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INTRODUCTION

In the United States, lung cancer is the second most
frequently diagnosed type of cancer and the leading
cause of cancer deaths.1 Non–small-cell lung cancer
(NSCLC), which accounts for approximately 85% of
lung cancer diagnoses, is a heterogeneous disease
consisting of numerous histologies and many known
driver mutations (Fig 1).2-4

Today, approved targeted therapies are available for
patients with NSCLC who are positive for oncogenic
drivers such as EGFR, ALK, BRAF V600E, ROS1,
NTRK1/2/3, RET, and MET exon 14 skipping muta-
tions (METex14).5-8 Given the number of distinct ac-
tionable oncogenic drivers, it is important to use broad
molecular profiling at the diagnosis of locally advanced
or metastatic lung cancer to identify key genetic al-
terations and ensure that appropriate therapies are
selected.9-13 Importantly, patients with an oncogenic
driver mutation who receive the appropriate targeted
therapy have improved outcomes.9,13-18

In NSCLC,METex14 is observed in approximately 3%-
4% of cases and typically occurs in the absence of
other driver mutations.3,19-22 This incidence rate is
on par with or greater than those of other action-
able oncogenic drivers in NSCLC, such as ROS1
(approximately 1%-2%), NTRK1/2/3 (, 1%), RET
(approximately 1%-2%),BRAF (approximately 1%-5%),
and ALK (approximately 5%-7%).2,9,23,24

With the recent approvals of capmatinib and tepotinib
for patients with metastatic METex14 NSCLC,
METex14 is now an actionable biomarker in metastatic
NSCLC.6,12,25 However, the underlying genomic events
leading to MET exon 14 skipping are complex and
diverse, necessitating careful consideration of the
testing platform used for identification. This review will
discuss the complex genomic events leading to MET
exon 14 skipping, clinical data supporting targeted
intervention for this oncogenic driver, and the types of
molecular testing for reliably detecting METex14.

BIOLOGY OF METEX14

The MET gene encodes for a receptor tyrosine kinase
that activates signaling pathways involved in cell
proliferation, survival, and growth and plays a role in

embryonic development, wound healing, and tissue
regeneration.26 Mutations (eg, alterations leading to exon
14 skipping), gene amplification, and protein over-
expression may all lead to oncogenic activation of MET-
mediated signaling.3,26-28 Mutations leading toMET exon
14 skipping are the most commonly reported oncogenic
MET mutations,29 and as with many other oncogenic
drivers, coexistence of METex14 with other oncogenic
drivers is rare.3,20METex14may be associated withMET
amplification, with a co-occurrence rate between 0%
and 40.5%.21,28,30-37 MET amplification is caused by an
increase in the copy number of the MET gene3,30 and
has been identified as a resistance mechanism in EGFR
mutation–positive NSCLC.38-40 Several agents are being
investigated in patients with NSCLC with either de novo
MET amplification35,41,42 or EGFR mutation–positive
disease43-46; however, these discussions are outside
the scope of this review. Importantly, bothMETex14 and
MET amplifications are associated with poor prognosis in
patients with NSCLC.28,47-52

Exon 14 encodes the 47-amino acid juxtamembrane
domain of the MET receptor, a key regulatory region that
prevents MET oversignaling.53-55 In METex14-altered
cancers, the proper transcription process of the MET
gene is disrupted by underlying alterations in the intronic
regions surrounding exon 14, alterations within exon 14
itself, or complete genomic deletion of exon 14. These
events result in mature mRNA in which exon 13 is fused
with exon 15 (Fig 2A).53,54 Point mutations within exon
14, such as Y1003X or D1010X, may also mimic the loss
of this region.19-21 The mechanisms behind the onco-
genesis are incompletely explored, and multiple mech-
anisms may be involved; however, it is believed that loss
of this region—or mutations that mimic the loss of this
region—results in impairment of proper receptor deg-
radation, leading to overactive MET-mediated signaling
and thus cell proliferation and tumor growth.20,21,31,56

Hundreds of distinct genetic alterations leading toMET
exon 14 skipping have been reported (Fig 2B), in-
cluding base substitutions and insertions or deletions
(indels) at the splice acceptor site, at the splice donor
site, and in intronic noncoding regions immediately
adjacent to the splice acceptor site, as well as whole
exon deletions.3,20,53
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CLINICAL DATA IN METEX14 NSCLC

METex14 incidence varies by histology: approximately 2%
in adenocarcinoma, approximately 1% in squamous cell
carcinoma, approximately 6% in adenosquamous cell
carcinoma, and approximately 13% in pulmonary sarco-
matoid carcinoma (PSC). Patients with METex14 are
generally older (median age, 65-76 years), more often
female, and less likely to have a history of smoking com-
pared with those withoutMETex14. These patients are also
significantly older than patients with other oncogenic
drivers (EGFR, KRAS, or ALK).22 Furthermore, in a retro-
spective review of 148 patients with METex14 NSCLC, of
the 71 patients who developed metastases, the most
common sites were lymph nodes (67%), lung (53%),
pleural/pericardial metastases or malignant effusions
(51%), bone (49%), and brain (37%).48

Numerous agents have been investigated for the treatment
of METex14 NSCLC in both clinical trials and off-label
use.35,41,48,57-59 Below, we provide an overview of the key
MET tyrosine kinase inhibitors (TKIs) that have been in-
vestigated in METex14 NSCLC. Importantly, with MET TKIs,
peripheral edema is a common adverse event (AE). Patients
may require additional supportive care because peripheral
edema is a leading cause of dose reductions or interruptions
and discontinuation with many agents.6,25,35,41,57,60-63

Crizotinib

Historically, some patients with METex14 NSCLC have been
treated with off-label crizotinib, a multikinase inhibitor ap-
proved for ALK- or ROS1-rearranged advanced NSCLC that
also has activity against MET kinase.48,57 The NCCN guidelines
note that crizotinib is a therapy that may be useful in certain
circumstances for patients withmetastaticMETex14NSCLC.12

The PROFILE 1001 trial (NCT00585195) investigated the
use of crizotinib in patients with a number of genetic alter-
ations, including METex14 NSCLC.57 METex14 was primarily

identified by local DNA- or RNA-based next-generation se-
quencing (NGS).57 Among response-evaluable patients with
METex14 NSCLC (N = 65) who were either treatment naive or
previously treated, the ORRwas 32% (95%CI, 21 to 45; Fig 3)
and themedian duration of response (mDOR) was 9.1months
(95% CI, 6.4 to 12.7 months). A subgroup analysis showed
ORRs of 25% (95% CI, 10 to 47) in treatment-naive patients
(n = 24) and 37% (95% CI, 22 to 53) in previously treated
patients (n = 41). The most common treatment-related AEs in
this trial (≥ 20%) were edema, vision disorder, nausea, di-
arrhea, vomiting, fatigue, and constipation.57

Tepotinib

Tepotinib is an oral MET kinase inhibitor that has been
approved for use in Japan and the United States.25,41 The
VISION trial (NCT02864992) was a prospective, non-
randomized, open-label phase II study investigating the use
of tepotinib in patients with METex14 or MET-amplified
NSCLC.41METex14 wasmainly identified centrally either by
cell-free DNA from liquid biopsy with the Guardant360 NGS
panel or by RNA from tissue biopsy with the Oncomine
Focus Assay.41 Treatment-naiveMETex14 patients (n = 69)
had an ORR of 43% (95% CI, 32 to 56) and an mDOR of
10.8 months (95% CI, 6.9 months to not estimable) per
blinded independent review committee (BIRC). Previously
treatedMETex14 patients receiving tepotinib in the second-
or later-line setting (n = 83) had an ORR of 43% (95% CI,
33 to 55) and an mDOR of 11.1 months (95% CI, 9.5 to
18.5 months) per BIRC.25 Responses were consistent
across the liquid and tissue biopsy groups.41

Tepotinib has shown some clinical evidence of intra-
cranial activity through a case report published from the
VISION trial.64,65 Intracranial response rates have not been
reported.41,64,65

Among patients with METex14 NSCLC treated with tepo-
tinib (N = 255), the most common adverse reactions or AEs
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(any cause;≥ 20%) were edema, fatigue, nausea, diarrhea,
increased blood creatinine, musculoskeletal pain, and
dyspnea.25,63

Capmatinib

Capmatinib is an oral kinase inhibitor that targets MET
protein, including themutant variant produced byMETex14.
It was the first US Food and Drug Administration–approved
targeted therapy forMETex14 metastatic NSCLC and is also
approved in Japan; approval was based on the results from
the GEOMETRY mono-1 trial (NCT02414139).6,66

The GEOMETRY mono-1 trial was a prospective, non-
randomized, open-label phase II study that enrolled
patients with advanced or metastatic NSCLC into mul-
tiple study cohorts based on their prior treatment and
MET dysregulation status (METex14 and/or MET am-
plification). METex14 was identified centrally from tissue
samples by reverse transcriptase-polymerase chain re-
action (RT-PCR); a retrospective analysis validated the use of

the FoundationOne CDx NGS assay forMETex14 detection,
showing a concordance rate of 99% (72 of 73 patient
samples) with the RT-PCR clinical trial assay.35,67 The ad-
ditional patient had a noncanonical mutation leading toMET
exon 14 skipping.35 Treatment-naive METex14 patients
(N = 28) had an ORR of 68% (95% CI, 48 to 84) and an
mDOR of 12.6 months (95% CI, 5.6 months to not esti-
mable) per BIRC. Previously treated METex14 patients re-
ceiving capmatinib in the second- or third-line setting
(N = 69) had an ORR of 41% (95% CI, 29 to 53) and an
mDOR of 9.7 months (95% CI, 5.6 to 13.0 months) per
BIRC. An expansion cohort of previously treated METex14
patients receiving capmatinib in the second-line setting
(N = 31) showed consistent results, with an ORR of 48%
(95% CI, 30 to 67) per BIRC.6,35 The difference in responses
between treatment-naive and previously treated patients is
not yet understood and is distinct from other MET TKIs, but it
may be attributable to small sample sizes or to longer
durations of disease in previously treated patients, which
could have allowed for the evolution of resistant clones
during first-line therapy.35

Capmatinib has also shown clinical evidence of intracranial
activity. In the GEOMETRY mono-1 trial, among 13 patients
who had data evaluable by an independent neuroradiologic
review committee, 92% had intracranial disease control
and 54% had an intracranial response (including 31% with
complete response).35

Among all patients treated with capmatinib (N = 364), the
most common AEs (any cause; ≥ 20%) were peripheral
edema, nausea, vomiting, increased blood creatinine,
dyspnea, fatigue, and decreased appetite.6,35

Savolitinib

Savolitinib is a selective oral MET TKI currently under clinical
development. Among 70 patients treated with savolitinib in a
single-arm phase II study (NCT02897479) in patients with
METex14 PSC or other NSCLC histologies, 57% had ade-
nocarcinoma and 36% had PSC; 60% of patients had been
previously treated. METex14 was centrally confirmed with
Sanger sequencing or NGS (Geneseeq Tetradecan panel). In
treatment-naive patients (n = 24), the interim ORR was
54.2% (95% CI, 32.8 to 74.5) and the interim mDOR was
6.8 months (95% CI, 3.8 months to not reached) per in-
dependent review committee in the efficacy analysis set. In
previously treated patients (n = 37), the interim ORR was
46.0% (95%CI, 29.5 to 63.1) and the interimmDORwas not
reached (95% CI, 6.9 months to not reached) per inde-
pendent review committee in the efficacy analysis set. The
most common treatment-related AEs (≥ 20%) were pe-
ripheral edema, nausea, increased AST/ALT, vomiting, and
hypoalbuminemia.58

Mechanisms of Resistance to MET TKIs

MET TKI resistance can be broadly grouped into two
categories: MET dependent (on target) and bypass (off
target).68 Preclinical work has shown that clones with

KRAS ~25%

HER2 2%-3% 

EGFR ~17%
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ROS1 ~1%-2% 

Other/unknown ~31%

RET ~1%-2% 

BRAF ~1%-2% 

NRAS ~1%

NTRK1/2/3 < 1%

MEK1 1%

FDA-approved targeted
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FIG 1. Driver mutations involved in NSCLC.
Adenocarcinoma, the most common NSCLC his-
tology, can be further characterized by various
oncogenic drivers. Many of these oncogenic
drivers have an FDA-approved targeted therapy
available.2,8,22,24 FDA, US Food and Drug Ad-
ministration; NSCLC, non–small-cell lung cancer.
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on-target resistance to type Ia (crizotinib) and Ib (cap-
matinib, tepotinib, and savolitinib) TKIs may remain sen-
sitive to type II (cabozantinib, merestinib, and glesatinib)
TKIs and vice versa, which may support switching MET
TKIs when acquired resistance mutations arise.69 Off-target
mechanisms of resistance may involve gene amplification
of EGFR, HER3, and MAPK pathway genes (KRAS/BRAF)
or KRAS mutations. These off-target mechanisms may
support the use of combination therapy.68

According to the available data, it may be possible to select
subsequent therapy based on specific acquired mutations
detected at the time of progression and the properties of
clinically available MET inhibitors.68,69

RATIONALE FOR TESTING FOR METEX14

Retrospective Real-World Analyses of MET Inhibitors in

METex14 NSCLC

In addition to the clinical trial data supporting the use of
MET inhibitors in patients with metastatic METex14
NSCLC, multiple studies have shown that patients with
METex14 NSCLC have better outcomes when receiving a
targeted therapy.48,49,70

A retrospective review of 61 patients with stage IV METex14
NSCLC showed an association between longer survival and
receiving a MET TKI (crizotinib, glesatinib, or capmatinib).
Themedian overall survival (mOS) was 24.6months (95%CI,
12.1months to not reached) for patients who received aMET
TKI (n = 27) compared with 8.1months (95%CI, 5.3months
to not reached) for patients who did not receive a MET TKI
(n = 34). It is important to note that some patients in the group
that did not receive a MET TKI might not have received one
because of a lack of recognition of an actionable genomic
alteration or the inability of the patients to access MET TKIs;
this was a study limitation in the retrospective analysis, and it
further highlights the need to test patients for oncogenic
drivers at diagnosis of advanced NSCLC.48

A real-world analysis of patients with METex14 NSCLC
(N = 87) also saw an association between mOS and re-
ceiving a MET inhibitor (inhibitor not specified). Among
patients who received a MET inhibitor (n = 36), the mOS
from first diagnosis of metastatic NSCLC was 25.3 months
(95% CI, 18.8 to 40.9 months), compared with 10.9
months (95% CI, 7.4 to 16.9 months) for patients who did
not receive a MET inhibitor (n = 51).49

A

Exon 14

mRNA Exon 13 Exon 15

Transcription of gene with an alteration
leading to MET exon 14 skipping
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FIG 2. MET exon 14 skipping alterations by site and regions of interest for sequencing. (A) To detect these potential
alterations, it is important to sequence both exon 14 and its surrounding regions. The regions where known alterations
leading to exon 14 skipping can occur are mapped onto the schematic of the MET gene. MET exon 14 skipping
alterations in any of these regions will result in an mRNA where exons 13 and 15 are fused.3,20,53,85 (B) An analysis of
1,387 samples found that a plurality of MET exon 14 skipping events occur at the donor site; however, events are
spread across and around exon 14.20
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Another real-world analysis compared treatment-naive
METex14 patients from GEOMETRY mono-1 with a
matched cohort of real-world treatment-naive patients with
advancedMETex14 NSCLC, who were treated with first-line
antineoplastic therapies, excluding MET inhibitors. Median

progression-free survival was longer with first-line cap-
matinib than with first-line chemotherapy and/or immu-
notherapy (12.0 months v 6.2 months, after weighting).70

The benefits of MET inhibitor therapy are not limited to
newly diagnosedMETex14 NSCLC, further highlighting the

Partial response

Complete response

Not specified

B

0

20

40

60

80

100

Treatment naive
N = 69

Previously treated
N = 83

Re
sp

on
se

 R
at

e,
 %

43%

ORR 43%

(95% CI, 32 to 56)

ORR 43%

(95% CI, 33 to 55)

43%

Partial response

Complete response

Not specified

Partial response

Complete response

Not specified

0

20

40

60

80

100

Treatment naive
N = 24

Previously treated
N = 37

Re
sp

on
se

 R
at

e,
 %

54%

ORR 54%

(95% CI, 33 to 75)

46%

ORR 46%

(95% CI, 30 to 63)

D

Partial response

Complete response

Not specified

0

20

40

Re
sp

on
se

 R
at

e,
 %

60

80

100

Cohort 5b
(treatment naive;

1L)
N = 28

Cohort 6
(previously treated;

2L)
N = 31

Cohort 4
(previously treated;

2/3L)
N = 69

64%

ORR 68%

(95% CI, 48 to 84)

4%

41%

ORR  41%

(95% CI, 29 to 53)

ORR 48% 

(95% CI, 30 to 67)

48%

C

A

0

20

40

60

80

100

Any line of
treatment

N = 65

Treatment naive
N = 24

Previously treated
N = 41

28%

ORR 32%

(95% CI, 21 to 45)

5%Re
sp

on
se

 R
at

e,
 %

25%

ORR 25%

(95% CI, 10 to 47)

37%

ORR 37%

(95% CI, 22 to 53)

FIG 3. Treatment responses in clinical trials withMET inhibitors. (A) Best overall response in patients with advancedMETex14NSCLCwho were treated
with crizotinib in the PROFILE 1001 trial. Patients in this trial were a mix of treatment naive and previously treated.57 (B) Best overall response per BIRC
in patients with advancedMETex14 NSCLC who were treated with tepotinib in the VISION trial. Patients in this trial were a mix of treatment naive and
previously treated; data are shown from the analysis by line of treatment.25,41,97 (C) Best overall response per BIRC in patients with advancedMETex14
NSCLC who were treated with capmatinib in the GEOMETRY mono-1 trial. Patients in cohort 5b were treatment naive and received capmatinib in the
first-line setting. Patients in cohorts 6 and 4 were previously treated and received capmatinib in the second-line setting and the second- or third-line
setting, respectively.35 (D) Best overall response in patients with advanced METex14 NSCLC who were treated with savolitinib in trial NCT02897479.
Patients in this trial were a mix of treatment naive and previously treated; data are shown from the analysis by line of treatment.58 1/2/3L, first-/second-/
third-line; BIRC, blinded independent review committee; METex14, MET exon 14 skipping mutation; NSCLC, non–small-cell lung cancer.

Testing Considerations for METex14 NSCLC

JCO Precision Oncology 657

https://www.clinicaltrials.gov/ct2/show/NCT02897479


need for molecular testing in all patients with advanced or
metastatic NSCLC. A review of data from the Sarah Cannon
Research Institute found that patients with METex14 were
responsive to MET inhibitor therapy even after receiving
standard-of-care therapy (eg, chemotherapy, immuno-
oncology, and/or radiation).71

Immunotherapy in Patients With METex14

The NCCN guidelines for NSCLC note that the presence of
an oncogenic driver may be a contraindication for the use of
immunotherapy in metastatic NSCLC because these pa-
tients, even those with high programmed death ligand-1
(PD-L1) levels, do not respond to immunotherapy.12 Based
on clinical data for MET TKIs in patients withMETex14, the
limited data for the use of immunotherapy, and current
guidelines recommending upfront broad molecular profil-
ing, we recommend that patients with METex14-positive
metastatic NSCLC receive first-line targeted therapy with a
MET TKI.

To date, few studies have investigated the use of immu-
notherapy in patients with METex14 NSCLC. The available
evidence supporting the use of immunotherapy in patients
with METex14 NSCLC is not definitive, and reported re-
sponse rates are mixed.72-75 In a small study of patients with
METex14NSCLC (N = 25), of whom 13 received an immune
checkpoint inhibitor in the second-line setting, six patients
had prolonged progression-free survival (. 18 months). Of
these six patients, five showed responses within the first
4 months of treatment; four patients had a partial response,
and two had a complete response. PD-L1 levels were≥ 20%
for four of six patients (data not available for one patient);
however, these data must be interpreted carefully, because
the outcomes for the other seven patients are not
described.73 In contrast, three case studies reported pro-
gressive disease as the best response with pembrolizumab
in patients with METex14 NSCLC with high PD-L1
expression.74,75 Overall, these case studies are consistent
with a retrospective review of response-evaluable patients
withMETex14NSCLC (N = 24) treated with pembrolizumab,
nivolumab, durvalumab, atezolizumab, or ipilimumab plus
nivolumab, in which an ORR of 17% (95% CI, 6 to 36) was
reported. For patients with available data (n = 21), the
median progression-free survival was 1.9 months (95% CI,
1.7 to 2.7 months). Responses were not enriched in tumors
with highPD-L1 expression (≥ 50%).72 This ORRwas similar
to the ORR of 14% observed in the OAK trial with atezoli-
zumab, which had an unselected, previously treated patient
population (N = 425).72,76

TESTING FOR METEX14

Next-Generation Sequencing

Historically, a number of different tests to identifyMETex14
have been used, including single-gene tests, using tech-
nologies such as RT-PCR and Sanger sequencing.33,77-79

With an incidence of approximately 3%-4% forMETex14 in
NSCLC and given the total number of actionable biomarkers

that should be tested for, single-gene testing is now generally
considered impractical.18,22,79-82 This is particularly true in
NSCLC, where biopsies tend to be small or have minimal
tumor content, meaning that employing multiple tests on a
single sample is not possible.18,80-82 To complement tissue
biopsy, liquid biopsymay be used to test for circulating tumor
DNA. Liquid biopsies are recommended when tumor tissue
is scarce or unavailable or when a significant delay in
obtaining tissue (. 2 weeks) is anticipated. A positive result
by circulating tumor DNA testing could trigger treatment with
targeted agents. However, a negative result does not rule out
an oncogenic driver, because some tumors do not shed
sufficient amounts of DNA to be detected by liquid biopsies.
Negative results should be followed up with a secondary test
using a tissue-basedmethod.10 NGS is a rational choice as a
testing platform because it can detect other oncogenic
drivers concurrently using one test performed on a single
sample.2,80,81

In clinical oncology diagnostics, whole-genome or whole-
exome sequencing is rarely used, for two primary reasons.
First, most of the genome or exome is currently not clinically
informative for oncology, meaning that most of the data
derived from these approaches are clinically useless.
Second, to ensure detection of low-variant allele frequency
variants, sequencing depth needs to be high; thus, se-
quencing needs to be focused on actionable targets.
Therefore, nearly all clinical oncology diagnostic NGS as-
says employ some degree of target enrichment.11,83,84 To
accomplish this, there are two main types of library
preparation approaches: amplicon and hybrid capture.84

Given the diversity of alterations leading to MET exon 14
skipping, different approaches to target enrichment for
NGS vary dramatically in their ability to detect these
events.3,33,78,83,85,86

The amplicon-based method uses primers that flank the
regions of interest for sequencing (Fig 4). This approach
has a number of disadvantages. Primary among these is
that allele dropout may occur if there is a single-nucleotide
variant or short indel in the primer region, because the
primer will be mismatched and not bind. Additionally, if the
entirety of a genomic region is deleted, the primer binding
sites will also be missing.84 The diversity in position and size
of alterations leading to MET exon 14 skipping can lead to
allele dropout and provide false negatives.78 In routine
clinical practice, many targeted NGS assays that use
amplicon-based library preparation techniques have not
been properly optimized to detect mutations leading toMET
exon 14 skipping, resulting in low detection rates.78,83 An
evaluation of seven DNA-based amplicon NGS assays
revealed that, based on primer design, none of the
assessed assays would detect more than 63% of known
METex14 in an in silico analysis.78

At one institution, a laboratory-developed amplicon-based
NGS assay built on the Ion AmpliSeq Colon and Lung Cancer
Research Panel v2 detected MET exon 14 skipping in 0.3%

Socinski, Pennell, and Davies

658 © 2021 by American Society of Clinical Oncology



of 1,514 NSCLC samples.83 Previous in silico analysis found
that the Ion AmpliSeq Colon and Lung Cancer Research
Panel v2 would identify only up to 24% of alterations leading
to MET exon 14 skipping.78 Optimization of the assay by
incorporating fragment analysis and including three addi-
tional amplicons to cover exon 14 and its surrounding introns
increased the detection rate of METex14 to 2.2% of 365
additional NSCLC samples analyzed.83

Furthermore, comparisons of DNA-based amplicon-
mediated methods with RNA-based methods continue
to highlight the rates of false negatives in detecting
METex14.85,86 Relative to DNA-based amplicon-mediated
methods, METex14 detection with RNA-based methods
has been demonstrated to be superior, as shown in recent
publications.85,86 In the work of Davies et al, a direct
comparison of the ArcherDX FusionPlex Solid Tumor assay
(RNA-based, anchored multiplex PCR–mediated) and the
Illumina TruSight Tumor 26 assay (DNA-based, amplicon-
mediated) showed thatMET exon 14 skipping was detected
in 4.2% (17 of 404) of RNA-based NGS samples, com-
pared with 1.3% (11 of 856) of DNA-based NGS samples.
Among 286 samples tested with both assays, 10 cases of
METex14 were identified with the RNA-based assay,
compared with only four cases with the DNA-based
assay.85 Consistent with this work, Jurkiewicz et al re-
ported a METex14 detection rate of 2.5% (16 of 644 lung
cancer tumors analyzed) using an amplicon-mediated,
targeted, DNA-based NGS panel. Supplemental testing
using an RNA-based panel increased METex14 detection
to 3.9% (25 of 644 samples).86

The hybrid capture library preparation method uses a dif-
ferent approach to target enrichment. Briefly, tumor DNA is
fragmented and subsequently mixed with sequence-
specific probes to isolate the regions of interest. These

probes hybridize to long pieces of the target genome, en-
abling sequencing of regions surrounding the area of in-
terest. The hybridization probes are significantly longer than
PCR primers, making themmore tolerant to the presence of
mismatches in the binding site. This largely circumvents the
issue of allele dropout. One downside to the hybrid
capture–based approach is that the longer pieces of the
target genome may increase off-target sequencing, re-
ducing the sequencing coverage in the regions of interest.84

Given the diversity of alterations that may lead to MET exon
14 skipping and the potential location of these alterations in
the MET gene, hybrid capture is a preferred approach to
avoid the allele dropout commonly observed with amplicon-
based methods.3,19,78,84,85 However, in addition to the right
library preparation method, the platform of choice must also
have bioinformatic tools optimized to detect these events.84

Several available platforms use the hybrid capture approach
with optimized bioinformatic analyses. Among them, both
MSK-IMPACT and FoundationOne CDx (Foundation Medi-
cine Inc, Cambridge, MA) reliably detect a wide array of
alterations leading to MET exon 14 skipping, without the
need for supplemental RNA-based testing.3,20,67,72

RNA-Based Testing

RNA-based testing may be used to augment DNA-based
sequencing to provide more robust assessment of the state
of several oncogenic drivers. RNA sequencing need only
detect the direct result of alterations leading toMET exon 14
skipping: fusion of exons 13 and 15.53,78,85 Importantly, this
method may be useful for identifying METex14 when pa-
tients have noncanonical intronic mutations that affect
splicing.87 Some institutions and commercial platforms
have implemented parallel or sequential RNA-based test-
ing to maximize the chance of identifying an actionable
oncogenic driver.78,79,87,88 However, there are technical
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Deletions or mutations
that abolish primer binding

Deletions or mutations within
amplification region that do
not affect primer binding

Detection of MET

exon 14 skipping
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Yes

Primer 1 Primer 2

Exon 14Intron IntronExon 13 Exon 15

Detection of MET

exon 14 skipping
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Probe  1 Probe 2

Yes

Mutation
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A B

FIG 4. Overview of the (A) amplicon-based and (B) hybrid capture–based DNA NGS methods for targeted sequencing of MET. Amplicon-based NGS
methods use polymerase chain reaction primers to amplify the regions of interest. Some alterations that lead toMET exon 14 skippingmay prevent these
primers from binding, leading to false negatives. Hybrid capture–based NGS methods use longer probes to pull down regions of interest, preventing the
problem of allele dropout observed in the amplicon-based method and reducing false negatives.3,19,78,84,85 NGS, next-generation sequencing.
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challenges to consider with the adoption of routine RNA
sequencing in clinical practice. RNA is substantially
more vulnerable to degradation than DNA, which leads to
a reduction in the quality of RNA acquired in clinical
cases, particularly for formalin-fixed, paraffin-embedded
samples.85,89,90 Clinical assays that use RNA as input
material must incorporate quality control metrics that alert
the user when RNA quality in a sample is too poor to allow
confident interpretation of negative results.91 RNA detec-
tion is further complicated by low basal rates of alternative
splicing (potentially low-level splicing errors made by the
cells), which may lead to false positives. It has been re-
ported that low levels of mRNA with fused exons 13 and 15
may be detected even when underlying alterations leading
to MET exon 14 skipping are not present.92 It should be
noted that there is no strong evidence to suggest that
pathogenic levels ofMET exon 14 skipping can occur in the
absence of an underlying genomic event.83,87,92

FUTURE OF MOLECULAR TESTING FOR METEX14

In the future, interrogation of MET protein levels in tumor
tissue may also be incorporated to select patients who may
be responsive toMET inhibitors.56 In a small study, Guo et al
measured MET levels by quantitative mass spectrometry or
immunohistochemistry (IHC) in patients with advanced

METex14 NSCLC. Patients with detectable levels of MET by
mass spectrometry had an ORR of 60% (6 of 10 patients)
with a MET TKI, whereas the response rate was 0% (zero of
five patients) with a MET TKI in patients with undetectable
levels of MET. Likewise, patients with detectable levels of
MET with an IHC H-score ≥ 200 had an ORR of 62% (8 of
13 patients), whereas the ORRs in patients with H-scores of
150-199 and 1-149 were 25% (one of four patients) and
33% (one of three patients), respectively. The one patient
without MET protein expression by IHC did not have a
response.93 However, MET protein detection should not be
considered a stand-alone testing regimen and has been
shown to be an unreliable screen for identifying METex14-
positive patients.31,94

It is important for clinicians to recognize that assays in-
cludingMET in their list of covered genes may not detect all
alterations that lead to MET exon 14 skipping.78,85 In ad-
dition to testing for METex14, some assays may also report
onMET amplification and MET positivity. These are distinct
conditions that are currently being evaluated in ongoing
clinical trials.31,32,41,42,52,94-96 When selecting the most
appropriate assay for broad molecular testing, carefully
consider each assay’s limitations.
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