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Stochastic methods for modelling disease dynamics enable the direct
computation of the probability of elimination of transmission. For the low-
prevalence disease of human African trypanosomiasis (gHAT), we develop
a new mechanistic model for gHAT infection that determines the full
probability distribution of the gHAT infection using Kolmogorov forward
equations. The methodology allows the analytical investigation of the prob-
abilities of gHAT elimination in the spatially connected villages of different
prevalence health zones of the Democratic Republic of Congo, and captures
the uncertainty using exact methods. Our method provides a more realistic
approach to scaling the probability of elimination of infection between single
villages and much larger regions, and provides results comparable to estab-
lished models without the requirement of detailed infection structure. The
novel flexibility allows the interventions in the model to be implemented
specific to each village, and this introduces the framework to consider the
possible future strategies of test-and-treat or direct treatment of individuals
living in villages where cases have been found, using a new drug.
1. Background
In mathematical epidemiology, a growing number of models employ the use of
stochastic events to describe infection dynamics. These stochastic method-
ologies, such as the Gillespie or tau-leaping algorithm, typically use a large
number of event-driven stochastic simulations to estimate a distribution of
possible behaviours for an epidemic [1]. A central benefit of stochastic
models is that the random nature of each realization means a larger range of
outcomes is captured than simply the equilibrium dynamics predicted by a
deterministic model [2]. These stochastic methods are also integer-based
and so the exact number of people infected at a given time is monitored,
including when infections reach zero; a deterministic model will never reach
zero infections and so a threshold needs to be applied to reach the elimina-
tion [3–5]. Thus, a model in a stochastic framework, will have different
expected behaviour and be better suited than a deterministic variant when
close the the elimination threshold, either due to low infection numbers or
small populations [6].

However, event-driven stochastic methods require a large number of realiz-
ations of the epidemic process to be generated to be confident that the
full distribution of events has been captured; even then this is still only an
approximation of the true probability distribution of the potential trajectories
for the infection dynamics in time. This is particularly important if there are
any rare events of the system—something that requires more realizations to
determine the true frequency at which they occur [6]. Alternative to these
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event-driven stochastic simulations, the Kolmogorov forward
equations provide a method incorporating the stochastic be-
haviour in a set of ordinary differential equations (ODEs),
which fully determine the probability distribution of the epi-
demic over all possible infection states for the population [6].
This approach is simple to formulate, as many systems are
linear in terms of the probability of being in each infection
state, and so can be written in a matrix formulation; other
methods exist for when this is not the case [7]. The system
is thus easy to solve using standard methods and provides
a complete description of the dynamics. It is also much
faster to solve than repeatedly generating realizations of the
stochastic process. The solutions are also numerically exact
and an array of derived quantities can be directly calculated.

Kolmogorov forward equations have been used in several
epidemiological contexts [8–10] and discussed as a powerful
tool, but are not widely used due to constraints on computer
memory [11]. Every possible infection state must be explicitly
tracked and so if a population is large (and particularly if
each individual can be in any of a large number of infection
states), the number of these states quickly becomes prohibitive
to the method, as the number of required computations
becomes infeasible. Simulation methods take a lot of compu-
tation time; Kolmogorov forward equation methods take a
lot of memory storage capacity [12]. Therefore, a Kolmogorov
forward equation approach to modelling infections dynamics
would be most applicable for a disease with a relatively
small number of cases that has the potential to achieve elimin-
ation [13]. One such disease is gambiense human African
trypanosomiasis (gHAT).

Infection with gHAT is caused by the parasite Trypanosoma
brucei gambiense and is transmitted by tsetse across Central and
West Africa, with the majority of infection occurring in the
Democratic Republic of Congo (DRC). This infection has
been traditionally controlled with active and passive screening,
with subsequent treatment of infected individuals, and has
been targeted for elimination of transmission by 2030 by the
World Health Organization (WHO). There have been a sub-
stantial number of recent modelling studies that use
compartmental models for gHAT, with these studies typically
using deterministic systems of ODEs [14–18], with more recent
studies also considering stochastic event-driven approaches
[19–22].

Here, we have developed new model for gHAT infection
in spatial connectivity of villages within health zones of DRC.
We use a lower-dimensional state space for infection than
considered in the majority of the literature, which hence
allows for Kolmogorov forward equations to be used to
define the dynamics. This formulation fully captures the
possible behaviour of the infection in a stochastic framework,
while exhibiting the advantages of providing the full and
exact distribution of the infection states. We investigate the
probabilities of gHAT persistence or extinction and compute
expected times until elimination of infection, which, despite
the lower-dimensional infection structure, provides comparable
results to more commonly used methods.

Furthermore, the Kolmogorov forward equation model
provides the necessary formulation to explore the interactions
between a large number of villages. Village-specific simu-
lations can mimic the real-world interventions observed at
the level at which they occur, with the results then realistically
scaled up to larger regions, where elimination of infection can
be considered at more meaningful geographical scales [23]. In
the context of gHAT, the method provides a link between
individual village [19] and health zone [18] modelling,
while including the stochastic properties required to directly
simulate elimination of infection, we can assess potential
strategies and progress towards achieving elimination goals.
2. Methods
2.1. Kolmogorov forward equations
We construct our Kolmogorov forward equation model by
adapting the structure of the suite of gHAT models first pre-
sented in Rock et al. [14] and updated in Crump et al. [17].
Unlike these previous models, the model presented in this
paper contains just two infection states for a person (susceptible
and infected) and two types of people (low- and high-risk of
exposure to tsetse bites), and does not explicitly model the
number of infected tsetse, the biological vector of the disease.

We derive the new model equations by replacing the tsetse
dynamics of previous models with the quasi-equilibrium sol-
ution, in order to limit the number of model compartments.
For the case gHAT, this assumption is justified by the short life-
expectancy of the vector (tsetse) [24] and the long timescales of
the infection in humans [25]. The number of infection compart-
ments for humans are also reduced from five (susceptible,
exposed, infected Stage 1, infected Stage 2 and hospitalized) to
two, whereby exposed, infected Stage 1 and infected Stage 2
are now included as a single infected state, I, and the former sus-
ceptible and hospitalized compartments are now given as all
susceptible S (figure 1). The total human population size is con-
stant and denoted as N, with a small natural mortality rate of
people, μ, replaced by new susceptible individuals. We retain a
risk structure whereby a small minority of the population is
high-risk, with a higher exposure to biting tsetse and failure to
attend active screening.

This leaves four possible infection states for any person, and
therefore this lower-dimensional model structure (shown in an
ODE framework) is given by equations (2.1) and (2.2):

dSi
dt

¼ (mþ cðYÞ)Ii � ziðI1, I2ÞSi ð2:1Þ

and

dIi
dt

¼ ziðI1, I2ÞSi � (mþ cðYÞ)Ii, ð2:2Þ

for i = 1, 2, for the low- and high-risk group, respectively. The
natural human mortality rate, μ, determines the total human
birth rate, μN, such that a constant population size is maintained.
The recovery rate, ψ(Y ), is dependent on time due to increased
detection rates at later times and is derived from a combination
of parameters from Crump et al. [17], detailed in the electronic
supplementary material. The force of infection is given by ζi(I1,
I2), which is a function of the risk class and the number of
people infected in each risk class, further depending on the
quasi-equilibrium solution for the tsetse (figure 1). See electronic
supplementary material a full explanation of the derivation for
these model parameters.

To translate this re-formulated model (equations (2.1) and
(2.2)) into the Kolmogorov forward equations, we first consider
infection state of the population. Since we assume constant popu-
lation sizes N1 and N2 in each risk group and Si + Ii =Ni for i = 1,
2, the infection state is fully determined by the number of
infected low- and high-risk people I1 and I2. Thus, we define
the probability of being in a given state at time t as PI1,I2 ðtÞ.
From this population infection state, there are four possible tran-
sitions to different states: a low-risk human can recover or die, a
high-risk human can recover or die, a low-risk human can get
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Figure 1. Model diagrams for the two gHAT models. (a) The full higher-dimensional ODE model from Crump et al. [17] that includes tsetse dynamics. (b) The
lower-dimensional spatially connected Kolmogorov forward equation model presented in this paper. In (b), the larger box represents an example village with the
smaller boxes being the other villages (which have identical structure). In (a,b), the solid black lines show the rate of movement between compartments and dashed
black lines show the the result of active screening and treatment of infected individuals. The dashed grey paths show interaction between humans and tsetse or
between all villages, respectively in each panel.
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infected, or a high-risk human can get infected (since we assume
a constant population size, death is followed by immediate repla-
cement in the susceptible class and so we do not consider this
separately from recovery). Therefore, the Kolmogorov forward
equations are given by

dPI1,I2 ðtÞ
dt

¼ �PI1,I2 ðtÞðz1(I1, I2, t)(N1 � I1)

þ z2(I1, I2, t)(N2 � I2)þ (mþ cðYÞ)(I1 þ I2)Þ
þ PI1�1,I2 ðtÞz1ðI1 � 1, I2, tÞ(N1 � I1 þ 1)

þ PI1,I2�1ðtÞz2ðI1, I2 � 1, tÞ(N2 � I2 þ 1)

þ PI1þ1,I2 ðtÞ(mþ cðYÞ)(I1 þ 1)

þ PI1,I2þ1ðtÞ(mþ cðYÞ)(I2 þ 1), ð2:3Þ

where I1 = 0,…, M1, I2 = 0,…, M2, and PI1,I2 ðtÞ ¼ 0 for I1 < 0 and
I2 < 0. The values M1 and M2 are the maximum number of
people possible to be infected in each risk group.

In theory, M1 =N1 and M2 =N2; however because in practice
gHAT is a low-prevalence infection [26], we can reduce the state
space of the model and impose a lower maximum threshold,
while retaining high model accuracy. We ensure that the prob-
ability of exceeding the threshold is very small (less than 1 ×
10−8), with the values of Mi dependent on Ni, and explicitly
given in the electronic supplementary material.

Thus, the Kolmogorov forward equations (equation (2.3))
comprise of a system of (M1 + 1)(M2 + 1) ODEs (since the
low-risk infected population can take any value between 0 and
N1 and similarly for the high-risk). The Kolmogorov forward
equations are a linear system, and hence we simplify the notation
by writing the equations in matrix form. By defining the
probability vector,

pðtÞ ¼ ðP0,0ðtÞ, P1,0ðtÞ, . . . , PN1,0ðtÞ, P0,1ðtÞ, . . . , PN1,N2 ðtÞÞ, ð2:4Þ
we obtain the Kolmogorov forward equations in matrix form as

dpðtÞ
dt

¼ pðtÞQðtÞ, ð2:5Þ

where Q(t) is the rate matrix of all transition rates at time t.
We subsequently give the time t in both the year Y and
number of days into that year d and hence, p(t) = p(Y, d). How-
ever, we note that Q(t) =Q(Y ) because we assume, as per
Crump et al. [17], that the change in the rate matrix is due to
an increase in the rate of passive detection of infection due
to improvements in the passive surveillance system, which
occurs annually.

Since the equations of Crump et al. [17] consider large popu-
lations of roughly 100 000 people, rather than much smaller
villages, we additionally include a rate of importation of infec-
tion into a village, due to movement of people between
villages, for which we use a value derived in Davis et al. [19]
and denote by δ(Y ). The event of an external importation
increases the number of infected people in either risk group by
one and adds terms to equation (2.3) representing a change of
state from I1 low-risk infected and I2 high-risk by increasing
from I1− 1 to I1, increasing from I2− 1 to I2, and increasing
from I1 and I2 to I1 + 1 or I2 + 1 respectively:

þ PI1�1,I2 ðtÞdðYÞ(N1 � I1 þ 1)

þ PI1,I2�1ðtÞdðYÞ(N2 � I2 þ 1)

and � PI1,I2 ðtÞdðYÞ((N1 � I1)þ (N2 � I2)):

9>=
>; ð2:6Þ

In matrix notation, we include these new terms in matrix QE(Y ),
whereby the rate matrix is given by Q(Y) = (QV(Y ) +QE(Y )), for
the village and external terms respectively.

Additionally, active screening, the process whereby a large
number people in a village are targeted to be screened for the
disease and then treated if infected, is modelled as a multipli-
cation of the probability vector p(Y, y) by a lower-triangular
transition matrix A(Y ). In line with previous modelling studies,
we assume that only the low-risk class are affected by this dis-
crete-time event that occurs annually at the beginning of each
year, whereas the high-risk class do not attend active screening
events. The active screening matrix A(Y ) is calculated, for a
given screening coverage (which can change each year), by the
use of a hypergeometric distribution to determine the number
of infected people screened, followed by a binomial distribution
to find the number of infections detected due to the imperfect
sensitivity of the test (full details are in the electronic
supplementary material).

We assume that active screening began in 1998 [27], and the
system was previously at endemic equilibrium given there had
been no screening for several years previously. Therefore, we
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derive the full distribution of infection states for a population in
day d of year Y as

p(Y, d) ¼ p(1997, 365)
YY�1

i¼1998

A(i) exp (� 365(QV(i)þQE(i)))

 !

�A(Y) exp (� d(QVðYÞ þQEðYÞ)), ð2:7Þ
for Y≥ 1998 and 0≤ d≤ 365. Active screening in year Y is
modelled as occurring at the start of the year (d = 0), and hence
the probability state just before active screening in year Y is
given by p(Y− 1, 365). We calculate p(1997, 365) by finding
quasi-stationary equilibrium, finding the eigenvector corre-
sponding to the largest eigenvalue of the rate matrix,
(QV(1997) +QE(1997)).

2.2. Parameter values
The parameters are taken from Crump et al. [17] and transformed
into the new parameters of the Kolmogorov forward equations
(see electronic supplementarymaterial). The values of the original
parameters are either fixed where well-defined in the literature,
and specific to DRC, or are parameters reflective of a high-inci-
dence health zone (by using the median estimate of the posterior
from fitting to screening and incidence data from the health
zone Kwamouth in Mai Ndombe province using a Metropolis–
Hastings Markov chain Monte Carlo algorithm [17]). The data
which span 2000–2016 came from the WHO HATAtlas [26].

In the present study, we do not account for vector control, as
our primary focus here is to understand the village-level screen-
ing dynamics. Furthermore, only one health zone of DRC had
large-scale vector control in situ prior to 2018 [28] (the study
period with available data).

We additionally present similar results for the low-incidence
exemplar health zone (based on parameterization from Mosango
health zone of Kwilu province) for comparison in figure 5 and in
the electronic supplementary material. We note that the method-
ology presented here could alternatively be applied to any other
health zone or region.
3. Results
3.1. Infection dynamics of a single village
Solving the Kolmogorov forward equations, using the matrix
exponential in the form presented in equation (2.7), we can
obtain projections of how the infection dynamics will
change in time in full probabilistic form. As an illustrative
example, we calculate the distribution of infection up to the
year 2030 for a village of 1000 people in a high-incidence
health zone, assuming that within the village, there is an
active screening coverage of 50% every year (figure 2a). We
are assuming a small rate of infectious importations from
movement of people that decreases with time, δ(Y ) = (3.4 ×
10−6) exp(− 0.1071(Y− 2000)) d−1, and that the village starts
at endemic equilibrium conditions in 1998, calculated as the
steady state of the Kolmogorov forward equations.

The results show that the introduction of active screening
drives down the expected number of infected people from the
steady-state distribution in 1998. By 2030, there is a prob-
ability of 0.90 that there are no infected people in this
example village. The steady state is concentrated on negli-
gible infection levels assuming the active screening is
maintained. The full probability distribution does, however,
show that for this individual village, there is still some prob-
ability the infections will not fall as quickly, or indeed remain
constant or increase.
These results are dependent on the import rate between
villages. Without the importation rate, there is an absorbing
disease-free population state dynamics, which the population
would eventually move towards (a steady state of no infec-
tion). This is because without the importation rate, if
infection levels reach zero there is no person to re-introduce
infection to the population (albeit through tsetse in practice).

Conversely to an endemic village, we consider a hypothe-
tical village in a high-incidence health zone that was
infection-free in 1998 and therefore not targeted for active
screening (figure 2b). We predict some level of resurgence
on average in the village if a single high-risk person of the vil-
lage became infected through travelling to another village.
There is a high probability of onward transmission in the vil-
lage; the expected number of infected people increases
initially, before decreasing again. However, infection is unli-
kely to be maintained in the long term, even without
additional controls—there is a probability of 0.83 of a
return to no infection by 2030.
3.2. Infection dynamics across multiple villages
The infection dynamics in individual villages informs us about
the probability of local elimination of infection for an average
village, but at a larger scale, such as health zone or country
level, elimination of infection will depend on more than the
probability of elimination in individual villages. While the dis-
tribution of gHAT infection is heterogeneous across the DRC
[29], highly clustered incidence means that local movement
of people will affect the probability of elimination in neigh-
bouring villages. The rate of infectious importations in a
villagewill be dependent on the total infection level in the area.

Therefore, to consider the dynamics across multiple villages
in a region, we modify our rate of infectious importations to
remove the exponential decrease in time matched to the
trend in global infections and replace this with a term pro-
portional to the total number of expected infections in model
predictions across all villages of the local study region such
that δ(1998) = (3.4 × 10−6) d−1. The electronic supplementary
material provides a complete description of how the rate of
infectious importations is formulated.

We consider the expected number of infections and the
probability of elimination of infection for four groups of
10 000 people, comprised of groups of villages of different
sizes (N = 10 000, 1000, 100 and 10) (figure 3) to understand
the impact of the metapopulation structure [23]. The smaller
village population sizes within total populated area have
fewer expected gHAT infections and a higher probability of
elimination of infection. The reduced number of interactions
of mixing in smaller villages also results in a lower steady-
state from before the active screening begins. There is a
much lower probability of elimination of infection when
there are fewer larger villages. For 1000 villages with popu-
lation size N = 10, the probability of elimination of infection
in 2030 is >0.99, while for just one village of size N =
10 000, there is a smaller probability for elimination of
infection by 2030 at 0.77. This is in agreement with results
of metapopulation studies, where more stochastic fade-
outs of infection occur in the smaller populations, leading
to a greater probability of elimination of infection across
larger areas when sub-divided into more populations [30].
The example here highlights the benefit of modelling the
full stochastic dynamics, where the small population sizes
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determine the frequency of extinction events; the results from
an ODE model with constant population size would not vary
with the size of the population.
3.3. Infection dynamics across a health zone
While we have considered theoretical villages to explore the
behaviour of the Kolmogorov forward equation model, we
now use data from the WHO HAT Atlas [31] to obtain a list
of real village size distributions to apply our model to.
Since our model for a high-incidence health zone uses
parameters matched to the data from the health zone of Kwa-
mouth, we extract the population sizes of each village in
Kwamouth (see electronic supplementary material for
details) along with the past active screening coverage. A
plausible screening pattern is obtained taking the mean
active screening coverage across all screenings and the prob-
ability that any particular village listed in the WHO HAT
Atlas is screened in a given year. For Kwamouth, these
values are a 68.6% coverage occurring at a probability of
0.23 each year using active screening data from 2000 to
2018 (see electronic supplementary material for details).
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This active screening scheme is incorporated into the model
by a new parameter for the probability of an active screening
event in a village. Thus, we model active screening as the
linear combination of the probability of no active screening
multiplied by the current distribution and the probability of
active screening multiplied by the distribution after an
active screening event. We note that this is not expected to
reproduce the transmission and reporting trends of the past
19 years robustly—as we do not use screening patterns
specific to individual villages, nor allow for coverages
higher or lower than the mean—however, this does allow
us to investigate general behaviour of the infection system
using plausible real-world-like screening patterns.

We additionally adapt the value of the rate of importa-
tions of infection at steady state (previously taken from
Davis et al. [19]). We calculate the value that is now specific
to the health zone of Kwamouth as δ(Y ) = 2.86 × 10−6 d−1,
which is determined by matching the steady state of the
whole health zone to the steady state of the system of
ODEs in the original model for Kwamouth.

Applying the full Kolmogorov forward equation model to
the high-incidence health zone, we obtain a full probability
distribution in time for each village. We present the prob-
ability distribution of infection across the risk groups for a
selection of villages of different sizes (N = 100, 971, 5628
and 20 697) at key time points (figure 4) and for the whole
health zone across all simulated time (figure 5). Similar
results for the lower-incidence health zone are presented in
the electronic supplementary material.

The expected number of infections in all villages
decreases in time, such that by 2030 most of the probability
is centred around no infection. For the smallest villages,
there is a large probability of local gHAT elimination by
2030 (greater than 0.99 for the village of size N < 100) as
there are initially few or no cases, which are then identified
by active screening, or passive screening and treatment or
death. However, for the largest villages, such as the one
with a population of N = 20 697, there is a high probability
of continued infection with a probability of just 0.26 that
elimination of infection will be met in that village by 2030.
Hence, we will frequently see local elimination events, with
global persistence across the health zone [30]. Additionally,
we note that our results are not unique to this approach
and the dependence on population size for the probability
of elimination can be approximated in an ODE framework
by imposing different thresholds for elimination [21].

Active screening is shown to reduce the infection. This is
visually explicit in the column for 2000, where there are sep-
arate high probability clouds for whether an active screening
has occurred and hence the number of infected people in the
low-risk group identified and treated (figure 4). At the begin-
ning of 2000, active screenings may have occurred in both
1998 and 1999 and so in the bottom left panel of figure 4 (vil-
lage of population size N = 20 697), is is clear that there are
four possible outcomes highlighted as separate regions of
the probability distribution: an active screening event
occurred in both 1998 and 1999, just 1998, just 1999 or neither
1998 nor 1999. This behaviour is less obvious in some smaller
villages as the high probability regions overlap, yet is still
present. We note that since active screening is identifying
only low-risk individuals, infection is being pushed
down but proportionally most of the reduction is in the
low-risk group.

The decline in expected infection in all of individual vil-
lages is also evident in total infection of the health zone
(figure 5). This is calculated as the sum of the expected infec-
tion in each village. Note that here we do not present the
number of cases, but the underlying infections—case num-
bers would be substantially lower as there are typically
high levels of under-reporting [32]. While our focus here is
elimination, we additionally show how these levels of under-
lying infections correspond to annual active and passive case
reporting for both high- and low-incidence exemplar health
zones in the electronic supplementary material.

By 2030, the expected number of infected people have
greatly decreased, yet persist in low numbers. This is
mirrored in the probability of elimination of infection,
calculated as the product of achieving zero infections in all
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villages of the health zone, which is less than 10−4 by 2030 in
our high-incidence health zone if this active screening cover-
age remains constant and only identifies low-risk infected
individuals, with the mean expected year of elimination
after 2040. Using parameter values in the model matched to
WHO HAT Atlas data for the low-incidence health zone,
we observe an earlier mean expected year of elimination of
infection in 2029.
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4. Discussion
The Kolmogorov forward equation model facilitates a powerful
and efficient way to analyse the dynamics of low-prevalence
infections such as gHAT. This method presented here, using
a lower-dimensional model structure than commonly used
models, is fast to compute (with sufficiently small populations)
and yet maintains a good correspondence with more complex
approaches. The nature of the implementation means that var-
ious interesting properties can easily be explored, with exact
methods for calculating extinction times and expected
dynamics [6]. This approach has also allowed the model to
be easily extended to consider the interaction of multiple vil-
lages and even to consider the dynamics of persistence at the
health zone level by linking the total number of infected
individuals to the rate of infectious imports into the villages.

Using this model, we conclude that based upon the strategy
of active screening at the mean level, the expected year of
elimination of infection may be beyond 2040 for high-incidence
health zones like Kwamouth and around the target year of
2030 in low-incidence health zones like Mosango. As outlined
in the methods, there are a few reasons why the exact results
presented here may not completely align with the infection
dynamics of specific health zones; this includes using mean
screening coverage in villages, rather than village- and year-
specific coverage, and the Kolmogorov forward equation
model parameters have not been directly fitted to data,
which would be needed to ensure a robust correspondence
between observed outputs and reporting trends.

Improving the match to specific health zones is beyond the
scope of the present study; however we do see that our general
messages are in line with deterministic predictions using this
parameterization but at a health zone level; Huang et al. [18]
predicted that the year of elimination of infection would be
after 2040 for Kwamouth and in 2031 for Mosango, using a
similar model and the mean coverage of active screening. Like-
wise, stochastic models at a health zone level found that
without COVID-19 interruptions to gHAT activities, elimin-
ation might be expected in 2025 in Mosango (with this
slightly earlier prediction may be explained by higher assumed
screening from 2017 onwards) [21]. This general agreement
between either connected village scale and health zone scale
models is reassuring (detailed further in the electronic sup-
plementary material) and supports continued use of both
model frameworks if acknowledging the stochastic and par-
ameter uncertainty; however, by formulating connected
village-scale methods it is possible to consider spatial dynamics
in a more nuanced way.

We note that in considering the populations, we have
only used villages that are listed in the WHO HAT Atlas
and there are known to be additional villages within these
health zones that are not listed, since they may not have
ever been screened. Hence, the distribution of active screen-
ing is not truly as uniformly distributed across the health
zones as presented here. As shown in the electronic sup-
plementary material, we also know that screening coverage
and frequency are correlated with population size of a settle-
ment, and so adapting our model to account for this would
also likely result in more accurate predictions. The proportion
of people in each risk class is also constant for all popula-
tion sizes in the model, whereas we could speculate that
the larger populations are more town-like and perhaps
have fewer high-risk members. This potential over-estimation
of high-risk people in the large populations could explain
some of the very high gHAT persistence probabilities seen
in results for these populations (figure 4).

The assumption that movement of infected individuals is
proportional to the expected number of people infected in the
health zone, rather than the full distribution, is also a simpli-
fication to avoid calculating all possible combinations of
infection states in each village. This simplification would be
expected to reduce the size of the prediction intervals for
small groups of villages, tending towards the mean behav-
iour; there would otherwise be a small probability of many
villages having a much lower or higher number of infected
people, which would decrease or increase the importation
rate respectively. However, at the health zone level, with a
large number of villages, the mean behaviour is a good
approximation and so this simplification has minimal
impact on the results.

In addition, we consider a probability of active screening
every year, despite the fact that continued active screening is
unlikely to be necessary for small villages, where the infec-
tion is almost certain to be locally eliminated in latter years.
To improve the plausibility of the model, we could add a ces-
sation criterion, similar other studies [20,33,34]. This is less
straightforward to implement in this probabilistic framework
than in the tau-leaping scheme, as we do not consider specific
realizations of the model where the infection is either
detected or not, but have a full probability distribution of
all possible infection states. One potential solution could be
to link the probability of being screened to the probability
of observing a case in active screening. We do show that
the assumption of a single screening event each year, as
opposed to continuously throughout the year, shows negli-
gible differences and so adopt this method for simplicity
(see electronic supplementary material).

We have no data on the movement of people between vil-
lages, and so the rate of importation was estimated by
matching to the probability of detecting infection on the
first active screening in a village [19] or matching for the
health zone to the expected equilibrium state of an ODE
model variant [18]. However, using these values as an
approximation for the mixing between villages, we achieve
a good match to both ODE and event-driven stochastic
(tau-leap) variants (see electronic supplementary material),
while retaining the efficiency of the Kolmogorov forward
equations and the additional benefits of calculating the full
probability distribution. Explicit data on movement, such as
a network structure for the amount of travel between villages,
including travel outside the health zone, could refine our pre-
dictions, as well as capturing more of the heterogeneities
between villages. However, low frequency of infectious
imports to each village, coupled with minimal differences
in the transmission dynamics between villages of the same
health zone [19], mean we would not expect this to greatly
influence predictions.

The deterministic ODE method is useful for large popu-
lations where we expect average behaviour, and the event-
driven stochastic method is particularly useful for smaller
populations, increasing our understanding of the stochastic
uncertainty and ability to directly measure elimination. How-
ever, the Kolmogorov forward equation approach with
connections between villages can be used to capture the
dynamics of individual villages, with bespoke control inter-
ventions, with the results translatable between the village
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level and the health zone level, providing estimates of elimin-
ation of infection at practical spatial scales.

In the future, this modelling approach could be very valu-
able for assessing not only decisions about continuation or
cessation of screening in specific villages (based on village
size and previous detections) but also providing a method
through which the impact of village-level mass drug admin-
istration on health zone transmission dynamics could be
assessed. While such as drug is not currently licensed for
this type of delivery, a new compound—acoziborole—
which is in phase 3 clinical trials as a single-dose cure, is a
possible candidate [35]. These types of village-scale strategy
decisions would be challenging to analyse through health
zone level approaches. In addition, while the tsetse are not
explicitly modelled in our approach, our model is sufficiently
flexible that future vector control in these health zones could
be incorporated by a reduction in the force of infection due to
a reduction in tsetse populations.
ce
18:20210419
5. Conclusion
We have shown that a lower-dimensional model of gHAT
that operates at the village level can achieve very similar
results to a more biologically realistic version for larger
spatial scales, while introducing a method of obtaining
numerically exact results for extinction times and expected
number of infected individuals. The predictions provided
are in line with previous deterministic and stochastic results
and the model implementation provides a framework to
scale between modelling at a health zone or national level
and at the village level. This is an important development,
since the data obtained and the actual interventions (active
screening) conducted are at village level.
The Kolmogorov forward equation model suggests that
with mean coverage of active screening and continuing pas-
sive screening, with no additional interventions such as
vector control, the infection is almost certain to persist for
long periods. This indicates that additional or intensified con-
trols are required to achieve elimination of transmission, such
as tsetse control, improved passive detection or targeting of
high-risk people in active screening. This model structure
expands the range of analytical projections that it is possible
to generate and demonstrates the results that can be obtained
with a Kolmogorov forward equation model.

Data accessibility. This work does not include any original data. Epide-
miological data for the study were provided by the WHO in the
frame of the Atlas of HAT which may be viewed at www.who.int/
trypanosomiasis_african/country/risk_AFRO/en and may be
requested through Jose Ramon Franco (francoj@who.int).

Authors’ contributions. C.N.D. developed the mathematical model, per-
formed simulations, analysed the results and drafted the
manuscript; M.J.K. conceived of the study, developed the mathemat-
ical model and critically revised the manuscript; K.S.R. coordinated
the study and critically revised the manuscript. All authors gave
final approval for publication and agree to be held accountable for
the work performed therein.

Competing interests. We declare we have no competing interests.
Funding. This work was supported by the Bill and Melinda Gates
Foundation (www.gatesfoundation.org) through the NTD Modelling
Consortium [OPP1184344] (C.N.D., K.S.R. and M.J.K.), the Bill and
Melinda Gates Foundation through the Human African Trypanoso-
miasis Modelling and Economic Predictions for Policy (HAT MEPP)
project [OPP1177824] (K.S.R. and M.J.K.), and EPSRC/MRC via the
MathSys Centre for Doctoral Training (C.N.D.). The funders had no
role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Acknowledgements. The authors thank Programme National de Lutte
contre la Trypanosomiase Humaine Africaine (PNLTHA) of DRC and
its director Dr Erick Mwamba Miaka for original data collection and
WHO for data access (in the framework of the WHO HAT Atlas [31]).
References
1. Gillespie DT. 1976 A general method for numerically
simulating the stochastic time evolution of coupled
chemical reactions. J. Comput. Phys. 22, 403–434.
(doi:10.1016/0021-9991(76)90041-3)

2. Black AJ, McKane AJ. 2012 Stochastic formulation of
ecological models and their applications. Trends
Ecol. Evol. 27, 337–345. (doi:10.1016/j.tree.2012.
01.014)

3. Bartlett MS. 1956 Deterministic and stochastic
models for recurrent epidemics. Technical report,
University of Manchester.

4. Grenfell BT, Bolker BM, Kleczkowski A. 1995
Seasonality and extinction in chaotic
metapopulations. Proc. R. Soc. Lond. B 259,
97–103. (doi:10.1098/rspb.1995.0015)

5. Aliee M, Rock KS, Keeling MJ. 2020 Estimating the
distribution of time to extinction of infectious
diseases in mean-field approaches. J. R. Soc.
Interface 17, 20200540. (doi:10.1098/rsif.2020.0540)

6. Keeling MJ, Ross JV. 2007 On methods for studying
stochastic disease dynamics. J. R. Soc. Interface 5,
171–181. (doi:10.1098/rsif.2007.1106)

7. Jenkinson G, Goutsias J. 2012 Numerical integration
of the master equation in some models of stochastic
epidemiology. PLoS ONE 7, e36160. (doi:10.1371/
journal.pone.0036160)

8. Alonso D, McKane A. 2002 Extinction dynamics in
mainland–island metapopulations: an n-patch
stochastic model. Bull. Math. Biol. 64, 913–958.
(doi:10.1006/bulm.2002.0307)

9. Viet A-F, Medley GF. 2006 Stochastic dynamics of
immunity in small populations: a general
framework. Math. Biosci. 200, 28–43. (doi:10.1016/
j.mbs.2005.12.027)

10. Duerr HP, Eichner M. 2010 Epidemiology and control
of onchocerciasis: the threshold biting rate of
savannah onchocerciasis in Africa.
Int. J. Parasitol. 40, 641–650. (doi:10.1016/j.ijpara.
2009.10.016)

11. Keeling MJ, Ross JV. 2009 Efficient methods for
studying stochastic disease and population
dynamics. Theor. Popul. Biol. 75, 133–141. (doi:10.
1016/j.tpb.2009.01.003)

12. Albert J. 2016 A hybrid of the chemical master
equation and the Gillespie algorithm for
efficient stochastic simulations of sub-networks.
PLoS ONE 11, e0149909. (doi:10.1371/journal.pone.
0149909)
13. Grenfell BT. 1992 Chance and chaos in measles
dynamics. J. R. Stat. Soc. B (Methodol.) 54,
383–398. (doi:10.1111/j.2517-6161.1992.tb01888.x)

14. Rock KS, Torr SJ, Lumbala C, Keeling MJ. 2015
Quantitative evaluation of the strategy to eliminate
human African trypanosomiasis in the DRC. Parasit.
Vectors 8, 532. (doi:10.1186/s13071-015-1131-8)

15. Stone CM, Chitnis N. 2015 Implications of
heterogeneous biting exposure and animal hosts on
Trypanosomiasis brucei gambiense transmission and
control. PLoS Comput. Biol. 11, e1004514. (doi:10.
1371/journal.pcbi.1004514)

16. Pandey A, Atkins KE, Bucheton B, Camara M, Aksoy
S, Galvani AP, Ndeffo-Mbah ML. 2015 Evaluating
long-term effectiveness of sleeping sickness control
measures in Guinea. Parasit. Vectors 8, 550. (doi:10.
1186/s13071-015-1121-x)

17. Crump RE, Huang C-I, Knock ES, Spencer SEF, Brown
PE, Miaka EM, Shampa C, Keeling MJ, Rock KS.
2021 Quantifying epidemiological drivers of
gambiense human African trypanosomiasis across
the Democratic Republic of Congo. PLoS Comput.
Biol. 17, e1008532. (doi:10.1371/journal.pcbi.
1008532)

http://www.who.int/trypanosomiasis_african/country/risk_AFRO/en
http://www.who.int/trypanosomiasis_african/country/risk_AFRO/en
mailto:francoj@who.int
http://www.gatesfoundation.org
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/j.tree.2012.01.014
http://dx.doi.org/10.1016/j.tree.2012.01.014
http://dx.doi.org/10.1098/rspb.1995.0015
http://dx.doi.org/10.1098/rsif.2020.0540
http://dx.doi.org/10.1098/rsif.2007.1106
http://dx.doi.org/10.1371/journal.pone.0036160
http://dx.doi.org/10.1371/journal.pone.0036160
http://dx.doi.org/10.1006/bulm.2002.0307
http://dx.doi.org/10.1016/j.mbs.2005.12.027
http://dx.doi.org/10.1016/j.mbs.2005.12.027
http://dx.doi.org/10.1016/j.ijpara.2009.10.016
http://dx.doi.org/10.1016/j.ijpara.2009.10.016
http://dx.doi.org/10.1016/j.tpb.2009.01.003
http://dx.doi.org/10.1016/j.tpb.2009.01.003
http://dx.doi.org/10.1371/journal.pone.0149909
http://dx.doi.org/10.1371/journal.pone.0149909
http://dx.doi.org/10.1111/j.2517-6161.1992.tb01888.x
http://dx.doi.org/10.1186/s13071-015-1131-8
http://dx.doi.org/10.1371/journal.pcbi.1004514
http://dx.doi.org/10.1371/journal.pcbi.1004514
http://dx.doi.org/10.1186/s13071-015-1121-x
http://dx.doi.org/10.1186/s13071-015-1121-x
http://dx.doi.org/10.1371/journal.pcbi.1008532
http://dx.doi.org/10.1371/journal.pcbi.1008532


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210419

10
18. Huang C-I, Crump RE, Brown P, Spencer SEF, Miaka
EM, Shampa C, Keeling MJ, Rock KS. 2020 Shrinking
the gHAT map: identifying target regions for
enhanced control of gambiense human African
trypanosomiasis in the Democratic Republic of
Congo. medRxiv. (doi:10.1101/2020.07.03.
20145847)

19. Davis CN, Rock KS, Miaka Em, Keeling MJ. 2019
Village-scale persistence and elimination of
gambiense human African trypanosomiasis. PLoS
Neglec. Trop. Dis. 13, e0007838. (doi:10.1371/
journal.pntd.0007838)

20. Castaño MS, Aliee M, Miaka EM, Keeling MJ, Chitnis
N, Rock KS. 2020 Screening strategies for a
sustainable endpoint for gambiense sleeping
sickness. J. Infect. Dis. 221(Suppl. 5), S539–S545.
(doi:10.1093/infdis/jiz588)

21. Aliee M, Castaño MS, Davis CN, Patel S, Miaka EM,
Spencer SEF, Keeling MJ, Chitnis N, Rock KS. 2021
Predicting the impact of COVID-19 interruptions on
transmission of gambiense human African
trypanosomiasis in two health zones of the
Democratic Republic of Congo. Trans. R. Soc. Trop.
Med. Hyg. 115, 245–252. (doi:10.1093/trstmh/
trab019)

22. Davis CN, Castaño MS, Aliee M, Patel S, Miaka EM,
Keeling MJ, Spencer SEF, Chitnis N, Rock KS. 2021
Modelling to quantify the likelihood that local
elimination of transmission has occurred using
routine gambiense human African trypanosomiasis
surveillance data. Clin. Infect. Dis. 72, S146–S151.
(doi:10.1093/cid/ciab190)
23. Keeling MJ, Bjørnstad ON, Grenfell BT. 2004
Metapopulation dynamics of infectious diseases.
In Ecology, genetics and evolution of
metapopulations, pp. 415–445. Amsterdam,
The Netherland: Elsevier.

24. Glasgow JP. 1963 The distribution and abundance of
tsetse. Oxford, UK: Pergamon Press.

25. Checchi F, Funk S, Chandramohan D, Haydon DT,
Chappuis F. 2015 Updated estimate of the duration
of the meningo-encephalitic stage in gambiense
human African trypanosomiasis. BMC Res. Notes 8,
292. (doi:10.1186/s13104-015-1244-3)

26. Franco JR, Cecchi G, Priotto G, Paone M, Diarra A,
Grout L, Simarro PP, Zhao W, Argaw D. 2018
Monitoring the elimination of human African
trypanosomiasis: update to 2016. PLoS Neglec. Trop.
Dis. 12, e0006890. (doi:10.1371/journal.pntd.
0006890)

27. Steverding D. 2008 The history of African
trypanosomiasis. Parasit. Vectors 1, 3. (doi:10.1186/
1756-3305-1-3)

28. Tirados I, Hope A, Selby R, Mpembele F, Miaka EM,
Boelaert M, Lehane MJ, Torr SJ, Stanton MC. 2020
Impact of tiny targets on glossina fuscipes
quanzensis, the primary vector of human African
trypanosomiasis in the Democratic Republic of the
Congo. PLoS Neglec. Trop. Dis. 14, e0008270.
(doi:10.1371/journal.pntd.0008270)

29. Büscher P, Cecchi G, Jamonneau V, Priotto G.
2017 Human African trypanosomiasis. Lancet
390, 2397–2409. (doi:10.1016/S0140-
6736(17)31510-6)
30. Grenfell B, Harwood J. 1997 (Meta) population
dynamics of infectious diseases. Trends Ecol.
Evol. 12, 395–399. (doi:10.1016/S0169-
5347(97)01174-9)

31. Franco JR, Cecchi G, Priotto G, Paone M, Diarra A,
Grout L, Simarro PP, Zhao W, Argaw D. 2020
Monitoring the elimination of human African
trypanosomiasis at continental and country level:
update to 2018. PLoS Neglec. Trop. Dis. 14,
e0008261. (doi:10.1371/journal.pntd.0008261)

32. Mumba D et al. 2011 Prevalence of human African
trypanosomiasis in the Democratic Republic of the
Congo. PLoS Neglec. Trop. Dis. 5, e1246. (doi:10.
1371/journal.pntd.0001246)

33. Davis CN, Rock KS, Antillón M, Mwamba Miaka E,
Keeling MJ. 2021 Cost-effectiveness modelling to
optimise active screening strategy for gambiense
human African trypanosomiasis in endemic areas of
the Democratic Republic of Congo. BMC Med. 19, 1.
(doi:10.1186/s12916-020-01826-0)

34. Antillon M, Huang C-I, Crump RE, Brown PE,
Snijders R, Miaka EM, Keeling MJ, Rock KS, Tediosi
F. 2020 Economic evaluation of gambiense human
African trypanosomiasis elimination campaigns in
five distinct transmission settings in the Democratic
Republic of Congo. medRxiv. (doi:10.2139/ssrn.
3684430)

35. Drugs for Neglected Diseases. 2020 Prospective
study on efficacy and safety of acoziborole (SCYX-
7158) in patients infected by human
African trypanosomiasis due to T.b. Gambiense
(OXA002).

http://dx.doi.org/10.1101/2020.07.03.20145847
http://dx.doi.org/10.1101/2020.07.03.20145847
http://dx.doi.org/10.1371/journal.pntd.0007838
http://dx.doi.org/10.1371/journal.pntd.0007838
http://dx.doi.org/10.1093/infdis/jiz588
http://dx.doi.org/10.1093/trstmh/trab019
http://dx.doi.org/10.1093/trstmh/trab019
http://dx.doi.org/10.1093/cid/ciab190
http://dx.doi.org/10.1186/s13104-015-1244-3
http://dx.doi.org/10.1371/journal.pntd.0006890
http://dx.doi.org/10.1371/journal.pntd.0006890
http://dx.doi.org/10.1186/1756-3305-1-3
http://dx.doi.org/10.1186/1756-3305-1-3
http://dx.doi.org/10.1371/journal.pntd.0008270
http://dx.doi.org/10.1016/S0140-6736(17)31510-6
http://dx.doi.org/10.1016/S0140-6736(17)31510-6
http://dx.doi.org/10.1016/S0169-5347(97)01174-9
http://dx.doi.org/10.1016/S0169-5347(97)01174-9
http://dx.doi.org/10.1371/journal.pntd.0008261
http://dx.doi.org/10.1371/journal.pntd.0001246
http://dx.doi.org/10.1371/journal.pntd.0001246
http://dx.doi.org/10.1186/s12916-020-01826-0
http://dx.doi.org/10.2139/ssrn.3684430
http://dx.doi.org/10.2139/ssrn.3684430

	Modelling gambiense human African trypanosomiasis infection in villages of the Democratic Republic of Congo using Kolmogorov forward equations
	Background
	Methods
	Kolmogorov forward equations
	Parameter values

	Results
	Infection dynamics of a single village
	Infection dynamics across multiple villages
	Infection dynamics across a health zone

	Discussion
	Conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


