRODH/POX (CRISPR All-In-One Non-Viral Vector with spCas9)
were ordered by ABM Company (Richmond, VA, Canada). The vector with expression con-
struct (directed against PRODH1 isoform) was transformed into Escherichia coli DH5α and
grown in Luria–Bertani (LB) media supplemented with 100 µg·mL−1 ampicillin at room
temperature for 24 h, as described previously [60]. The targeted plasmid was extracted
by a plasmid DNA purification kit (Nucleobond Xtra Midi/Maxi, MACHERY-NAREL
GmbH, Düren, Germany). After being precipitated by isopropanol, the purified samples
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were washed by 70% ethanol solution and then followed by a DNA cleaning-up step by a
GeneMATRIX Basic DNA Purification Kit (EURX, E3545-01 protocol 1, Gdansk, Poland).
The purified DNA concentration was estimated by NanoDrop™ 2000/2000c Spectropho-
tometers (Thermo Fisher Scientific, Waltham, MA, USA).

4.2. Transfection into Melanoma Cell Line

C32 melanoma cells (catalog number: CRL-1585, purchased from ATCC) were cultured
in the complete growth medium, DMEM 1X (Gibco, Carlsbad, CA, USA) containing
4.5 gL−1 glucose, L-glutamine, and pyruvate supplemented with 10% Fetal Bovine Serum
(FBS) qualified (Gibco, Carlsbad, CA, USA), 1% penicillin/streptomycin (Invivogen, San
Diego, CA, USA) at 37 ◦C in 5% CO2. Then, the cells were seeded into 6-well plates to reach
70–90% confluency. The amount of plasmid in the experiment was tested from 1 to 2 µg
per well. Lipofectamine 2000 (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA)
was used as a transfection reagent.

Prior to transfection, the plasmid was diluted with 50 µL of medium A, DMEM
1X (Gibco, Carlsbad, CA, USA) containing 4.5 gL−1 glucose, L-glutamine, and pyruvate
supplemented with 1% penicillin/streptomycin (Invivogen, San Diego, CA, USA).

The transfection solution containing 805.4 µL of medium A and 194.6 µL of lipofec-
tamine reagent were gently mixed and then incubated at room temperature for 5 min before
aliquoting 60 µL of the solution into a vial containing the diluted plasmid solution. The
mixture of diluted plasmid and transfection solution was mixed gently and then incubated
at room temperature for 20 min.

The testing cells were washed by PBS 1X (sterile phosphate-buffered saline 1X, Gibco,
Carlsbad, CA, USA) and freshly added with 1 mL of medium A. After 20 min incubation, the
mixture of plasmid and transfection reagent was slowly added to cells and then incubated
at 37 ◦C in 5% CO2 overnight. The following day, the transfected cells were selected in
the complete growth medium with 1 µg·mL−1 of puromycin (Sigma-Aldrich, Saint Louis,
MI, USA) in the same culture conditions for 10 days. The expression of PRODH/POX
in transfected cells was checked by Western immunoblotting. Based on the results of
expression level between wild-type C32 cells and transfected C32 cells, the PRODH/POX
knock-out C32 cell line was selected for further stable clone generation. The process of
the stable clone generation was manipulated with a serial dilution of the selected cells
in the culture media to obtain 0.7 cell per well in a 96-well plate. The screening steps
were completed with a random selection of cell clones. The PRODH/POX silencing in
cell clones was checked by Western immunoblotting using an anti-PRODH/POX antibody
(Santa Cruz, Dallas, TX, USA). The level of PRODH/POX knockdown is presented in
(Supplementary Material Figure S1). The PRODH/POX knock-out C32 cells defined as
C32POX− cells were frozen in liquid nitrogen vapor and banked for further experiments.

4.3. Cell Culture and Treatment

Melanoma (C32) cell lines were purchased from ATCC (ATCC, Manassas, VA, USA).
The cells were grown in a DMEM cell culture medium (PanBiotech, Aidenbach, Ger-
many) containing 10% fetal bovine serum (Gibco, Carlsbad, CA, USA) and 1% peni-
cillin/streptomycin (Gibco, Carlsbad, CA, USA) at 37 ◦C in a humidified atmosphere
of 5% CO2. For experiments, cells (4–7th passages) were treated with metformin at concen-
trations of 0–20 mM for 24 h.

4.4. Cell Viability

The cell viability of metformin-treated cells was measured using the MTT assay, as
described previously [67]. Cell survival was calculated as a percentage of living cells when
compared to control (0 mM of metformin, 100% survival).
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4.5. DNA Biosynthesis Assay

DNA biosynthesis of C32WT and C32POX− cells was evaluated with the CyQUANT®

Cell Proliferation Assay (Thermo Fisher Scientific, Waltham, MA, USA) according to the
previously described procedure [68].

4.6. Cell Cycle Analysis

The cell cycle of C32WT and C32POX− cells upon metformin treatment (0–20 mM) for
24 h was analyzed as previously described [69].

4.7. ROS Generation Assessment

Intracellular reactive oxygen species accumulation was measured using DCFH-DA as
a fluorescent probe. Briefly, cells were pre-incubated with DCFH-DA (20 µM) in culture
medium for 30 min, washed twice with PBS, and treated with increasing concentrations
of metformin (MET, 0–20 mM) for 24 h, 200 µM tetrahydrofuroic acid (THFA, Sigma
Aldrich, Saint Louis, MI, USA) or both compounds in DMEM. THFA (proline analogue)
was used as a PRODH/POX inhibitor [70,71]. The fluorescent intensity was measured
at an excitation/emission wavelength of 488/535 nm using TECAN Infinite® M200 PRO
(Männedorf, Switzerland). The results were presented as a fluorescence intensity using
arbitrary units.

4.8. Cell Membrane Integrity Assay

Cell membrane integrity of metformin-treated cells was evaluated by using neutral
red uptake (NRU) assay, which was described previously [68]. Cytotoxicity was calculated
as a percentage of the control (0 mM of metformin, 100% of intact membranes).

4.9. Preparation of Cell Lysates

Cells were cultured in FBS-free DMEM with metformin (0–20 mM) for 24 h. Then, cells
were collected as previously described [72]. Protein concentration was measured using the
Lowry method [73]. Cell lysates were subjected to Western immunoblotting and prolidase
activity measurement.

4.10. Western Immunoblotting

The Western immunoblotting analyses were performed as described previously [57].
The membranes were incubated with primary antibodies (all from CST and in 1:1000
dilution; Cell Signaling, Danvers, MA, USA) overnight, including anti-AMPKα, anti-
Atg7, anti-Beclin-1, anti-cleaved Caspase-3, anti-Caspase-3, anti-cleaved Caspase-9, anti-
Caspase-9, anti-cleaved PARP, anti-PARP, anti-PRODH, and anti-GAPDH. The bands were
visualized using 1-Step™ NBT/BCIP Substrate Solution (Thermo Fisher Scientific, Waltham,
MA, USA), and their intensities were semi-quantitatively calculated with ImageJ software
(https://imagej.nih.gov/ij/). Western immunoblotting analysis was performed at least
in triplicate.

4.11. Determination of Prolidase Activity

The activity of prolidase was determined as described previously [58]. Enzyme activity
was reported as nanomoles of proline released from the synthetic substrate (glycyl-proline)
during 1 min per milligram of supernatant protein of cell homogenate.

4.12. Collagen Biosynthesis Assay

Collagen biosynthesis in C32WT and C32POX− cells was measured as described previ-
ously [59]. Radiometric measurement was run on a Liquid Scintillation Analyzer Tri-Carb
2810 TR (PerkinElmer, Waltham, MA, USA).

https://imagej.nih.gov/ij/
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4.13. LC-MS Analysis of Proline Concentration

Proline concentration in C32WT and C32POX− cells was measured with the use of the
method published by Klupczynska et al. [74]. Samples were analyzed using Agilent 1260
Infinity HPLC system coupled to Agilent 6530 Q-TOF mass spectrometry detector with
electrospray ionization as an ion source in positive ionization mode. Samples were injected
onto an HILIC column (Luna HILIC, 2 × 100 mm, 3 µm, Phenomenex, Torrance, CA, USA).
Methanol-extracted cell lysates were collected in triplicates and injected in duplicates. Total
protein concentration was used for normalization and presented as percentage of control.

4.14. Statistical Analysis

All experiments were run at least in triplicates, and the experiments were repeated
twice. Data represent a mean ± standard deviation (SD). For statistical analysis, one-
way analysis of variance (ANOVA) with Dunnett’s correction and t-test using GraphPad
Prism 5.01 (GraphPad Software, San Diego, CA, USA) were used. Results were considered
statistically significant at p < 0.001 and denoted by asterisks *.

5. Conclusions

Collectively, our results indicate that the mechanism for MET-induced apoptosis
in melanoma cells involves the upregulation of AMPK and PRODH/POX-dependent
ROS formation and inhibition of collagen biosynthesis, increasing proline availability for
PRODH/POX. The potential mechanism of this process is outlined in Figure 5.
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