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Background. The origin of metazoan development and differentiation was contingent upon the evolution of cell adhesion,
communication and cooperation mechanisms. While components of many of the major cell signalling pathways have been
identified in a range of sponges (phylum Porifera), their roles in development have not been investigated and remain largely
unknown. Here, we take the first steps toward reconstructing the developmental signalling systems used in the last common
ancestor to living sponges and eumetazoans by studying the expression of genes encoding Wnt and TGF-b signalling ligands
during the embryonic development of a sponge. Methodology/Principal Findings. Using resources generated in the recent
sponge Amphimedon queenslandica (Demospongiae) genome project, we have recovered genes encoding Wnt and TGF-
b signalling ligands that are critical in patterning metazoan embryos. Both genes are expressed from the earliest stages of
Amphimedon embryonic development in highly dynamic patterns. At the time when the Amphimedon embryos begin to
display anterior-posterior polarity, Wnt expression becomes localised to the posterior pole and this expression continues until
the swimming larva stage. In contrast, TGF-b expression is highest at the anterior pole. As in complex animals, sponge Wnt and
TGF-b expression patterns intersect later in development during the patterning of a sub-community of cells that form a simple
tissue-like structure, the pigment ring. Throughout development, Wnt and TGF-b are expressed radially along the anterior-
posterior axis. Conclusions/Significance. We infer from the expression of Wnt and TGF-b in Amphimedon that the ancestor
that gave rise to sponges, cnidarians and bilaterians had already evolved the capacity to direct the formation of relatively
sophisticated body plans, with axes and tissues. The radially symmetrical expression patterns of Wnt and TGF-b along the
anterior-posterior axis of sponge embryos and larvae suggest that these signalling pathways contributed to establishing axial
polarity in the very first metazoans.

Citation: Adamska M, Degnan SM, Green KM, Adamski M, Craigie A, et al (2007) Wnt and TGF-b Expression in the Sponge Amphimedon queenslandica
and the Origin of Metazoan Embryonic Patterning. PLoS ONE 2(10): e1031. doi:10.1371/journal.pone.0001031

INTRODUCTION
Little is known about the morphogenetic complexity of the last

common ancestor of modern multicellular animals, but it is

generally thought to be an extremely simple organism without

a body axis, multiple cell layers and tissues [reviewed in 1]. We can

reconstruct this hypothetical animal–the Urmetazoa–by identify-

ing common features in embryonic development of distantly

related extant clades, specifically bilaterians, cnidarians, cteno-

phores and sponges. Among these groups, bilaterians are

represented by long-favourite developmental model systems and

several hypotheses have been proposed regarding morphogenetic

complexity of their last common ancestor–the so-called Urbilateria

or protostome-deuterostome ancestor [reviewed in 2]. Recent

studies demonstrate surprising similarity between cnidarian and

bilaterian gene content and development [3–7]. For example, the

expression of Wnt genes is associated with blastopore and site of

gastrulation in cnidarian and chordate embryos [3,5,8,9]. Even

more surprisingly, TGF-b ligands that are involved in determina-

tion of the dorsal-ventral axis in bilaterians are also asymmetrically

expressed during cnidarian development [6,7,10]. Without

attempting to homologize the embryonic axes between cnidarians

and bilaterians, the existence of two perpendicular embryonic

axes, one directed by a Wnt gradient, and the other by a TGF-

b gradient in the last common ancestor of living cnidarians and

bilaterians appears plausible.

Until recently, developmental genetic data have not been

available from sponges, whose adult body plan has not changed

since before the Cambrian explosion [11,12]. Molecular

phylogenies agree that the sponge lineage(s) diverged from the

main (eu)metazoan lineage before all other major extant phyla

[13–19]. Unlike the morphologically more complex eumetazo-

ans, sponges are considered to lack true tissue-level organiza-

tion and metazoan-specific cell types such as neurons and

muscles. Historically, these fundamental differences in the body

plans have led to a prevailing view that sponges are living

representatives of an evolutionary intermediary between unicel-

lular choanoflagellate protists and the eumetazoans [20].

Indeed, many adult sponges, such as the adult demosponge

Amphimedon queenslandica (formerly known as Reniera sp.; Fig. 1A),

have highly plastic body shapes and lack an apparent anterior-
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posterior (AP) axis of symmetry (Fig. 1A). However, most

sponge embryos and larvae have an obvious AP axis with

radial symmetry. This similarity to other metazoans is lost at

metamorphosis when the growing sponge assumes its sessile

body form (Fig 1B–F). Importantly, the formation of a patterned

larva with a range of cell types distributed along the AP axis

and allocated into different cell layers indicates that sponge

embryos must have a requirement for localised signals

[21,22].

The recent sequencing of the genome of the demosponge

Amphimedon queenslandica by the Joint Genome Institute greatly

facilitates reconstruction of the genetic repertoire that was present

in the last common ancestor to all contemporary metazoans and

reveals the innovations that lead to evolution of the first branches

in the animal tree of life [23–28]. Amongst these innovations must

have been a suite of signalling pathways that allow for

communication in a range of multicellular contexts, including cell

specification and patterning [22]. The highly conserved Wnt and

TGF-b signalling pathways are fundamental to a plethora of

developmental processes in bilaterian animals. In addition to

specification of the first embryonic axes, these pathways interact to

specify cells and to pattern tissues in many morphogenetic

contexts, ranging from the formation of embryonic organizers

[29–32], vertebrate skeleton [33] and the development of limbs in

Drosophila and other bilaterians [34–36]. The primacy of Wnt and

TGF-b pathways in intercellular communication and cell fate

diversification suggests that their evolution may have been

concomitant with the origin of multicellularity [22,37]. Here we

address this issue by investigating the expression of Wnt and TGF-

b genes during embryonic development in Amphimedon queenslandica.

The asymmetrical expression of both genes in Amphimedon embryos

indicates that sponges, and hence also the last common ancestor to

living metazoans, utilized these two signalling pathways in

embryonic patterning.

RESULTS

Amphimedon embryogenesis
Amphimedon queenslandica embryos develop in brood chambers, with

different developmental stages found together in one chamber

(Fig. 1F). Early cleavage stages are milky-white and are found

mainly at the edges of the brood chamber (Fig. 1F–G). At this

time, cell divisions appear highly asymmetric and asynchronous,

and the embryos are composed of irregularly shaped macromeres

of various sizes with small micromeres interspersed between them

(Fig. 1G). A solid blastula, with more uniformly sized cells is

formed at the end of this process, and it does not display any

morphological asymmetry (Fig. 1H). Different cell populations

present in the blastula sort themselves into layers in a process that

we consider to be gastrulation [21]. At the end of gastrulation, the

outer layer is composed of smaller micromeres including pigment

cells that give embryos a beige colour; bigger macromeres are

present in the inner cell mass (Fig. 1I). While no asymmetry can be

observed in live embryos, cleared beige coloured embryos reveal

striking anterior-posterior asymmetry, with the outer layer

significantly thicker at the posterior pole (Fig. 1I). Pigment cells

initially distributed throughout the outer layer soon begin

migration towards the posterior pole (Fig. 1J), where they coalesce

into a spot, and then begin outwards migration resulting in

formation of a narrow pigment ring (Fig. 1 J–L). At the same time,

multiple cell types migrate along the anterior-posterior axis to yield

a highly patterned larva that consists of multiple cell layers, each of

which contains a number of distinct cell types [21, Fig. 1L–M].

Wnt and TGF-b ligands are present in Amphimedon
We isolated Wnt and TGF-b genes from Amphimedon using

a combination of EST and genome trace searches and RACE

cloning. The deduced Amphimedon Wnt protein contains a signal

peptide and 24 conserved cysteines characteristic for this family

Figure 1. Amphimedon queenslandica life cycle and embryonic development. Top panels, live specimens. (A) Adult animal. (B) Swimming larva.
(C) Larva undergoing settlement with anterior part flattened on substrate. (D) Postlarva 24 hours post settlement (ps). (E) A three week old juvenile.
(F) Sliced brood chamber showing developing embryos of different stages. Bottom panel, benzyl alcohol/benzyl benzoate cleared whole mount
developmental stages. (G) After a series of chaotic and asymmetric cell divisions there is a population of unevenly-sized and irregular macromeres
and a population of tiny micromeres that are located on the surface and between the macromeres. Micromeres are too small to be seen in this
micrograph. (H) A solid blastula is formed. (I) Gastrulation results in a bilayered embryo with the outer layer thicker at the future posterior pole (top);
darker pigment cells are distributed throughout the outer layer. (J) Pigment cells migrate through the outer layer towards the posterior pole and
coalesce to form a pigment spot. (K–L) The cells of the pigment spot reverse direction and migrate outwards to form a ring. (L, M) Swimming larva
with a posterior pigment ring, inner cell mass, ciliated epithelial layer and a subepithelial middle layer. See 21 and 22 for a more detailed description
of development and larval cell types. Scale bar is 100 mm on all images except (A) where it is 1 cm. ap–anterior pole, pp–posterior pole.
doi:10.1371/journal.pone.0001031.g001
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[38,39] (Fig. S1), although phylogenetic analyses can not

confidently assign this sponge Wnt into a recognised eumetazoan

sub-family (Fig. S2) [39].

Phylogenetic analysis of the predicted Amphimedon TGF-

b signalling domain places it close to the GDNF subfamily of

TGF-b molecules (Fig. S3). Of the 7 cysteines that are conserved

in the signalling domain of TGF-b superfamily, 6 are present in

the Amphimedon sequence (Fig. S4). Cysteine 4 is missing, as it is the

case in mouse GDF3, GDF9 and BMP15 proteins [40]. Since this

particular cysteine is responsible for intermolecular disulfide bond

formation in a mature dimer, it appears that the Amphimedon TGF-

b can act as a monomer or forms a non-covalent dimer [40]. The

preprotein contains a signal peptide and a conserved proteolytic

cleavage site RTRRS, lending further support to its assignment to

this signalling protein family (Fig. S5) [41].

Expression of Wnt and TGF-b genes during

Amphimedon development
We studied the expression of the identified genes using whole

mount in situ hybridization on Amphimedon embryos and larvae.

Amphimedon Wnt gene is expressed from the early stages of

development (Fig. 2). There is no evidence that Wnt transcripts

are maternally deposited in oocytes or eggs. During cleavage, the

Amphimedon embryo consists of large macromeres of varying size

and shape surrounded by many tiny micromeres [Fig. 1G; 21].

Wnt transcripts first can be detected in very small micromeres that

are uniformly distributed throughout the embryo and interspersed

between the macromeres (Fig. 2A). At the next recognizable stage

of development, the blastula stage, the embryo consists of more

evenly sized cells [Fig. 1H; 21]. At this stage, Wnt-expressing cells

are enriched in the inner part of the embryo (Fig 2B). Before any

morphological asymmetry in the embryo can be detected by

cytological indicators [21, 22, unpublished], Wnt-expressing cells

become restricted to the inner cell mass on one side of the embryo

(Fig. 2C, D). We have called this stage early gastrulation based on

these localized Wnt expression patterns. As gastrulation progresses

and separation of outer and inner layer becomes apparent, the

Wnt-expressing cells become confined to the outer layer at the

posterior pole (Fig 2E, F). The posterior pole is relative to larval

swimming direction and where the pigment cells will eventually

coalesce and form a ring [Fig. 1J–M, 21, 22]. The Wnt expression

domain overlaps with the pigment spot and ring (Fig. 2G–I) and

this expression continues within the pigment ring in the free

swimming larva (Fig. 2J).

Similar to Wnt expression, TGF-b expression is first detectable

during cleavage stage in small micromeres, which do not appear

cytologically different from the Wnt expressing cells (Fig. 3A).

However, at the blastula stage TGF-b-expressing cells are more

prominent in the outer region (Fig. 3B), while Wnt expressing cells

are enriched in the inner region (Fig. 2A), indicating that these are

largely different populations of cells. During gastrulation, TGF-

b expression becomes restricted to the outer layer, with stronger

domains of expression at anterior and posterior poles of the

embryo (Fig 3C, D). Thus, at the gastrula stage, the posterior

domain of TGF-b-expression overlaps with Wnt-expression at the

posterior pole. At the pigment spot stage (Fig. 1J, 3E–F), TGF-

b expression is maintained in the centre of the spot and

throughout the outer layer, except in pigment cells making the

outer portion of the spot and the region immediately adjacent to

the spot (Fig. 3E, F). The anterior pole domain of TGF-

b expression is particularly prominent at the spot stage (Fig 3F,

G). The anterior region of the larva consists of a different cell type

than the majority of the outer layer [21]. As the pigment cells

begin to move concentrically away from the posterior pole to form

the pigment ring [Fig. 1K, 21, 22], TGF-b is expressed inside of

the ring (Fig. 3H). As pigment ring formation progresses, TGF-

b expression is not longer detected in the centre of the ring, but

delineates the inner rim of the ring (Fig. 3I, J). During the ring

formation stages, TGF-b expression continues throughout the

outer layer except of the narrow band of cells just outside of the

ring (Fig. 3I, J). TGF-b expression in the embryo gradually

decreases, and the transcripts are not detected in the swimming

larvae (not shown).

DISCUSSION
We have identified a Wnt and a TGF-b gene from the Amphimedon

genome, extending the origin of these important gene families to

before the divergence of sponge and eumetazoan lineages. While

Figure 2. Expression of Wnt in Amphimedon embryos. Top panel, whole mount in situ hybridizations; bottom panel, sectioned in situ
hybridisations. (A) During cleavage, Wnt is expressed in micromeres distributed throughout the early embryo. (B) At the blastula stage, Wnt-
expressing cells are predominantly localised interiorly. (C, D) Asymmetric localisation of Wnt-expressing cells occurs early in gastrulation, initially
inside of the embryo. (E, F) As the gastrulation progresses, Wnt-positive cells are evident in the outer layer in the posterior pole. (G, H) At the spot
stage, Wnt expression overlaps with the pigment spot and extends beyond it. (I) This expression pattern is maintained during ring formation. (J)
Expression of Wnt continues in the posterior pole in swimming larvae. Scale bar is 100 mm. ap, anterior pole; pp, posterior pole.
doi:10.1371/journal.pone.0001031.g002
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other studies on sponges have detected components of Wnt and

TGF-b signalling pathways in sponges [37,42–44], this is the first

to show that these pathways are expressed during sponge

embryogenesis. Significantly, we demonstrate that Wnt and

TGF-b ligands are expressed during Amphimedon embryogenesis

in complex and localized patterns.

The early expression of Wnt and TGF-b in Amphimedon embryos

is compatible with a role in establishing axial polarity. The

localization of Wnt-expressing cells to the future posterior pole is

the earliest morphogenetic asymmetry detected in Amphimedon

(Fig. 2C, D), occurring prior to the initial cell sorting event that

creates the embryonic cell layers. We can not discern if the initial

localized expression of Wnt is in the same cells that express Wnt

later in development because of a lack of cell lineage data.

Regardless, it is evident that Wnt-expressing cells are restricted

early to the posterior pole and Wnt transcripts localize to this pole

continuously through to the larval stage. The migration of pigment

cells towards Wnt-expressing cells at the posterior pole is indicative

of the existence of differential signals along the AP axis and is

compatible with Wnt and/or TGF-b contributing to the

establishment of this axis. Also migrating with the pigment cells

along the outside of the embryo are sclerocytes-cells responsible for

the synthesis of siliceous spicules [21,23]. Upon reaching the

posterior end of the larva, the sclerocytes appear to ingress into the

inner cell mass [21]. The movements of pigment cells and

sclerocytes are consistent with a role for these metazoan-specific

ligands interacting to establish axial polarity in sponge embryos in

a manner akin to that observed in other metazoans [1,30,45,46].

For example, the vertebrate organizer is localized by interactions

between Wnt and TGF-b signalling pathways [29–31], with TCF

and SMAD, as respective effectors of these pathways, cooperating

to regulate gene expression [31]. In both Amphimedon and the

cnidarian Nematostella, Wnt expression is restricted to the posterior

ends of the larva [3,5], although mechanisms of gastrulation are

different and there is limited evidence for these poles being

homologous.

The intersecting expression of Wnt and TGF-b at the posterior

end of the larva later in development also is compatible with these

signalling pathways regulating the formation of the pigment ring

[i.e. tissue morphogenesis, 22]. A zone of intersecting Wnt and

TGF-b expression occurs anterior of the leading edge of the

concentric front of migrating pigment cells (compare Fig. 2I and 3

H–J), and may be providing positional information [47] in manner

similar to that observed during the formation of limbs in Drosophila

[34] and the head organizer in cnidarians [48].

Our results suggest that sponge embryos are patterned by

signalling mechanisms strikingly similar to those controlling cell

specification and patterning in bilaterians and cnidarians. These

signalling systems evolved and interacted early in metazoan

evolution prior to the first cladogenic events that predate the

Cambrian explosion (Fig. 4). Wnt and TGF-b signalling pathways

appear to have acted combinatorially to specify and pattern cells in

the last common ancestor to all extant metazoans (Fig. 4). In

addition, a hedgehog-like cell surface signal–Hedgling–is expressed

in overlapping patterns with Wnt and TGF-b during ring

formation [25]. The developmental expression of these signalling

systems, along with that of many metazoan-specific transcription

factor families [23], indicates that the last common ancestor to all

living metazoans already possessed the regulatory capacity to form

complex body plans, using the same molecular components as

animals living over 550 million years later [49]. The evolution of

this canonical zootypic network may have been the necessary

precursor for the diversification of all contemporary metazoan

body plans. The differential expansion and elaboration of this

network in the eumetazoan lineage, compared to the sponge

lineage, provided the foundation for the extensive body plan

diversification seen in this clade, including possibly the origin of

a second body axis. Along with the diversification signalling

pathways in eumetazoans was the origination of Hox genes [24]

and expansion of a range of developmental transcription factor

gene families [23, 28, unpublished], which enabled further

elaboration of ancestral gene regulatory networks.

Figure 3. Expression of TGF-b in Amphimedon embryos. (A) TGF-b expressing micromeres are distributed uniformly during cleavage. (B) At the
blastula stage, TGF-b-positive cells are more prominent in the outer layer. (C, D) During gastrulation, TGF-b expression is restricted to the outer layer,
with two stronger domains at the anterior and posterior poles. (E, F) As the pigment cells migrate to the posterior pole, TGF-b expression disappears
from the posterior pole leaving the area just outside the pigment spot clearly devoid of TGF-b transcripts. A weak TGF-b expression domain persists in
the very center of the spot. (F, G) The anterior pole expression remains strong at the spot and ring stages. (H) As the pigment cells begin their
outward migration, TGF-b expression is strong inside of the forming ring and in the outer layer except of the pigment ring itself and area just outside
of it. (I, J) In the later ring, TGF-b expression clears from the center of the ring, but persists in the inner rim of the ring. (J) The embryonic expression
gradually fades at late ring stages, and expression in some cells of the follicle layer on the surface of the embryo becomes more apparent. Scale bar,
100 mm.
doi:10.1371/journal.pone.0001031.g003
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MATERIALS AND METHODS

Isolation of Amphimedon Wnt and TGF-b cDNAs
Genomic traces and ESTs were generated as part a collaborative

genome project with the Joint Genome Institute and are publicly

available (http://www.ncbi.nlm.nih.gov/Traces). The 39 end of

Wnt and TGF2b genes were identified in EST and genome trace

archives, respectively, based on similarity to vertebrate sequences.

The 59 part of these genes was cloned by means of 59 RACE

using BD Smart Kit (ClonTech) and gene specific primers

(TGF2b: TCTAATCCGAGTAAGAGTATACACAGCTGC;

Wnt: TCGCAAAGTTCTGCTGGCAG) and embryonic RNA

as template. In case of TGF2b, the RACE primer encompassed

the stop codon and several independent clones constituted the

entire ORF. In case of Wnt, the complete coding sequence was

confirmed by RT-PCR of embryonic RNA (using primers:

CATTGACGTACAGCTACAAAG and CATGTTCTTGT-

GAATAGACTC).

Whole mount in situ hybridization
Whole mount in situ hybridizations were performed as described

in [36] using complete coding sequences cloned into pGEMT

vector (Promega) as templates for probe synthesis. Embryos were

photographed whole mount and then subsequently processed for

sections. Samples were dehydrated in ethanol and infiltrated with

Epon 812 resin in a BioWave microwave oven (Pelco) before

polymerisation overnight at 60C in a conventional oven. Sections

were cut at 5 um on an Ultracut T ultramicrotome (Leica) and

mounted in Histomount.

Phylogenetic analyses
Phylogenetic analyses of Wnt and TGF-b sequences were

performed for the purpose of assigning orthology. Detailed

description of the methods used is included in Supplement S1.
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