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The dynamic network biomarker (DNB) method has advanced since it was first proposed. This review dis-
cusses advances in the DNB method that can identify the dynamic change in the expression signature
related to the critical time point of disease progression by utilizing different kinds of transcriptome data.
The DNB method is good at identifying potential biomarkers for cancer and other disease development
processes that are represented by a limited molecular profile change between the normal and critical
stages. We highlight that the cancer tipping point or premalignant state has been widely discovered
for different types of cancer by using the DNB method that utilizes bulk or single-cell RNA sequencing
data. This method could also be applied to other dynamic research studies and help identify early warn-
ing signals, such as the prediction of a pre-outbreak of COVID-19. We also discuss how the identification
of reliable biomarkers of cancer and the development of new methods can be utilized for early detection
and intervention and provide insights into emerging paths of the widespread biomarker candidate pool
for further validation and disease/health management.
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1. Introduction

In disease development, the disease slowly progresses from a
normal state, and after a critical state, it rapidly develops into an
irreversible disease state [1]. There are numerous differences
between the normal state and the disease state, and many
biomarkers have been developed based on this case-control
method. However, an increasing amount of evidence shows that
these biomarkers might have very limited clinical effects, which
indicates that the case-control research method might be ineffec-
tive and suggests that new theories and methods could serve as
alternatives. If the critical state signals can be captured for early
warning and intervention, it would be possible to prevent the dis-
ease from entering an irreversible disease state. Because the differ-
ence between the normal state and the critical state is small and
thus becomes challenging to detect, here, we mainly review the
DNB method that can solve and address this dilemma by quantify-
ing the early warning signals of the critical state using network
theory. We summarize the recent application of DNBs in cancer
and other diseases for tipping point identification. By capturing
early warning signals and performing an early intervention for crit-
ical health conditions, better management might be achieved
based on different perspectives to help prevent major disease pro-
gression and improve quality of life.

2. Cancer biomarkers, cancer tipping points, and dynamic
network markers

2.1. Cancer biomarkers

Molecular markers are molecules or molecular groups that have
an indicative effect on the process, type, or therapeutic effect of the
disease [2]. Generally, such molecules are divided into three rela-
tively important types.

(1). Diagnostic molecular biomarkers: These markers indicate
whether the patient is suffering from the disease. Such
molecular markers are usually obtained from the analysis
of disease-normal sample pairs. These markers may be
mutation sites, mutant genes, or genes with significantly
high/low expression or significant changes in characteristic
metabolites [3]. Some markers can define the type of disease
and are of great value to the choice of treatment methods for
patients. Diagnostic markers usually can only provide clini-
cal information that has already appeared but cannot be
used as a predictor of disease.

(2). Therapeutic molecular biomarkers: Markers directly related
to the treatment process of disease patients are called ther-
apeutic markers and are the most important type of markers
for patients with diseases. They are usually used to judge or
predict the response of a patient to a specific type of treat-
ment. For example, in colorectal cancer, mutations in the
KRAS gene and BRAF gene are used to predict the sensitivity
of the patient to chemotherapy [4].

(3). Molecular biomarkers of patient prognosis: All molecules
that are significantly related to patient survival are called
prognostic markers, and there are generally two categories,
namely, those related to the high survival rate of the patient
or related to the low survival rate of the patient. Clinically,
the most direct indicator to measure whether the treatment
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is effective is the patient’s survival rate. Moreover, the over-
all survival (OS) rate is the most objective indicator to mea-
sure the treatment effect [5].

For the discovery of molecular markers of diseases, DNA-level
information, such as point mutations, structural variations, hot-
spot gene mutations, and genome stability as markers, might be
appropriate. Proteins can also act as biomarkers that reflect the
clinical status of the patient [6]. Among them, the selection of
RNA as a biomarker is a very good choice. RNA levels can reflect
the cell’s response to the environment and important gene expres-
sion regulation information at a considerable level.

2.2. Cancer tipping points

Critical transitions or critical points widely exist in many natu-
ral and social systems, including biological systems. Before the
onset of disease or the appearance of symptoms, it is very impor-
tant to determine the critical point or critical state of a complex
disease for disease prevention and early treatment. Generally,
regardless of the specific biological and pathological differences
in the progression of the disease, the progression of complex dis-
eases can be roughly divided into three stages [7–8]: (1) Normal
state, which is a stable state and represents a relatively healthy
and high resilience condition; (2) Critical state, a kind of state that
is not normal but exists before the disease state, represented by
low resilience and high susceptibility; and (3) Illness or diseased
state, a stage in which quality is decreased but there is still high
resilience.

It is important to predict the critical state to prevent or at least
prepare for the coming deterioration by making appropriate inter-
ventions. However, in contrast to disease states, determining the
critical state is a difficult task because it is similar to the normal
state in terms of phenotype and molecular expression, which ren-
ders traditional static biomarkers ineffective. An increasing num-
ber of studies have found that the occurrence of diseases is due
not only to single factors but also to more complex and interactive
network structures. In the context of the dynamic system theory of
bifurcation and critical slowdown [9–10], a conceptual biomarker
called a dynamic network was developed to quantitatively
describe the critical state in the process of disease progression [9].

2.3. DNB algorithm and its development

Specifically, the dynamic development process of the disease
can be considered a time-dependent nonlinear dynamic system.
The dynamic network biomarker (DNB) concept provides a statis-
tical method for measuring critical state-related variables; that
is, a small group of closely related variables communicates early
warning signals of the upcoming critical transition through drastic
statistical indicators [7–8]. DNBs are a set of molecules (genes or
proteins) or molecular modules that can signal a critical point or
critical state before the rapid deterioration associated with a com-
plex disease. When the system reaches a critical state, DNB mole-
cules have the following properties [11]:

(1). In the critical period, the contact between molecules within
the group is rapidly strengthened, that is, the correlation
rapidly increases.



Fig. 1. Introduction of dynamic network biomarkers. (A) Key theory of dynamic network biomarkers. (B) Algorithm and basic principle of dynamic network biomarkers. (C)
Dynamic network biomarkers have an early warning function for the critical stage before the occurrence of disease. (D) The schematic illustration for identifying the
dynamical network biomarkers (DNBs).
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(2). In the critical period, the connection between the molecules
in the group and other molecules weakens, that is, the corre-
lation drops sharply; and

(3). In the critical period, the standard deviation of the molecules
in the group increases rapidly, that is, the standard deviation
of the molecules in the group increases.

According to such mathematical assumptions, the DNB frame-
work uses a development chain of hidden Markov model (HMM)
to transform the progress of complex diseases into a static hidden
Markov model (sHMM) and a dynamic hidden Markov model
(dHMM) process. Overall, the DNB framework is a time series
model, representing the gradual development of the entire com-
plex process, and there are signal values that can be measured or
calculated manually. The overall model is composed of three sub-
models, which represent the DNB hypothesis.

DNB methods and theories have been applied to the study of
many biological processes, such as detecting the critical point of
cell fate determination [12] and cell differentiation [13], studying
immune checkpoint blockade [14], and determining the stage
before the deterioration of different diseases [15–17].

However, the traditional DNB method requires multiple sam-
ples at each time point, which is usually difficult to obtain in clin-
ical and other practice settings, which greatly limits the application
of the traditional DNB method in most practical situations. The
rapid development of high-throughput technology provides new
insights for computational analysis. Even when there is only one
sample, it is possible to quantify critical changes in the dynamic
development of diseases based on high-dimensional data from a
single sample.

Single-Sample Network (SSN): Single-sample DNB methods
based on DNB theory, such as the single-sample hidden Markov
model [18], single-sample Kullback–Leibler divergence method
[19], and single-sample dynamic network biomarker method
[20], have been widely developed and applied. SSN theory uses a
group of individuals (N individuals) as a reference, and the method
of mapping each individual can make the individual level a net-
work dimension. To achieve this, a network of a new group
(N + 1 individuals) is built and compared to the original network
(N individuals) to obtain the difference between the two networks.
The difference network is the network of individuals relative to the
reference group (Fig. 1).

Disease diagnosis at this stage is based on the disease that has
already developed, and follow-up intervention and treatment are
performed. The DNB theory focuses on predicting the occurrence
and development of the disease from the perspective of never
occurring. The key is to study the critical point of a dynamic net-
work marker change related to the disease. The state of the critical
point is characterized by a small difference from the healthy state,
but the relationship between the factors has changed. Through the
three characteristics mentioned above, DNBs can be screened one
by one, and the information of individual network critical points
can be used to make relevant predictions. This study provides a
newmethod and way of thinking, adding a new dimension to com-
plex disease assessment and prediction networks. Furthermore,
this network can be based on the individual level.

Chen developed a new model-free method called the landscape
dynamic network biomarker (l-DNB) method [1]. This method is
based on the bifurcation theory and uses only one-sample omics
data to determine the critical point before the disease seriously
worsens. This method evaluates local criticality or the local DNB
score gene by gene and then compiles the overall local DNB score
into a landscape. Then, the global critical score IDNB can be calcu-
lated from the landscape of the sample (or patient) by selecting
those genes as the DNB members with the highest local DNB score.
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Initially, Chen proposed a DNB method to investigate the gene
module that is associated with disease development [7]. With
the development of DNB methods, there have been many improve-
ments in expanding the application of DNBs to other research. For
example, Zhang proposed a newmethod, GNIPLR, to infer gene reg-
ulatory networks (GRNs) [21]. Alcudia developed a metaheuristic
multiobjective optimization method for DNB identification using
two steps [22]. First, the prefiltering procedure contained several
steps to identify informatic genes. Second, the artificial bee colony
based on dominance (ABCD) algorithm was developed for DNB
identification [22]. To achieve better DNB performance, Guo built
an assessment pipeline to evaluate the performance of a single
sample method and found that different methods showed diverse
performance in network building. The undirected method sur-
passed the directed method for sample-specific networks [23].
Improvements in network building will facilitate dynamic network
marker identification.

2.4. DNB experimental design

Protein-based dynamic network biomarkers will provide more
information to distinguish states between normal and pre-
disease, allowing for earlier disease detection. In a study that com-
bined proteomic expression profiling of inflammatory mediators
with clinical informatics in patients with acute exacerbations, a
panel of inflammatory mediators was found to change dynamically
with disease progression [24]. This is a specific biomarker for
patients with chronic obstructive pulmonary disease or acute exac-
erbation of chronic obstructive pulmonary disease [25]. The
method paves the way for the development and validation of
disease-specific dynamic network biomarkers.

In terms of DNB experimental design, a study modeled ortho-
topic liver cancer transplantation mice, carried out DNB research,
and detected early warning signals of lung metastasis of liver can-
cer based on transcription gene expression map [26]. The following
was an example of an experimental design: First, transcription data
were continuously collected at different time points in the animal
model, and the samples were halted when the disease phenotype
was observed in animals, such as liver cancer lung metastasis.
Then, the transcription data were evaluated using the DNB
approach to find signals of liver cancer before lung metastasis at
various time points. Finally, the experiment was designed to con-
firm using the method of biomarker discovery. Our research group
is currently investigating the tipping point for the abnormal aggre-
gation of a-syn, a fundamental pathology of Parkinson’s disease,
using methods comparable to those described above.

For another example, early diagnostic markers or intervention
markers for the occurrence of colorectal cancer could collect clini-
cal samples from four stages of normal-polyp-adenoma-stage I col-
orectal cancer. Transcriptase sequencing and analysis were then
performed to obtain early markers, which could be used as the pri-
mary diagnosis or intervention to prevent the progression of col-
orectal cancer. The DNB experimental design is the endpoint of
sample collection when the key biological process or clinical event
under investigation happens.

3. Application of DNBs for the detection of tipping points and
early warning signals in cancer development and progression

To treat the disease more effectively, it is very important to
identify the critical period of disease development. The identifica-
tion of molecules that play a role in the critical period is also of
great help to the development of treatment strategies. There is
usually no significant difference in these characteristics between
the normal state and the critical state. Most traditional disease



Table 1
Application of the DNB method in cancer and other disease tipping points identification.

Disease Data Source Outcome Reference

Type Tipping Point Survival
Significance

Cancer Rectum adenocarcinoma TCGA-COAD Stage III log rank p = 0.01 https://doi.org/10.3389/fbioe.2020.
00809Cancer Uterine Corpus Endometrial Carcinoma TCGA-UCEC Stage IIB log rank p <

0.001
Cancer Esophageal carcinoma TCGA-ESCA Stage IIIA log rank p <

0.001
Cancer Head and Neck squamous cell

carcinoma
TCGA-HNSC Stage II log rank p = 0.04

Cancer Lung adenocarcinoma TCGA-LUAD Stage IIB log rank p <
0.001

https://doi.org/10.1093/nsr/nwy162

Cancer Thyroid carcinoma TCGA-THCA Stage III log rank p = 5E-
5

Cancer Kidney renal clear cell carcinoma TCGA-KIRC Stage II log rank p = 0.01
Not Cancer Influenza virus infection GSE30550 45 Hours
Not Applicable
Cancer Hepatocellular carcinoma GSE94016 3 Weeks Not Applicable https://doi.org/10.1038/s41467-

018-03024-2
Cancer Lung squamous cell carcinoma TCGA-LUSC Stage IIA log rank p =

0.0034
https://doi.org/10.1186/s12864-
020-6490-7

Cancer Lung adenocarcinoma TCGA-LUAD StageIIB log rank p = 3E-
7

Cancer Stomach adenocarcinoma TCGA-STAD Stage IIIB log rank p =
0.0275

Cancer Thyroid carcinoma TCGA-THCA Stage II log rank p <
0.001

Cancer Colon adenocarcinoma TCGA-COAD Stage II log rank p <
0.001

Not Cancer Lung Injury GSE2565 8 Hours Not Applicable
https://doi.org/10.1038/srep00342 Cancer Lymphoma GSE6136 Level P2

Not Applicable
Cancer HBV induced liver

cancer
NA F3 period

Not Applicable
Cancer Gallbladder cancer shinyapps/human_gbc Not Applicable Not Applicable https://doi.org/10.1016/j.jhep.2021.

06.023
Cancer HRG-induced differentiation of cancer

cells
GSE13009 1.5H-Agree with

Experiment
Not Applicable https://doi.org/10.3389/fgene.2015.

00252
Cancer HRG-induced differentiation of MCF-7

cells
GSE6462 0.5H-Agree with

Experiment
Not Applicable

Cancer HRG-induced differentiation of MCF-7
cells

GSE10145 1H-Agree with
Experiment

Not Applicable

Cancer MCF-7 cells treated with tamoxifen for
12 weeks

CRA000580 4 Weeks Not Applicable https://doi.org/10.1093/jmcb/
mjy059

Cancer TGF-beta treated A549 lung
adenocarcinoma cells

GSE17708 2 Hours Not Applicable https://doi.org/10.1016/j.scib.2020.
01.013

Not Cancer Brain cortex development
of human

GSE11512 0.2–0.3 Years
Old

Not Applicable

https://doi.org/10.1186/s12864-020-
6465-8

Not Cancer Brain cortex
development of
macaque

0.1–0.5 Years
Old

Not Applicable

Not Cancer Goto–Kakizaki (GK) rats GSE13268, GSE13269
& GSE13270

8 Weeks Not Applicable

https://doi.org/10.1093/bib/bbt027
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state biomarkers are identified based on the differential expression
of molecules between the disease and the normal states rather
than diagnosing a critical state.

Therefore, identifying critical points or pre-disease states is an
important challenge in medicine or biology. In addition to under-
standing the molecular mechanisms of complex diseases at the
network level, it is also possible to understand the warning signs
for the preventative and preemptive treatment of diseases. In par-
ticular, the DNB method has been proposed to detect critical states
of many diseases using nonlinear dynamic theory. The l-DNB
method described here represents a new method that can reliably
and accurately identify key states and detect early warning signals
of complex diseases on a single-sample basis. Therefore, the DNB is
an ideal tool that can be used to detect the critical state before the
onset of disease [8].
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The DNB calculation model and its extended model have been
applied to the analysis of real biological and clinical data in many
studies, such as the detection of the critical state of a variety of
complex diseases, including type I diabetes and a variety of can-
cers, the critical time point and core of cell differentiation gene
group mining, and the identification of key nodes in the immune
checkpoint blocking process [13–14,17–18,27–28]. In our review,
we summarize the recent application of the DNB method in cancer
tipping points and the identification of warning signals (Table 1).

3.1. Detection of disease critical points through landscape dynamic
network biomarkers

The L-DNB provides early warning signals of disease deteriora-
tion on a single-sample basis and detects key genes or network

https://doi.org/10.3389/fbioe.2020.00809
https://doi.org/10.3389/fbioe.2020.00809
https://doi.org/10.1093/nsr/nwy162
https://doi.org/10.1038/s41467-018-03024-2
https://doi.org/10.1038/s41467-018-03024-2
https://doi.org/10.1186/s12864-020-6490-7
https://doi.org/10.1186/s12864-020-6490-7
https://doi.org/10.1038/srep00342
https://doi.org/10.1016/j.jhep.2021.06.023
https://doi.org/10.1016/j.jhep.2021.06.023
https://doi.org/10.3389/fgene.2015.00252
https://doi.org/10.3389/fgene.2015.00252
https://doi.org/10.1093/jmcb/mjy059
https://doi.org/10.1093/jmcb/mjy059
https://doi.org/10.1016/j.scib.2020.01.013
https://doi.org/10.1016/j.scib.2020.01.013
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biomarkers (i.e., DNB members) that promote the transition from a
normal state to a disease state.

The l-DNB method was applied to the three tumor disease data-
sets from the TCGA and used for each patient’s DNB to detect the
critical stage before tumor progression [27]. Individual DNBs were
further used as individual biomarkers in physiological data analy-
sis, which led to the identification of two types of biomarkers that
are very effective in predicting tumor prognosis. Biomarkers can be
considered common biomarkers of cancer: one type indicates a
poor prognosis, and the other indicates a good prognosis.

The process of cancer usually has three stages of development,
which are clear in the clinical diagnosis: the early stage of cancer,
rapidly advanced stage, and late stage of cancer. This means that
the tipping point may appear between the transition from a
healthy state to the early stage of cancer or between the early stage
of cancer and the rapidly advanced stage of cancer. Considering the
actual clinical hazards and the extreme difficulty of obtaining tis-
sue transcriptome data from healthy people, clinically, there is
usually more attention to the process of cancer patients transition-
ing from the early stage to the rapid progression stage. Once cancer
passes this critical period, a variety of clinical symptoms will
appear, such as obvious primary cancer lesions, infiltrating tissues,
metastases, and obvious metabolic abnormalities. At this time, the
difficulty of conventional treatment has been greatly increased.
Therefore, the identification of the critical state before the
advanced stage is critical for timely medical intervention in cancer.

3.2. Dynamic network markers applied to colorectal cancer

The latest study used the DNB method in hepatocellular carci-
noma and colorectal cancer research to identify markers of key
states [29,31]. In our research, we developed an algorithm called
single-sample node entropy, which uses only a single sample to
measure cell signal activity in key stages of cancer. It is a model-
free method and does not require any model training process.
We confirmed the stability and sensitivity of the simulation data
and the TCGA cohort data analysis in our study. Using this model,
we determined the critical points of cancer progression and found
that they are as important as expected for patient survival. We also
found that some pivotal genes are highly related to some impor-
tant biological functions, such as cancer cell proliferation and inva-
sion. The results of the differential expression analysis revealed
that the hub genes mainly act as gatekeepers or core relays in mul-
tiple important pathways, such as FZD8/9, which controls the entry
of the canonical Wnt pathway, or RRAS2, which dominates the Ras
signaling pathway and has been proven to interact with the breast
cancer drug tamoxifen [32]. In summary, we successfully devel-
oped a dynamic node entropy model based on single-case data to
identify the critical point and possible mechanisms of cancer pro-
gression. These findings may provide new target genes for thera-
peutic intervention strategies.

Therefore, by appropriately adjusting the expression levels of
these hub genes, we can easily affect their downstream genes, such
as the MYC or MAPK gene families, in some important signaling
pathways, thereby further affecting the growth of cancer. We
noticed that the node entropy of some genes was significantly cor-
related with the survival of patients, but their expression levels
were not significantly correlated, which indicates that we can
use our model to obtain additional prognostic biomarkers. There-
fore, if we obtain enough clinical patient samples, we can accu-
rately measure the ability of node entropy as a prognostic factor.
Finally, we identified a series of SNE core genes related to DNA
repair. Among them, the MUTYH gene and PARP2 gene are closely
related to the two approved anticancer drug mechanisms, cisplatin
and olaparib [33–34], indicating that these nonspecific genes may
also become drug targets.
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In addition, the results of the differential analysis showed that
most of the dynamic network biomarkers identified by node
entropy, such as NKD2 or DAAM1, are located upstream of many
important cancer-related signaling pathways, regulating the
inter-genes in the signaling pathways. We also used node entropy
instead of the expression level to identify some new prognostic
biomarkers, such as PER2, TNFSF4, MMP13, and ENO4. More impor-
tantly, we found that the conversion of nonspecific pathways
related to DNA damage repair is the main driving force for cancer
progression.

Based on DNB and single-cell data, Hu identified a subgroup of
pre-exhausted CD8+ T cells that contributes to T cell exhaustion in
CRC [35]. The hub genes CCT6A and TUBA1B were identified as the
core contributors to T cell exhaustion. Single-cell analysis of col-
orectal cancer adjacent tissue B cells revealed that stage II is a crit-
ical period before lymph node metastasis, and the DHX9 gene was
identified to be involved in dynamic network changes during CRC
progression [36].
3.3. Dynamic network markers applied to hepatocellular carcinoma
and gallbladder cancer

HCC is one of the most fatal cancers. In the application of l-DNB
to hepatocellular carcinoma (HCC), Sun et al. mined bulk RNA-seq
data to identify early warning signals from a state of cirrhosis to a
very advanced HCC state in individual patients and found that both
low and high dysplastic states are critical for HCC [29] based on the
l-DNB method. Gao identified a group of genes capable of distin-
guishing the disease group from the healthy group, suggesting that
this gene module might facilitate disease diagnosis [30]. Yang
identified a DNB network biomarker for an indication for pul-
monary metastasis in hepatocellular carcinoma [26]. In recent
years, the recognition of this periodic molecular dynamic state of
cancer has received considerable attention. For example, early
warning signals of lung metastasis have been found in liver cancer,
and with the help of time-series gene expression data in sponta-
neous lung metastasis mouse models, it was determined that the
calcium ion conductive protein gene (Calmodulin-like-protein 3,
CALML3) is significantly related to the initiation of metastasis,
and it was confirmed that knocking down CALML3 can inhibit
metastasis [37]. Zhang et al. identified a premalignant state of gall-
bladder cancer using the DNB method by integrating single-cell
information [38]. The combination of DNBs with pseudotime anal-
ysis enables a more precise determination of cell subtypes where
some subtypes are mixed.
3.4. Dynamic network markers applied to lung adenocarcinoma

For lung cancer research, a dataset was also included for inves-
tigation [20]. The l-DNBmethod was further applied to the analysis
of three different tumors, including lung adenocarcinoma (LUAD).
In particular, the criticality of LUAD was determined in the IIB
stage. In addition, we found that DNB members could effectively
predict prognosis when the DNB that is common in population
samples was further applied to physiological data as a common
biomarker. In addition, the analysis revealed that DNB members
could be divided into two types of molecules to predict the progno-
sis of three tumors: one for samples with a poor prognosis (i.e.,
negative biomarkers) and the other for samples with a good prog-
nosis (i.e., positive biomarkers). In summary, these results indicate
that l-DNB can reliably identify the criticality of the disease on a
single-sample basis using the DNB module. Importantly, this
method quantifies early warning signs before the disease worsens
and provides real network biomarkers for each person’s disease
prediction. Based on the DNB method, survival analyses revealed
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that SMAD7 and SERPINE1 are DNB genes and further act as prog-
nostic biomarkers for lung adenocarcinoma [39].

3.5. Dynamic network markers applied to breast cancer

Based on the RNA expression data of breast cancer MCF-7 cells,
Chen identified the differentiation state of these cells using the
DNB method. The network module identified could not only serve
as a cancer biomarker but also be used to identify drug targets [15].
Specifically, many genes lying within the DNB are associated with
the cancer process, which highlights the reliability of the DNB
method in identifying novel breast cancer biomarkers. In another
study concerning breast cancer, Liu identified the tipping point of
the endocrine resistance process using the DNB method [40].

3.6. Dynamic network markers applied for cancer prognosis

The application of a single DNB to clinical data shows that DNB
members are effective for prognostic analysis, which can be
demonstrated by identifying positive and negative biomarkers for
the disease status of LUAD, THCA, and KIRC (three diseases). There-
fore, if the patient’s DNB includes negative biomarkers, the
patient’s survival time may be shortened. Four genes (PSG3, AFP,
and ADH4 in LUAD, SPANXN3 in KIRC) were identified as negative
biomarkers, but they were not differentially expressed between
identified and unidentified samples. Therefore, depending on dif-
ferential expression patterns, traditional methods cannot detect
them. This result means that the l-DNB method can reveal ‘‘dark
matter” genes (genes that are not differentially expressed) that
are usually ignored by traditional analyses.
4. Application of the DNBmethod to other complex diseases and
health

The DNB method could also be applied to many other research
fields whose data are organized in a time-series format. Epithelial-
mesenchymal transition (EMT) is a complex biological process that
plays a significant role in many basic biological processes, such as
embryogenesis, wound healing, tissue regeneration, and cancer
metastasis. EMT is one of the key changes in cancer development.
However, it is still challenging to identify these states. According to
Wang’s review [41], the DNB method could be applied to investi-
gate the phase change during the EMT procedure. Jiang identified
a DNB group with 37 genes that can provide early-warning signals
of EMT: SMAD7 and SERPINE1 promote EMT by switching their reg-
ulatory network [39]. In a case study, l-DNB was used to predict
severe flu symptoms before actual symptoms of influenza virus
infection appeared. The l-DNB method was applied to the dataset
of influenza virus infection as a case study [37]. As individual
biomarkers, l-DNBs can reliably detect early warning signs of a dis-
ease state transition and accurately predict how one individual
biomarker is better than traditional methods at least 8 h in
advance. The tipping point for infant brain development in both
humans and chimpanzees was also identified using the DNB
method [42]. Tipping points were found at approximately 1 month
and 3 months for humans and chimpanzees and opened a new way
for omics-level investigations of primate brain development. Liu
found that DNBs cannot only signal the emergence of critical tran-
sitions for the early diagnosis of diseases but also provide a causal
network of transitions for revealing the molecular mechanisms of
disease initiation and progression at a network level [43]. A similar
method was also applied to predict the outbreak of COVID-19
using geographic information and daily new case data [44]. Such
prediction of the preoutbreak stage might help to better monitor
public health policy.
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5. DNBs application to biomarkers research

Dynamic network biomarker (DNB) method is a network-level
model of omics data with time series based on robust hidden Mar-
kov mathematical model. It is primarily used to determine the cru-
cial state of a biological system, making it ideal for biological
process research. DNB can also be utilized for risk assessment,
early diagnosis, disease monitoring, disease categorization, staging
and grading, efficacy prediction, and other biomarkers.

As a risk assessment biomarker, it provides a quantitative
approach to determine when an individual is vulnerable to a speci-
fic form of cancer for forecasting and assessing risk. It is frequently
related to genetic mutations or epigenetic modifications. For exam-
ple, mutations in the liver cancer gene EGFR and pancreatic cancer
gene ERBB2, are potential predictive cancer markers. Prognostic
biomarkers can indicate disease prognostic features, the probabil-
ity of recurrence, or disease progression. Hormone receptors in
breast cancer and prostate-specific antigen in prostate cancer are
common prognostic indicators. Predictive biomarkers are used to
predict a patient’s response to a treatment or intervention. Such
as HER2 expression and anti-HER2 therapy in breast and gastric
cancers [43–44]. As a dynamic monitoring biomarker, it is possible
to monitor gene expression in patients as the disease progresses.
For example, carcinoembryonic antigen (CEA) is used to detect dis-
ease recurrence in colorectal cancer [45]. CA15-3 and CEA can track
the response and progression of breast cancer [46].

The DNB gene can be implemented as a drug efficacy marker if
it is a pharmacological target. Xu et al. identified biomarkers
related to the development and efficacy of CML based on DNB the-
ory from the perspective of the CML development process and
treatment process [47]. In this study, the gene expression data of
CML patients treated with imatinib at various time points were
included. According to the DNB theory, the efficacy criteria and
index were established. By observing the changing trend of the
index, the time point before the condition was stable that can be
detected, and the markers related to the efficacy were identified.
At the same time, from the perspective of ceRNA, Xu et al. con-
structed the ceRNA network related to lncRNA in CML patients
treated with imatinib for one month, and identified the ceRNA net-
work module related to lncRNA based on the efficacy criteria and
obtained the lncRNA and mRNA markers related to the drug effi-
cacy. Therefore, the DNB gene can be used to identify the response
markers of chemotherapeutic drugs.

Some biomarkers can be used as a predictive or detection mar-
ker, as well as a therapeutic or pharmacodynamic marker. For
example, the DHX9 gene can be utilized as a prognostic marker
because of its low expression in mature B cells, which is linked
to a bad prognosis. The high expression of DHX9 in stage II patients
may serve as a stage marker. And its expression difference in dif-
ferent stages of CRC can be employed as a monitoring biomarker.
If studies show that DHX9 is a targeted biomarker, it will be used
as a pharmacodynamic marker in the future.
6. Concluding remarks

DNBs have more advantages than traditional network biomark-
ers. This is mainly reflected in the fact that the DNB method is a
purely data-driven method that does not rely on prior knowledge
and does not need predefined gene sets related to certain biological
functions, ensuring that the result is unbiased. Furthermore, the
data used for this method do not require labels, and the appear-
ance of the critical point has nothing to do with the artificially
set data classification but only with the time point and the actual
signal value. The hidden Markov model adopted by the DNB
method also ensures that the method can tolerate a considerable
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degree of data noise, which is very beneficial for cancer research
because cancer transcriptome data contain a considerable degree
of background noise, such as noncarcinogenic factors in the high
expression of multiple ribosome-related genes. Therefore, the
DNB computing framework has considerable robustness, strong
generalization ability, and good processing capabilities for high-
dimensional complex data.

Importantly, the method proposed here is model-free and does
not require a learning process to identify biomarkers. This has
advantages over traditional classification or machine learning
methods, which require many case/control samples for supervised
or unsupervised learning to avoid the problem of overfitting.
Specifically, the l-DNB method is constructed based on three
model-free DNB conditions for each sample that are based on the
basic dynamic characteristics of the critical state of general biolog-
ical systems. Therefore, this method inherently identifies individ-
ual biomarkers rather than common biomarkers without the
problem of overfitting. However, it should be noted that identify-
ing common biomarkers for all individuals for each disease or iden-
tifying a common critical threshold may require data from the
entire population.

Based on the above description, we believe that using dynamic
network biomarkers for sequential biological process research has
considerable advantages. If the important turning points in the
timing process can be identified and the core change network
and important signal nodes can be obtained, this will be particu-
larly important for disease research. For most diseases, the earlier
the discovery, the earlier the intervention, the clearer the drug tar-
get, the better the clinical efficacy, and the smaller the burden of
treatment for patients. In this regard, the DNB computing frame-
work provides a feasible quantitative research method that has
obtained many unique results from research on the dynamics of
the network. A further application could also help to identify key
warning genes during aging and health, which can be recognized
early to prevent the reaction caused by ‘‘cell death” and will pro-
vide a new perspective for aging research and health research
and management.

However, there are still some shortcomings to the cancer
research data in the TCGA with the application of the DNB method.
The first limitation is the lack of some cancer types in the TCGA.
Currently, there is no pan-cancer DNB research in the TCGA. There-
fore, the pan-cancer level has not yet become a critical point of
study. Additionally, most studies are directed at a specific cancer
type. There are specific markers for certain types of cancer, but it
is difficult to explore potential drug targets across cancer types.
Second, when studying genes through pure expression levels, the
value of a single gene acting alone is emphasized, but there is no
method to measure the value of genes in the overall intracellular
signaling network. As discussed earlier, this research cannot
directly interpret the mechanism of important dynamic changes
in cells from the perspective of the network, and there is a certain
degree of bias. Finally, traditional research based on paired differ-
ence analysis often reflects changes that have occurred in the body
and cannot predict the critical period that is too dependent on clin-
ical diagnosis experience; thus, it has certain disadvantages for
early medical intervention.

Therefore, at the network level, it is undoubtedly very impor-
tant to study the core genes related to the activities of important
signaling pathways in cancer. Of course, some possible challenges
still need to be considered in the research process:.

(1). The size of the dataset that can be obtained. The traditional
DNB calculation framework is very robust for large datasets,
but for small datasets, there may be difficulties. Therefore,
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under the condition that the amount of data that can be
obtained is limited, we need to develop specific models for
small datasets or even datasets based on single samples;

(2). When designing a disease model, the characteristics of the
time of the disease sample need to be carefully considered.
The DNB calculation framework requires a complete time
series data link to obtain accurate results, which is often
very rare in actual experiments. Therefore, when reviewing
the data, it is necessary to ensure that the time series infor-
mation of the data can be included in the model; and

(3). Although the DNB calculation framework has a certain toler-
ance for data noise, it also has a certain threshold that the
acquired data are uniform, stable, and biologically repeat-
able to ensure the accuracy of the data-driven method. In
addition to ensuring that the original data conform to the
statistical distribution assumptions, it is also necessary to
verify the usability of the model through numerical simula-
tion, which guarantees the basic usability of the numerical
model.

Therefore, if data quality and timing issues can be solved and a
model that can perform well in small datasets is developed, cancer
bioinformatics mining based on cancer transcriptome data and
clinical information would be improved. Future integration of
multi-omics datasets would help to identify a more reliable func-
tion for biomarker identification. Additionally, the application of
the DNB method to spatial transcriptomics might enable distinc-
tive discoveries.

More importantly, although the DNB method is currently
widely used to identify important gene sets or networks related
to the development or progression of specific diseases, more in sil-
ico and in vivo validations are still needed to ensure that the signal
is real and could be biologically reliable. There is still a long way to
go in obtaining overlapping biomarkers using various computa-
tional methods [20]. Specifically, it is usually difficult to obtain
the pre-transiting sample for cancer research, and a comprehen-
sive design for sampling would enable the validation of DNB gene
function.
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