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Abstract: Experimental fenceline sensor pods (SPods) fitted with 30 s duration canister grab sampling
(CGS) systems were deployed at a site near chemical facilities in Louisville, KY, from 4 June 2018 to
5 January 2020. The objective of the study was to better understand lower cost 10.6 eV photoionization
detector (PID)-based volatile organic compound (VOC) sensors and investigate their utility for near-
source emissions detection applications. Prototype SPods containing PID sensor elements from two
different manufacturers yielded between 78% and 86% valid data over the study, producing a dataset
of over 120,000 collocated pair fenceline measurements averaged into 5-min datapoints. Ten-second
time-resolved SPod data from an elevated fenceline sensor signal day are presented, illustrating
source emission detections from the direction of a facility 500 m west of the monitoring site. An
SPod-triggered CGS acquired in the emission plume on this day contained elevated concentrations of
1,3-butadiene and cyclohexane (36 parts per billion by volume (ppbv) and 637 ppbv, respectively),
compounds known to be emitted by this facility. Elevated concentrations of these compounds
were observed in a subset of the 61 manual and triggered CGS grab samples acquired during the
study, with winds from the west. Using novel wind-resolved visualization and normalization
approaches described herein, the collocated pair SPod datasets exhibited similarity in emission source
signature. With winds from the west, approximately 50% of SPod readings were above our defined
theoretical detection limit indicating persistent measurable VOC signal at this site. Overall, this
19-month study demonstrated reasonable prototype SPod operational performance indicating that
improved commercial forms of lower cost PID sensors could be useful for select VOC fenceline
monitoring applications.

Keywords: fenceline monitoring; facility emissions; 1,3-butadiene; cyclohexane; SPod; sensor

1. Introduction

In the United States (U.S.), there is growing interest in facility fenceline monitoring ap-
plications that improve understanding of industrial air pollutant emissions and help protect
public health [1–5]. Technical advancements in lower cost sensors, higher performance field
instruments, and data analysis are enabling new fenceline monitoring approaches [6–15].
Fenceline sensors typically provide real-time measurements of wind direction and pollutant
concentrations to detect and identify abnormal source emissions. Most fenceline sensors
have low site infrastructure requirements, (e.g., can be solar powered), but are limited
in measurement sensitivity and compound speciation capability [13,16,17]. Conversely,
emerging fenceline instruments possess higher sensitivity and accuracy as well as the
ability to speciate specific toxic compounds in air, but require significantly more capital
and operational investment [8,18–26].

One type of low cost fenceline sensor system is based on passively ventilated 10.6 eV
PID sensor elements that can detect a subset of VOCs in advected emission plumes. While
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10.6 eV PIDs encompass a range of air pollutant response factors [27], they are particularly
sensitive to certain hazardous air pollutants (HAPs) [28], such as benzene and 1,3-butadiene.
For the most sensitive 10.6 eV PID sensor elements, manufacturers advertise 0.5 ppbv detec-
tion capability for the reference gas isobutylene (defined PID response factor of 1.0), with an
upper range typically of 2000 to 5000 ppbv, depending on model and configuration [29,30].
In practice, the field detection limit, accuracy, and unit to unit precision of the monitoring
system will depend on the application and overall package design. The lower cost fence-
line sensor prototypes described here represent the least-controlled instrument scenario
where the passively ventilated PID sensor elements are directly exposed to ambient air and
experience continuously changing temperature and relative humidity conditions that can
affect sensor performance [31]. For exposed sensor elements, physical interferences such as
condensation, dust, and insects can create significant precision, accuracy, and baseline drift
issues. Partial engineering solutions such as heated PID sensor elements and custom data
processing methods (algorithms) that remove baseline drift can improve fenceline sensor
monitoring performance, with the latter approach described here.

As part of a larger measurement technology development project [13], prototype
versions of the U.S. Environmental Protection Agency (EPA) SPod fenceline sensor and
CGS system were deployed at a site located near chemical facilities in west Louisville, KY
for a 19-month period. In this paper, we describe the results of the long-term study, which
utilized two collocated SPods fitted with 10.6 eV PID sensors elements from two different
manufacturers. Fenceline sensor data analysis approaches are detailed and an illustrative
example of 10 s time-resolved emission plume detections with an SPod-triggered CGS is
provided. Focusing on the compounds 1,3-butadiene and cyclohexane, known to be emitted
from a nearby facility, we discuss 61 acquired CGS grab samples using SPod-measured
wind data to inform the results. We analyze the overall long-term dataset consisting of
over 120,000 5-min average collocated pair SPod measurements using novel wind-resolved
visualization and normalization approaches. We describe the operational robustness and
emission detection performance of the prototype SPods with a view towards the viability
of improved commercial VOC sensors for fenceline applications.

2. Materials and Methods
2.1. Measurement Site

Measurements were collected from 4 June 2018, to 5 January 2019, at a secured site in
an open area within 1 km of multiple industrial facilities and terminal operations in west
Louisville, KY (38.209694 N (latitude) and −85.842542 W (longitude), Figure 1a). This site
primarily serves as a testing platform for EPA prototype and early commercial VOC sensors
and does not contain regulatory-grade measurements. The nearest advanced monitoring
system is located at the Louisville Air Pollution Control District’s (LMAPCD’s) Algonquin
Parkway Air Monitoring Site (38.233661 N (latitude) and −85.766850 W (longitude)),
with further details on collaborative measurements and overall project design contained
elsewhere [13].

2.2. EPA SPod Sensors

Two prototype EPA SPod sensor packages were collocated at the measurement site.
The SPods were fitted with three-dimensional (3-D) sonic anemometers (81000V, R.M.
Young, Inc., Traverse City, MI, USA) producing high-resolution wind measurements
(Figure 1b1). Each SPod in the collocated pair used high sensitivity (0.5 ppbv class) 10.6 eV
PID sensor elements, either a MiniPID2-HS, red electrode (Ion Science Inc., Stafford, TX,
USA) [29] or a Baseline® piD-TECH® eVx™, 045-014 (Ametek Mocon Inc., Minneapolis,
MN, USA) [30], here after referred to as SPod1 and SPod2, respectively (Figure 1b2). The
compound-specific response factors for this class of 10.6 eV PID sensors indicate detection
sensitivity relative to isobutylene [27]. The SPods recorded time-synchronized VOC signal
and wind data at a 1 Hz measurement rate. Each SPod contained an onboard Arduino®-
compatible Teensy 3.2 microcontroller (Adafruit Industries, New York, NY, USA) that
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digitized the PID output voltage at 16-bit resolution over a range from approximately
0 to 5000 ppbv (isobutylene). Further information on the SPod design and communication
features is described elsewhere [13]. Depending on the PID sensor type and condition, a
1000 ppbv isobutylene reference gas produced from 6000 to 10,000 digitized signal counts
(cts), with SPod1 typically exhibiting about 20% higher relative response as compared
with SPod2. Although the utilized PID sensor elements are capable of 0.5 ppbv detection
sensitivity, the prototype SPod fenceline sensor packages typically exhibited minimum
detectable concentrations in a range from 5 ppbv to 40 ppbv (isobutylene). With no VOC
source emission plume present, typical SPod baseline signals levels were in the 1000 cts
to 3000 cts range and reflected the convolution of slowly varying VOC air shed signal,
electronic offsets, and variable artifact PID signal caused by temperature and relative hu-
midity effects (baseline drift). Due to variable baseline effects and unknown composite
PID response factors for detected emission plumes, the SPod PID signals are expressed as
signal cts for this study and were not converted to ppbv. To help ensure PID functionality,
the sensors were periodically checked in the field with short duration (~15 s) 500 ppbv
isobutylene bump tests typically producing from 2000 to 5000 cts over baseline, depending
on sensor type and conditions.
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Figure 1. (a) Partial view of chemical facilities and sensor site (blue circle) where two SPods were
located with white arrow indicating approximate direction of facility producing subsequently de-
scribed SPod signal; (b) EPA SPod system with (b1) 3-D sonic anemometer, (b2) PID sensor, (b3) CGS
trigger system, (b4) 1.4-L CGS.

To reduce baseline drift caused by humidity and temperature changes, the PIDs were
wrapped with strip heaters (PN HK6903, Minco Minneapolis, MN, USA), continuously
operating at 10–15 ◦C above ambient temperature. This was an advancement over the early
SPod prototypes which exhibit significantly more baseline drift [16]. Using an SPod or
manually triggered canister acquisition system (Figure 1b3), 30 to 40-s duration 1.4 L CGS
grab samples (PN 29-MC1400SQT, Entech Instruments, Simi Valley, CA, USA) (Figure 1b4)
were collected and analyzed for over 100 individual chemical species by the EPA VOC
Laboratory using method EPA TO-15 [32]. A total of 61 QA-valid CGS grab samples were
acquired at this site with 34 of these manually collected under randomly encountered
atmospheric conditions during site maintenance visits, without consideration of instanta-
neous SPod PID signal levels. There were 24 CGSs acquired by automatic SPod-trigger
and three 1-min duration canisters were triggered by an experimental prototype field
gas chromatograph that was collocated for part of the study [13]. User-set SPod trigger
thresholds for CGS collections ranged from 4000 cts to 7000 cts depending on sensor type
and system condition.
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A total of five unique SPods were used to form the collocated SPod pairs over the
course of the study. Two SPods contained Ion Science PIDs and three SPods used Ametek
Mocon PIDs (Table S1). The first SPod1 unit deployed (SPod1a) had a relatively short
lifespan of 120 days before PID failure and there was a 63-day delay in replacement of this
unit contributing to the difference data completeness. The last SPod2 unit (SPod2c) had a
nonoperational anemometer and wind data from the collocated SPod1b were used for both
units during this 34-day period. The sharing of anemometer data for this period artificially
enhanced the number of QA-valid days for SPod2 by about 6.5%. This dataset adjustment
improved PID comparison coverage and signal origin information with little other impact,
due to the high degree of similarity in collocated 3-D sonic anemometer data.

2.3. Data Analysis

SPod PID and wind data were analyzed using a program developed in R [33,34].
Automated quality assurance (QA) screening of PID values were first performed to identify
periods of sensor malfunction (e.g., off-scale high values, unrealistically repeating values,
or missing data) or measurements collected during rapid relative humidity changes that
could produce signal artifacts. Native 1 Hz data that passed the automated QA-screen
were aggregated to 10-s mean values and the baseline correction algorithm was applied to
separate baseline drift and background VOC levels from rapid signal changes indicative of
advected plumes from local emission sources. The baseline correction algorithm employed
in this study fit a smoothed quantile regression to the slow drift signal pattern and sub-
tracted away area under this curve to remove the non-plume signal [35] (Figure S1). The
final QA assessment of the QA-valid dataset included the removal of data with artifactual
3-D sonic anemometer results (e.g., spikes larger than 10 m/s, or repeated values) and
visual inspection of data trends for PID sensor functionality.

As described in Results, the coupled 10-s baseline-corrected SPod PID and wind data
allowed elevated VOC events to be investigated with high time resolution. Additionally,
these data assisted in sensor performance assessment on a daily basis by allowing VOC
source-impacted 10-s periods to be identified and excluded from automated sensor noise
calculations in a multi-step screening process. As a first step, the median value of the
collection of all baseline-corrected 10-s periods (up to 8640 values) for each day was
calculated. All 10-s periods with baseline-corrected PID values less than 4 times this
median formed a sensor noise calculation subset. For each day, the daily sensor noise (σn)
was defined as the standard deviation of this subset. As a second step in the screening
process, any 10-s baseline-corrected SPod PID value exceeding 5 times (σn) was defined as
potentially source-impacted and was excluded from subsequent aggregated 5-min sensor
noise calculations.

For primary data summary, all QA-valid baseline-corrected 10-s data were aggregated
to sequential 5-min time periods (N = 288 max for one day), with means and standard
deviation (σi) of each 5-min period calculated. A theoretical detection limit (TDL) was based
on the collection of QA-valid 5-min periods that did not contain source-impacted signal [i.e.,
no 10 s periods > 5 times (σn)]. A daily median of the collection of non-source-impacted
σi was calculated and the TDL was defined as three times this value. This TDL typically
presents an optimistic view of emission plume detection capability, as it considers only a
low estimate of the sensor noise floor and does account for baseline drift, emission plume
to sensor coupling efficiency, low end detector responsivity, or sampling interferences.
Since the TDL definition excludes source-impacted time periods, it relies on the presence
of a statically representative set of low σi time periods each day. All QA-valid 5-min
periods with mean PID values exceeding the TDL were labeled as “in detection” or data
“above TDL” while all other periods below were labeled as data “below TDL”. Alternate
definitions of TDL are discussed in results and Supporting Information.
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3. Results and Discussion
3.1. Example of Time-Resolved Data from an Elevated Source Signal Day

An example of 10-s time resolved SPod data from an elevated source signal day is
provided in Figure 2a,b. The calculated baseline correction (red line) was subtracted during
data processing. In this example, the baseline correction procedure had a minor effect
on the raw data as the signal levels were relatively high as compared with the baseline
drift (an alternative example is provided in Figure S1). Correlation of wind data and PID
signal between the collocated SPods, similar to that shown in Figure 2c,d, was typically
observed on high signal days where SPod PID levels were well above the TDL. With a slope
of 1.23, the generally higher responsivity of SPod1 was observed in Figure 2c, with some
nonlinearity in comparison at higher values noted. The agreement in wind data between
the SPods was due in part to the high performance 3-D sonic anemometers utilized in the
EPA SPod design (approximately 50% of system cost). These robust wind data findings
may not translate to emerging commercial SPod-type sensors, which could employ lower
performance (and lower cost) anemometers. The slope of the regression line of Figure 2d
indicates a slight angular misalignment between the SPod anemometers. Inaccuracies in the
absolute alignment of fenceline sensors produces additional uncertainty in back-trajectory
models, especially at greater sensor to source separation distances.
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Figure 2. Example of collocated SPod data from 7/17/19: (a,b) SPod1 (top panel) and SPod2
(bottom panel), 10 s average timeseries (black traces) with superimposed baseline correction fits (red
traces), blue circles indicate expanded view during CGS acquisition shown in Figure 3, (c) SPod PID
comparison of 1-min background-corrected data, (d) SPod wind direction comparison of 1-min data.

The blue circles in Figure 2a,b indicate the occurrence of a CGS automated acquisition
from one of the SPod units, with an expanded view of the sample time period shown
in Figure 3. The primary period of elevated signal in this expanded time window was
approximately two minutes in duration and was detected by both SPods (Figure 3a). The
modulated nature of this signal was typical and was due to wind direction changes that
determine the spatial overlap of the sensors and the advected source plume. The source
emission is believed to be relatively constant in this case due to the temporally sustained
signal envelope from ~11:00 to 21:30 local time (Figure 2a,b). The wind rose (Figure 3b)
and SPod source direction indicator (SDI) plot (Figure 3c), indicate that the origin of the
observed PID signal was from the direction of a facility to the west, similar to the direction
of the white arrow shown in Figure 1. The wind-resolved signal of Figure 3 (13:35 to 14:15
local time) resemble the daily trend (Figure S2). The laboratory-determined concentration of
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1,3-butadiene and cyclohexane for the SPod triggered 40-s CGS grab sample were 36 ppbv
and 637 ppbv, respectively, with other compounds present at much lower levels typical of
this airshed. Since the facility to the west was known to emit 1,3-butadiene and cyclohexane,
the combination of the SDI plot and the CGS data support general conclusions on source
origin for the time period of Figure 3. However, the limited time CGS data do not inform
the speciation of the broader signal envelope (Figure 2a,b and Figure S2) observed on this
day. 1,3-butadiene and cyclohexane are both easily detected by 10.6 eV PID with sensor
response factors of 0.8 and 1.3, respectively [27].
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Figure 3. Example of collocated SPod data and canister trigger time frame on 7/17/19: (a) SPod1
(blue line) and SPod2 (red points trace) baseline-corrected 10 s average timeseries with canister
trigger duration indicated by red rectangle and described in red text; (b) SPod1 and SPod2 combined
wind rose; (c) SPod1 and SPod2 combined SDI plot showing the wind-resolved interpolated median
concentration of PID signal.

3.2. CGS Grab Samples and Coincident SPod Data

A total of 61 QA-valid CGS grab samples were acquired at this site and analyzed by
EPA method TO-15. Although the TO-15 analysis produced concentration measurements
of approximately 120 VOCs, we focus here on the compounds 1,3-butadiene and cyclo-
hexane as they are particularly important HAPs in the airshed based on facility emissions
profiles [13]. Measured concentrations for 1,3-butadiene and cyclohexane, were plotted by
wind direction for both SPods, typically generating two slightly offset wind data points
per CGS concentration value (Figure 4). Here, the cyclohexane concentration is divided
by a factor of 20 for ease of viewing. The inset in Figure 4 show modified SDI plots that
use the SPod wind directions (SPod1 and SPod2 combined), but the PID readings are
replaced with laboratory-determined 1,3-butadiene (Figure 4a) and cyclohexane (Figure 4b)
CGS concentrations. The results showed elevated concentrations of 1,3-butadiene and
cyclohexane at this site with wind directions between 240 and 270 degrees for multiple
CGS samples acquired during the study. This general wind direction range implied source
emissions from the facility to the west (white arrow of Figure 1), which is known to emit
these compounds. An alternative view of CGS data for these compounds by date of acqui-
sition is given in Figure S3. The compounds 1,3-butadiene and cyclohexane dominated
the speciated profiles in these elevated CGS cases. Other compounds, such as mixtures
indicative of gasoline storage emissions, were elevated in some CGS samples and were
associated with other source origin directions and atmospheric transport conditions.
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Figure 4. Concentrations of 1,3-butadiene (circles) and cyclohexane divided by a factor of 20 (triangles)
from 61 CGS samples plotted by SPod-measured wind direction (typically two wind data points
per CGS value). CGS data of Figure 3 are indicated. Modified SDI plots [inset (a,b)] combine wind
information from both SPods and replace PID cts values with CGS ppb data for (a) 1,3-butadiene
and (b) cyclohexane, utilizing a median statistic for interpolation. Blue dashed line corresponds
to direction indicated by white arrow in Figure 1. The uncertainty of the TO-15 concentration
measurements is ±30%.

3.3. Overview of the SPod Dataset

For primary data analysis, the 10-s time resolved data were aggregated to 5-min time
periods. As summarized in Table 1, there were 167,328 available 5-min measurement
periods over the 581 deployment days from 4 June 2018 to 5 January 2020. SPod1 units
produced QA-valid data for 78.4% of the available periods data on 476 study days. SPod2
units produced QA-valid data for 85.6% of available periods over 521 study days. As
described in Methods, the SPod2 data completeness would be 6.5% lower if replacement
sonic anemometer data from SPod1 were not used. The overall percentage of QA-valid
data greater than the TDL was 21.2% and 25.6% for SPod1 and SPod2, respectively. There
was no apparent temporal trend in the TDL (Figure S4) or the detection rate (Signal Above
TDL, Figure S5) for the longest running sensors.

Table 1. Summary of the 5-min SPod Dataset.

Data Summary SPod1 SPod2

All Available 5-min Periods in Time Frame [Days] 167,328 [581]
Final QA-valid 5-min Periods [Study Days Represented] 131,120 [476] 143,242 [521]
Percentage of QA-valid 5-min Periods [Percentage of Study Days Represented] (%) 78.4 [81.9] 85.6 [89.7]
Percentage of QA-valid Data > TDL (%) 21.2 25.6
Paired 5-min Periods [Study Days Represented] 120,656 [445]
Percentage of Paired 5-min Periods [Percentage of Study Days Represented] (%) 72.1 [76.6]
Percentage of Paired Data > TDL (%) 20.7 25.3
Average [Median] of Paired Data Daily TDL (cts) 53.2 [46.7] 12.8 [9.3]
Minimum [Maximum] of Paired Data Daily TDL (cts) 22.8 [425.1] 4.1 [75.9]

Subsequent analysis focuses on time periods where collocated SPod pairs were simulta-
neously producing QA-valid 5-min data. This paired SPod dataset represents 120,656 data
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points from each SPod or 72.1% of the available the 5-min periods for the study. As com-
pared with the overall QA-valid dataset, the paired dataset exhibited a similar percentage
of above TDL at 20.7% for SPod1 and 25.3% for SPod2. The average [median] daily TDLs
for the paired data were 53.2 cts [46.7 cts] and 12.8 cts [9.3 cts] for SPod1 and SPod2, respec-
tively, with differences primarily due to sensitivity and noise variances between the PID
sensor types. Figure S5 presents the range of daily TDL values. Besides the one SPod2 unit
representing 50 QA-valid days, little difference in TDL between the deployed units within
each sensor type was observed.

3.4. Source Directional Analysis of Paired SPod Dataset

As shown in Figure 5a,d, the 120,656-value paired SPod dataset exhibited source signal
origin direction similar to the previously described shorter-term examples. Here, the SDI
plots are subset into above TDL and below TDL values to facilitate inter-sensor comparison
and elucidate the TDL demarcation. Figure 5b,e represent 95,731 and 90,073 5-min values
below TDL, while Figure 5c,f show 24,925 and 30,583 5-min values above TDL for SPod1
and SPod2, respectively. The below TDL values exhibit slight signal residuals reminiscent
of the primary signal lobes in the above TDL case, providing support for a reasonable TDL
definition, further discussed subsequently.
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 Figure 5. SDI plots for (a–c) SPod1; (d–f) SPod2, with (a,c) including all data consisting of
120,656 QA-valid paired 5-min periods, (b,e) a subset of data below the TDL, (c,f) a subset of data
above the TDL. Forty-five-degree rotated quadrant indicated by dashed line and <direction>.

A 45-degree rotated quadrant system was defined (dashed lines of Figure 5a,d). In this
representation, the <west> quadrant captures the primary signal lobe and the occurrences
of wind direction and detections by quadrant are compared in Table 2. The fraction of SPod
data in Figure 5 is summarized in Table 2 in each quadrant for all wind speeds (left panel)
and for wind speeds greater than 1.0 m/s (right panel). For all wind speeds, although
the <south> quadrant accounts for 40.1% and 36.8% of the data from SPod1 and SPod2,
respectively, the <west> quadrant disproportionately represents signal above TDL, with
about 50% of all detections coming from this direction. With the current TDL definition,
between 49% and 56% of <west> quadrant data are above TDL (in detection), for SPod1
and SPod2, respectively.
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Table 2. SPod QA-valid and paired data, 45-degree rotated quadrant analysis, (top panel) All data;
(bottom panel) subset of data above 1 m/s wind speed.

All Wind Speeds

Quadrant
(SPod1, SPod2) Total 5-min Periods Percentage of Total (%) Percentage of

Total > TDL (%) 1
Percentage in Each

Quadrant > TDL (%) 2

<west> 27,216 22.6 53.0 48.5
<north> 28,344 23.5 9.2 8.0
<east> 16,655 13.8 8.2 12.3

<south> 48,441 40.1 29.7 15.3

<west> 26,352 21.8 48.5 56.3
<north> 30,140 25.0 14.0 14.2
<east> 19,782 16.4 10.6 16.4

<south> 44,382 36.8 26.8 18.5

Wind Speeds > 1.0 m/s

Quadrant
(SPod1, SPod2) Total 5-min Periods Percentage of Total (%) Percentage of

Total > TDL (%) 1
Percentage in Each

Quadrant > TDL (%) 2

<west> 23,267 33.1 81.7 50.7
<north> 22,575 32.2 9.8 6.3
<east> 3526 5.0 0.7 2.9

<south> 20,844 29.7 7.8 5.4

<west> 22,337 32.6 73.8 59.1
<north> 23,612 34.4 16.6 12.6
<east> 3703 5.4 1.0 4.6

<south> 18,912 27.6 8.6 8.1
1 “Percentage of Total > TDL” refers to count of data above TDL in that quadrant divided by the count of data
above TDL from all quadrants. 2 “Percentage in Each Quadrant > TDL” refers to count of data above TDL in that
quadrant divided by total count in that quadrant.

For the subset of data with wind speeds above 1 m/s (Table 2, right panel), the
percentage of detected signal from the <south> decreases markedly. This is due in part to
plume transport effects and wind speed distributions. Additionally, the low wind speed
portion of the PID signal was affected by the baseline correction approach utilized in this
analysis that discounts slowly varying airshed signal in favor of directly advected source
emission plume signal. With winds > 1 m/s, if only above TDL data are considered, data
originating from the <west> comprised 81.7% and 73.8% of all detections from SPod1
and SPod2, respectively. As subsequently discussed, wind speeds from the <west> were
generally elevated as compared with other quadrants, which is typical of prevailing winds
in this area. It is noted that the <west> quadrant faces a two-lane roadway (Figure 1) with
modest daily traffic volumes and vehicle wake effects could be a factor in wind speed and
wind direction distributions. The PID detection signal is not believed to be significantly
impacted from vehicle emissions, as there was no discernable diurnal pattern and traffic
volumes on the roadway were low (Figure S7).

3.5. Analysis of Detection-Normalized SPod Dataset

To further explore the observed SPod signal as a function of wind data, the paired
dataset was transformed into what we call detection count (DC) matrices (Figure 6). The
wind speed and wind direction of each dataset entry were separated into 0.1 m/s bins
(0 m/s to 10 m/s) and one-degree bins (0◦ to 360◦), respectively. Each dataset entry was
assigned a unity value (1.0) and retained its below TDL or above TDL label. One purpose of
the DC matrix is to examine source detection characteristics without bias effects associated
with extreme PID readings, since each detection event is treated equally. Figure 6a,d show
the DC matrices for all data, without regard to TDL, demarcation, for SPod1 and SPod2,
respectively. Figure 6b,e shows DC plots for data below TDL and Figure 6c,f present data
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above TDL for each sensor. Similar results for the collocated SPod pairs were observed in
all cases.
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valid paired 5-min periods, (b,e), a subset of data below TDL; (c,f) a subset of data above TDL.

In the above TDL subsets, the presence of separate signal detection regions was elu-
cidated benefitting from the binary form of the DC data. Source signal from the <west>
quadrant at higher wind speeds was observed, as was potential signal around 180 degrees at
lower wind speeds, tentatively attributed in part to tank farms approximately 700 to 800 m
to the southwest of the site. As summarized in Table 2, detections from the <south> are
present at low wind speeds and are ascribed in part to source emissions accumulating dur-
ing calms, with these findings supported by the canister speciation data beyond the scope
of this paper. The primary signal from the process unit to the west was disproportionally
observed at wind speeds greater than 1 m/s, implying a partially elevated source emission
may have contributed to this signal. The potential presence of multiple lobes in the signal
from the west, one centered near 260 degrees and one near 280 degrees, could be a result
of multiple sources, wind flow obstructions, or wake effects. This detail, as well as the
location of the source, would be immediately informed by the addition of one or more
spatially separated sensor locations for triangulation. Regarding potential effects of TDL
definition (i.e., as 3 × σi) on the above and below TDL demarcation and wind-resolved
detection signal form, Figure S7 provides an alternative view of information in Table 2
and Figure 6 with higher TDL multipliers, although the percentage of detections in the
DC distributions are similar, indicating a relatively robust result with little substantive
dependency on definitional choices.

The DC matrices may be further compared after a normalization step. In one ap-
proach, the above TDL subsets (Figure 6c,f) may be normalized by dividing the number of
detections for each cell by the total number of data points acquired for that cell from the
matrices containing All Data (Figure 6a,d). This normalization approach provides wind
speed and wind direction-resolved detection frequency on a cell-by-cell basis (Figure 7a,b).
The elevated source signal from the <west> quadrant is expected as many cells are near
100% detection probability in the primary source signal lobes. The reduction in detection
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probability moving away from 270 degrees is also expected as the observation moves away
from the primary direction of source advection and the emission plume to sensor spatial
overlap decreases. Due to overall data density, this normalized form visually discounts the
low wind speed signal from the <south> described in Figure 6 and Table 2. To facilitate
comparison across the collocated SPod pairs, these data were aggregated in wind speed
by summing detection probabilities by individual wind degree bins to produce an angle-
resolved source signal (Figure 7c). From this perspective, SPod1 and SPod2 exhibited good
agreement regarding the primary source signal between 240 and 280 degrees.
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Figure 7. Wind direction and wind speed-resolved frequency of detection plots for (a) SPod1;
(b) SPod2; (c) showing the cumulative detection probability for both SPods by wind direction.

Whereas the normalization approach of Figure 7 provides an absolute measure of
angle-resolved detection density for a selected time range (e.g., daily to annual summary),
the clarity of result (e.g., high degree of correlation in Figure 7c) is a consequence of elevated
detection rates from the <west> quadrant (Table 2). These high detection rates were in
part due to our TDL definition, but as described in Figure S7, the wind-resolved signal
forms appear relatively insensitive to TDL multiplier for this dataset. In general, these
consistent detections over time are atypical of shorter time-scale stochastic source emission
fenceline measurements.

Alternative DC matrix normalization approaches can be used to enhance source signal
features for lower and/or variable source emissions or higher atmospheric dispersion
conditions, where the total amount of data above TDL decreases. In another normalization
approach, the all signal DC matrix (Figure 6a,d) and the above TDL subsets (Figure 6c,f)
were individually normalized by their respective DC sums to produce separate proba-
bility of occurrence matrices for all observed data and data above detection limit. The
subtraction of the self-normalized matrix containing all data (Figure 6a,d) from the matrix
containing above TDL data (Figure 6c,f) produces a differential view of wind-resolved
relative detection signal (Figure 8a,b). As the proportion of data above TDL decreases
as part of the whole, this normalization form exaggerates the source signal pattern to
an increasing degree, so this interpretation must be used in conjunction with the more
standard normalization of Figure 7 as well as other QA and signal comparison metrics.
In contrast to Figure 7, the low wind speed signal from the <south> is visually enhanced,
as is the bifurcation in the primary signal lobe to the <west>. This form was collapsed
into wind speed (Figure 8c), to investigate the correlation between deployed sensors over
long time scales with a natural source signal threshold near zero differential probability.
This normalization form is independent of both the total amount of observed data and
the proportion of data above TDL. Therefore, it can be applied on a variety of timescales
and conditions to search for similarity in source signatures. This normalization form can
provide complementary metrics to standard normalization to be used in future envisioned
source detection approaches based on signal pattern recognition. These normalized DC
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detection space calculations augment similar analyses using fully calibrated sensor data
which carries source strength information.
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4. Conclusions

In this paper, we describe a 19-month demonstration of prototype 10.6 eV PID fence-
line sensors and CGS systems deployed at a site near chemical facilities in Louisville, KY.
The purpose of this project was to evaluate the performance of this class of lower cost
near-source monitoring approaches and improve understanding of their potential to sup-
port emerging fenceline monitoring applications. This analysis considered the detection
capability of the sensors for directly advected plumes and utilized a baseline correction
approach that removed slowly varying sensor drift and some portion of VOC air shed
signal. This analysis was limited to fenceline applications (500 m from the source) and is
not intended to inform the use of these technologies in community deployments where
sensitive, calibrated, and stable VOC measurements are required as these locations are
further from the emission source.

This project demonstrated that collocated SPod sensors using PIDs from different
manufacturers can produce useable data that informs proximate emission sources. This
study produced over 120,000 QA-valid paired 5-min data points from the collocated SPod
pairs. These pairs agreed in the assessment of wind-resolved source signal and were
supported by acquired CGS data. Canister data acquired with winds from the direction
of the facility the west exhibited instances of elevated 1,3-butadiene and cyclohexane
compounds known to be emitted by this facility. The study showed consistent SPod PID
signal above our defined TDL with winds from the west. However, the detected PID
signal cannot be assumed to be solely composed of 1,3-butadiene and cyclohexane, and
certainly includes other VOC compounds that may be emitted by the facility and potentially
other sources. The study demonstrated angle-resolved signal analysis that was useful in
separating fenceline senor signal characteristics to isolate suspected source emissions.

Details of the QA procedures, TDL calculations, and novel sensor signal visualizations
were described. Whereas this prototype version of the SPod fenceline sensor exhibited
about 20% data loss due to component failures and delays in replacements, envisioned com-
mercially available versions of the technology should be more robust, weather-tight, and
exhibit improved data completeness. Future work in this area will continue to improve QA
and data analysis approaches while implementing calibrated PID measures and exploring
multiple point source triangulation as well as inverse emission estimate approaches.
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