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ABSTRACT Soil harbors arguably the most metabolically and genetically heterogene-
ous microbiomes on Earth, yet establishing the link between metabolic functions and
genome at the precisely one-cell level has been difficult. Here, for mock microbial com-
munities and then for soil microbiota, we established a Raman-activated gravity-driven
single-cell encapsulation and sequencing (RAGE-Seq) platform, which identifies, sorts,
and sequences precisely one bacterial cell via its anabolic (incorporating D from heavy
water) and physiological (carotenoid-containing) functions. We showed that (i) metabol-
ically active cells from numerically rare soil taxa, such as Corynebacterium spp.,
Clostridium spp., Moraxella spp., Pantoea spp., and Pseudomonas spp., can be read-
ily identified and sorted based on D2O uptake, and their one-cell genome coverage
can reach ;93% to allow high-quality genome-wide metabolic reconstruction; (ii)
similarly, carotenoid-containing cells such as Pantoea spp., Legionella spp., Massilia spp.,
Pseudomonas spp., and Pedobacter spp. were identified and one-cell genomes were gen-
erated for tracing the carotenoid-synthetic pathways; and (iii) carotenoid-producing cells
can be either metabolically active or inert, suggesting culture-based approaches can
miss many such cells. As a Raman-activated cell sorter (RACS) family member that can
establish a metabolism-genome link at exactly one-cell resolution from soil, RAGE-Seq
can help to precisely pinpoint “who is doing what” in complex ecosystems.

IMPORTANCE Soil is home to an enormous and complex microbiome that features argu-
ably the highest genomic diversity and metabolic heterogeneity of cells on Earth. Their
in situ metabolic activities drive many natural processes of pivotal ecological significance
or underlie industrial production of numerous valuable bioactivities. However, pinpoint-
ing “who is doing what” in a soil microbiome, which consists of mainly yet-to-be-cul-
tured species, has remained a major challenge. Here, for soil microbiota, we established
a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq)
method, which identifies, sorts, and sequences at the resolution of precisely one micro-
bial cell via its catabolic and anabolic functions. As a Raman-activated cell sorter
(RACS) family member that can establish a metabolism-genome link at one-cell re-
solution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in
complex ecosystems.
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Soil is home to an enormous and complex microbiome, which features arguably the
highest genomic diversity and metabolic heterogeneity of cells on Earth (1). The in

situ metabolic activities of the soil, individually or collaboratively mediated by its pro-
karyotic and eukaryotic residents, drive many natural processes of pivotal ecological
significance or underlie industrial production of numerous compounds of value (2–4).
However, pinpointing “who is doing what” in a soil microbiome, which consists of mainly
yet-to-be-cultured species, has remained a major challenge, which is confounded by multi-
ple factors. (i) Every microbial cell’s metabolic phenotype can be distinct, yet metage-
nome/transcriptome/metabolome technologies are usually unable to precisely assign a
metabolic activity to individual cells. (ii) Each cell’s genotype is also theoretically different,
even for microbial residents that live in physical proximity (in fact, the majority of numeri-
cally rare species in the soil microbiome live in floating lifestyles as individual cells rather
than aggregated biofilms of clustering population) (5–7). (iii) A metabolic phenotype or ac-
tivity can be underpinned by multiple genomes and vice versa (8). (iv) Even for those cells
that can be cultured, their activity in the test tube can be different (or even irrelevant)
from their in situ role (9). Therefore, establishing the link between metabolic phenotypes
and individual genomes (i.e., “who” is doing “what”) at the resolution of one cell is of utmost
importance to mechanistic dissection and resource mining of the soil microbiome (10).

Raman-activated cell sorting and sequencing (RACS-Seq) can potentially address
this problem (11–14). In RACS-Seq, single-cell Raman spectra (SCRS), an intrinsic bio-
chemical fingerprint of individual cells, are used as a proxy of metabolic phenotype.
When coupled with stable isotope probing (SIP-Raman), SCRS can reveal the degree of
cellular substrate intake (e.g., 13C, 15N, and D) (10, 11, 15–19). For example, via heavy
water (D2O) feeding, a treatment that does not change the substrate pool, the general
metabolic activity of cells can be tracked via the Raman shift at the C-D (carbon-deute-
rium vibration) band in 2,040 to 2,300 cm21 (2, 16–18, 20, 21). On the other hand, SCRS
can reveal cellular biosynthetic profiles, such as carotenoids (22, 23), starch (24), pro-
tein (24), triacylglycerols (24–26), and other Raman-sensitive compounds.

After SCRS acquisition, to establish the phenotype-genotype links, individual cells
of target SCRS can then be sorted via RACS and sequenced (14, 27, 28). Various RACS
techniques were introduced for this purpose, such as Raman-activated cell ejection
(RACE) (29, 30). By plating cells on a solid basis, acquiring SCRS tandemly, and then
ejecting them individually into receiving wells, RACE has been applied for analyzing
soil (29), seawater (22, 23), and human intestinal samples (20). On the other hand,
Raman tweezers which acquire SCRS and sort individual cells in an aquatic phase were
tested in soil (21) and mouse fecal samples (18).

However, linking single-cell sequencing to RACS has not been trivial. One key chal-
lenge in microbiome RACS-Seq has been the inability to establish the link between
metabolic phenotypes and individual genomes at precisely one-cell resolution, due to
technological hurdles. First, the small size (usually,5mm in diameter) and light weight
(picogram level) of a bacterial cell can hinder precise tracking, reliable manipulation,
and ready transfer of precisely one cell (31). For example, the inability to readily con-
firm the presence of an ejected cell greatly reduces the RACE-Seq success rate (29).
Second, the bias in multiple displacement amplification (MDA) can compromise the
completeness of de novo one-cell genome assemblies (32). For example, to identify car-
bon-fixing bacteria from surface seawater of the Yellow Sea, success rate and genome
coverage of individual cells isolated via RACE were so low that .30 cells of target SCRS
had to be pooled into an MDA reaction mixture (22). Moreover, in the Red Sea samples,
genome coverages of one-bacterial-cell reactions ranged from 4.17% to 8.18%, while
those of 3- to 8-cell reactions were all ,20% (23). Although we recently showed that
introducing oils prior to MDA can elevate the success rate of 2- to 5-cell RACE-Seq reac-
tions (cells pooled prior to MDA) for soil microbiota (29), success for precisely one-cell
RACS-Seq for such complex environmental microbiota has not been reported yet.

To tackle this challenge, here for soil microbiota we established a one-cell RACS-Seq work-
flow via Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq)
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(33), which couples aqueous-phase SCRS acquisition and sorting with microdroplet-based sin-
gle-cell lysis, MDA, and then whole-genome sequencing (WGS). We showed that the workflow
can identify, sort, and sequence at precisely one-cell resolution, based on the cell’s D2O-assimi-
lating and carotenoid-producing activities. Specifically, genome coverage of ;90% can be
achieved from just one soil bacterial cell that was functionally profiled for metabolic activities
via its SCRS. Such an ability to profile and correlate bacterial metabolic phenome and high-
quality genome sequences at precisely one-cell resolution is pivotal to unambiguously estab-
lishing the phenotype-genotype links in soil microbiomes, which thus should accelerate mech-
anistic dissection and bioresource mining from the soil and other complex ecosystems.

RESULTS
Benchmarking one-cell RAGE-Seq via mock microbial communities. RAGE-Seq

addresses the challenges of small cell size and weight and biased MDA of microbial sin-
gle-cell DNA by screening individual cells via acquiring SCRS in an aquatic, vitality-pre-
serving environment and then precisely packaging the target cell (i.e., with characteris-
tic SCRS) into a picoliter droplet that can then be readily exported in a precisely
indexed, “one-cell-one-tube” manner (33). However, our past demonstration of RAGE-
Seq was based only on Escherichia coli (both pure-cultured lab strains and individual
cells directly from clinical urine samples) (33). To develop a precisely one-cell RAGE-
Seq procedure for environmental microbiota, which are typically much more diverse
and complex, we employed soil as a model. We are interested in sorting from soil (i)
metabolically active cells, which can be distinguished based on a broad Raman band
that appears in the SCRS between 2,040 and 2,300 cm21 (peaked at ;2,157 cm21; i.e.,
the C-D stretching vibrations shifted from the C-H stretching vibrations at 2,800 to
3,200 cm21 [18] after deuterium incorporation from D2O into biomass via NADPH-medi-
ated H/D exchange reactions), and (ii) carotenoid-producing cells, which can be recog-
nized by characteristic SCRS bands of carotenoids in 1,500 to 1,550, 1,150 to 1,170, and
1,000 to 1,020 cm21 (i.e., in-phase C=C [v3], C–C stretching [v2] vibrations of the poly-
ene chain and in-plane rocking mode of CH3 groups attached to the polyene chain [v1]
[15, 22, 34, 35]).

To benchmark the performance of RAGE-Seq for such metabolic phenotypes from
microbiota, we first constructed a series of mock microbial communities (see Fig. S1A
and B in the supplemental material), consisting of Escherichia coli K-12 DH5a (Ec),
Helicobacter pylori ATCC 26695 (Hp), Synechococcus elongatus PCC7942 (Se), and one
fungus, Saccharomyces cerevisiae BY4742 (Sc), in a 1:1:1:1 ratio. Then, three series of
experiments were designed to test the specificity of RAGE-Seq, via sorting the mock
communities based on cell morphology (experiment A, Fig. 1A), the C-D peak of SCRS
(experiment B, Fig. 1B), or the carotenoid peak of SCRS (experiment C, Fig. 1C), respec-
tively. For each of the criteria, 20 cells, 11 cells, and 11 cells, respectively, per experi-
ment (in triplicates) were sorted and sequenced using a RAGE chip (Fig. S1C; Materials
and Methods). Thus, for the synthetic four-species mock microbiota, nine RAGE-Seq
experiments in three biological replicates were performed, which sorted and
sequenced 126 individual cells in total (Fig. 2A to C; Table 1; Materials and Methods).

Specifically, experiment A (in biological replicates of A-1, A-2, and A-3) aims to test
the specificity of RAGE-Seq in sorting primarily via cellular morphology. In each RAGE-
Seq run, 5 cells from each of the four species (a total of 20 cells) were sorted from the
mock microbiota. One-cell WGS of the corresponding MDA products suggested that
61.22% to 99.79% of the shotgun reads were mapped to the respective isolate
genomes (except the 21.48% for an Sc cell, likely due to primer-dimer formation in its
MDA reaction since 78.34% of its reads found no match in NR), with the average map-
ping rate for each species ranging from 52.79% to 98.83%. Among A-1, A-2, and A-3,
the success rate for a given species ranged from 20% to 80%, with an average of
;43.3% (26 MDA-positive cells in 60 sorted cells). Moreover, genome completeness of
the single-cell amplified bacterial genome (SAG) eventually produced ranged between
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30.14% for an Sc cell and 99.66% for an Se cell, with the average for each species rang-
ing from 43.36% (Sc) to 96.78% (Se) (Table 1; Fig. 2A).

Experiment B (B-1, B-2, and B-3) aims to test the specificity of sorting and sequenc-
ing metabolically active cells (i.e., those carrying C-D peak in SCRS). In each RAGE-Seq
run, based solely on SCRS, 11 Ec cells were sorted via the presence of C-D peaks,
respectively. One-cell WGS results suggested that 66.35% to 94.41% of the shotgun
reads were mapped to Ec (except the 19.13% for a cell, likely due to formation of
primer dimers in MDA as 79.75% of its reads found no match in NR), and the average
mapping rate was 65.00%, 77.15%, and 84.09%, respectively. For B-1, B-2, and B3, the
success rate was 36.36%, 27.27%, and 18.18%, respectively (average of 27.27%; 9 MDA-
positive cells in 33 sorted cells). Moreover, genome completeness of the SAG ranged

FIG 1 Benchmarking RAGE-Seq via a series of mock microbiota that include S. elongatus PCC7942 (Se), H. pylori ATCC 26695 (Hp), E. coli K-12 DH5a (Ec),
and S. cerevisiae BY4742 (Sc). (A) Experiment A (for testing the specificity of RAGE-Seq via shape). Cells were sorted from the mock community based on
different cellular morphology or full spectrum of SCRS and then sequenced. (B) Experiment B (for testing the specificity of sorting D2O-band-containg cells).
Prior to the mixing, Ec was fed the D2O (to probe the metabolic activities of Ec). Cells that exhibited C-D peaks in SCRS were sorted and sequenced. (C)
Experiment C (for testing the specificity of sorting carotenoid-band-containing cells). Cells were sorted from the mock community based on the presence
of the carotenoid peaks and sequenced. In all three experiments above, the four types of cells were mixed in an equal ratio prior to performing SCRS
acquisition and RAGE-Seq. All the RAGE-Seq reactions are one cell per tube.
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between 19.13% and 94.41%, and the average at each run was 36.30%, 74.10%, and
90.30%, respectively (Table 1; Fig. 2B).

Experiment C (C-1, C-2, and C-3) was designed to test the specificity of sorting and
sequencing carotenoid-producing cells. In this four-species mock community, only Se
contains carotenoids. Thus, in each RAGE-Seq run, based solely on SCRS, 11 Se cells
were sorted based on the presence of the carotenoid-specific peaks, respectively. One-
cell WGS results suggested that 69.78% to 98.27% of the shotgun reads were mapped
to Se (except the 17.49% for a cell, likely due to primer-dimer formation in MDA since
82.12% of its reads found no match in NR), and the average mapping rate was 74.58%,
84.16%, and 88.10%, respectively. The success rate of C-1, C-2, and C-3 was 36.36%,
27.27%, and 27.27%, with an overall success rate of 30.30% (10 MDA-positive cells in
33 sorted cells). Moreover, genome completeness of the SAG ranged between 53.80%
and 99.73%, and the average at each run was 88.24%, 97.23%, and 93.30%, respectively
(Table 1; Fig. 2C).

Notably, in these experiments, the empty droplets derived from the aqueous phase
around the target cells, which served as the negative controls, were all free of contami-
nating reads from members of the mock microbiota (for them, percentage of WGS
reads in the “%Hit_no_genomes” category reaches 99.53% for experiment A, 99.95%
for experiment B, and 98.23% for experiment C, consistent with nonspecific amplifica-
tion in MDA; Table 1). This supports the stringency of the workflow and the aqueous
sorting microenvironment of RAGE-Seq, i.e., being largely free of contaminating DNA
from air, surface, or reagents (which are often encountered in single-cell isolating and

FIG 2 Validation of one-cell RAGE-Seq method performance via a synthetic four-species mock microbiota. (A) Results based on criterion A, which sorted via
cell morphology. (B) Results based on criterion B, which sorted via the C-D peak of SCRS. (C) Results based on criterion C, which sorted via the carotenoid
peak of SCRS. The mock microbiota consists of the prokaryote E. coli (Ec), the prokaryote H. pylori (Hp), the eukaryote S. cerevisiae (Sc), and the
photosynthetic prokaryote S. elongatus (Se), mixed in equal abundance. For the three different sorting criteria, 20 cells, 11 cells, and 11 cells were sorted
and sequenced per experiment, respectively, and three biological replicates were performed for each of the experiments. For each experiment, success rate
(i.e., number of 16S sequencing-validated SAGs/total number of sorted cells), mapping rate, and genome completeness of the post-RAGE one-cell genome
sequencing reactions were assessed (Materials and Methods).
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sequencing) (36, 37). On the other hand, in the target-cell samples, slight contamina-
tion originating from members of the mock microbiota was observed (mostly,0.5%
and maximally 1.33% among all reactions in the three series of experiments; Table 1).
These results suggest that the presence of DNA fragments in the liquid environment or
sticking to the cell surface (which were then sorted together with target cell into the
picoliter-level microdroplet by RAGE) may underlie the slight contamination observed
in these one-cell RAGE-Seq reactions.

The experimental procedure of one-cell RAGE-Seq for soil microbiota. Next, we
developed a one-cell RAGE-Seq workflow for soil microbiota, which are much more
diverse and complex (Fig. 3). Soil samples were collected from grassland at a depth of
,3 cm on the campus of Qingdao Institute of Bioenergy and Bioprocess Technology,
Chinese Academy of Sciences, China (36°991999N, 120°2895099E). The samples were ho-
mogenized and passed through a 0.6-mm sieve to remove small stones, grass roots,
and other debris. Cells in the soil were extracted using Nycodenz density gradient cen-
trifugation (Materials and Methods). Then, in a RAGE chip (Fig. S1C), the cells were
trapped and analyzed individually in a RAGE chip with a 532-nm laser, which generates
SCRS with a high signal-to-noise ratio. Then, the target cell with characteristic SCRS
that correspond to specific metabolic phenotypes (e.g., metabolically active cells or ca-
rotenoid-containing cells; details below) was trapped and moved with a 1,064-nm laser
to form a one-cell-encapsulated droplet (Movie S1). The one-cell droplet can be readily
transferred to a tube for MDA and sequencing. Notably, as the RAGE-derived one-cell
droplet already carries an oil phase (mineral oil), an emulsion reaction for MDA would
be formed simply via vortex in the tube (after the aqueous phase of the lysis buffer is
introduced). The one-cell MDA products, after quality assessment, are then shotgun
sequenced separately via HiSeq, followed by de novo assembly and in silico metabolic
reconstruction for the cell, therefore linking the genome to its SCRS-derived metabolic
phenotype (Fig. 3).

One-cell RAGE-Seq of metabolically active bacteria in soil cell extracts via D2O-
probed SCRS. (i) On-demand sorting and retrieval. To gauge the ability of RAGE-Seq
to tackle substrate-utilizing phenotypes of soil microbes, extracted cells from soil were
incubated with 50% D2O. To determine the sampling time point for RAGE-Seq, time
course D2O-probed experiments using the soil extracts were performed (with three bi-
ological replicates; Fig. S2). At 6 h, 12 h, 18 h, and 24 h after starting the D2O incuba-
tion, aliquots were taken, respectively, and SCRS from 100 randomly selected cells
from each of aliquots were recorded. The results revealed the gradual increase of CDR
(C-D ratio) at the consortium level over time, which plateaued before 24 h (Fig. S2).
Therefore, 24 h of D2O incubation was chosen for RAGE-Seq of the soil cell extracts. A
broad Raman band appeared in the region between 2,040 and 2,300 cm21, peaked at
2,157 cm21 (Fig. 4A), which is the C-D stretching vibrations shifted from the C-H
stretching vibrations at 2,800 to 3,200 cm21 (18). This shift was attributed to the incor-
poration of deuterium from D2O to bacterial biomass via NADPH-mediated H/D
exchange reactions in the metabolically active bacteria. Cells with the specific C-D
bands in SCRS were then processed via RAGE-Seq, one cell per tube (Fig. 4B; one cell-
free sample was taken as a negative control in each batch of experiments). To validate
successful MDA for each RAGE-derived cell, the 16S rRNA gene was amplified by PCR
using the MDA product as the template (Fig. S3). Nine one-cell MDA products each
with clear MDA bands and positive 16S rRNA PCR results were chosen for subsequent
16S and whole-genome sequencing (Fig. S3A and B), generating ;3Gb of raw
sequencing data for each of seven cells (SR5, SR6, SR9, BSR2, BSR3, BSR5, and BSR11;
the other two failed to yield sequencing library due to severe degradation; Table 2).

(ii) Recovery of high-coverage one-cell draft genomes. After quality control,
clean reads from each cell proceeded to de novo genome assembly (Table S1). For
each cell, GC% of the assembled contigs (.200 bp; after decontamination; Materials
and Methods) exhibits a normal distribution (Fig. S4A). Moreover, t-SNE (t-distributed
Stochastic Neighbor Embedding) projection of contigs from each cell (.1,500 bp) via
their 4-mer signatures reveals distinct clustering patterns that are characteristic to the
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FIG 3 The pipeline of Raman-activated gravity-driven cell encapsulation and sequencing (RAGE-Seq) that links genotype to phenotype (metabolic activity
and carotenoid production) in the soil. ‹ Nycodenz iohexol was added to the soil slurries. › Microbial cells from the soil were extracted by Nycodenz
density gradient separation (NDGS). fi Carotenoid-producing cells were identified based on the characteristic Raman peak of carotenoids in SCRS and then
sorted out in the RAGE chip, as a one-cell-encapsulated droplet, in a one-cell-one-tube manner. fl For sorting metabolically active soil cells, the soil extract
was incubated in 50% D2O for 24 h. � Metabolically active cells were identified based on the C-D band in SCRS and then sorted out as a one-cell-
encapsulated droplet via RAGE. – The RAGE-sorted cells were lysed. † The genomic DNA was amplified by MDA and then processed for 16S rRNA
sequencing and whole-genome shotgun sequencing. ‡ Assembly and annotation of the single-cell shotgun sequencing reads. · Metabolic pathways were
reconstructed so as to establish the link between genotype (sequencing based) and the metabolic phenotype (SCRS based) at precisely one-cell resolution.
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respective taxa of the cells (Fig. 4C). These results support the accuracy of draft ge-
nome reconstruction from one-cell assemblies from RAGE-Seq.

The identity of the target cell was determined based on that of the top contig bin
(which consists of contigs binned to the same taxonomical unit). Based on DNA
sequence similarity of contigs, the seven C-D-peak-present cells were pinpointed as
being from Corynebacterium spp., Clostridium spp., Moraxella spp., Pantoea spp., or
Pseudomonas spp. (Table 2). Interestingly, comparison of the results with 16S rRNA
gene sequencing of the soil sample revealed that all of the seven cells were from low-
abundance operational taxonomic units (OTUs) of the soil (all ,1% at the OTU level;
Table 2; Data Set S1).

To evaluate the completeness of reconstructed one-cell genomes, CheckM (38), which
is based on lineage-specific marker genes, was employed. It revealed that 89.05%, 22.25%,
46.90%, 11.68%, and 24.43% genome fractions were recovered for SR5, SR6, BSR2, BSR3,
and BSR5, respectively (Table 2). The contigs in SR9 and BSR11, both assigned to Moraxella
spp., represent 92.62% and 90.23% completeness of their genomes, respectively (Fig. 4C;
Table 2). This supports the feasibility of RAGE-Seq to produce high-coverage genomes
from just one post-RACS soil bacterial cell.

FIG 4 One-cell RAGE-Seq of metabolically active microbial cells from soil. (A) Various metabolically active microbes identified in the soil labeled by heavy
water (D2O) and their corresponding Raman spectra. (B) SCRS of C-D-band-containing cells, which were treated with D2O for 24 h and sorted via RAGE-Seq
for single-cell genomes; SCRS of SR5, SR6, SR9, BSR2, BSR3, BSR5, and BSR11, cells with C-D band; SCRS of control, cells without C-D band. (C) The
t-SNE projection of binned contigs from post-RAGE single-cell sequencing reveals the taxonomical origin for the C-D-band-containing cells. Contigs are
visualized based on 4-mer frequency features. Each contig is colored based on its taxonomic annotation (here the family-level annotation was shown).

TABLE 2 Predicted genome completeness and 16S rRNA genes of RAGE-sorted bacteria in the soil samplea

RAGE-sorted samples Class (genus)

Estimated
genome
completeness (%)

Genome
recovered
(kbp) GC%

Relative abundance
(%) via 16S (the genus
level; S1/S2/S3)

Reference(s)
supporting presence
of carotenoids

C-D peak-containing cells
SR5 Corynebacterium 89.05 3,003.41 60.12 0/0/0.02
SR6 Clostridium 22.25 1,272.90 30.05 0.01/0.02/0.03
SR9 Moraxella 92.62 4,772.96 43.21 0/0/0.01
BSR2 Pantoea 46.90 2,397.74 54.60
BSR3 Pseudomonas 11.68 863.39 62.17
BSR5 Pantoea 23.43 1,303.76 55.61
BSR11 Moraxella 90.23 2,465.43 43.60 0/0/0.01

Carotenoid-producing cells
CRG1 Pantoea 58.66 3,419.94 52.55 46, 47
CRG2 Legionella 34.99 960.72 39.05 0.08/0.12/0.15 29
CRG4 Legionella 48.39 1,202.08 37.93 0.08/0.12/0.15 29
CRG5 Legionella 12.23 143.52 38.89 0.08/0.12/0.15 29
CRG6 Massilia 19.44 605.58 62.84 0.68/0.66/0.80 79
CRG7 Pseudomonas 20.85 1,698.06 58.72 80
CRG11 Pedobacter 13.01 43.11 41.25 0.05/0.05/0.06 81

aThe empty droplets (NCD1 and NCD2, Fig. S3) derived from the aqueous phase, which served as the negative controls, did not contain any specific species information and
were a nonspecific amplification product (accession numbers: SRR12829273 for NCD1 and SRR12829272 for NCD2). This supports the stringency of the workflow and the
aqueous sorting microenvironment of RAGE-Seq.

Jing et al.

May/June 2021 Volume 6 Issue 3 e00181-21 msystems.asm.org 10

https://www.ncbi.nlm.nih.gov/sra/SRR12829273
https://www.ncbi.nlm.nih.gov/sra/SRR12829272
https://msystems.asm.org


Moreover, no significant difference in either completeness or GC content is appa-
rent between the seven post-RAGE one-cell genomes and the one-cell genomes from
the 17 randomly chosen, droplet-packaged bacterial cells from single-droplet MDA (sd-
MDA [39]; Wilcoxon test; P. 0.05; Fig. S5A and B). Thus, in RAGE-Seq, the SCRS acquisi-
tion process (i.e., for metabolic phenotyping) does not seem to hamper subsequent
one-cell MDA and sequencing, which is in sharp contrast to RACE-Seq, when the laser
exposure during SCRS acquisition is the most important factor that negatively impacts
the quality of post-RACE MDA and sequencing (29).

One-cell RAGE-Seq of carotenoid-producing cells in soil cell extracts via
characteristic Raman peaks of carotenoids. To gauge the ability of RAGE-Seq to
tackle product synthesis-related phenotypes, which are of interest for bioresource min-
ing from soil, we focused on carotenoids, one of the most diverse classes of pigments
(with over 700 kinds found [40]) and found in nearly all photosynthetic cells to protect
them from exposure to UVA radiation (41). They also give characteristic bands in SCRS
in 1,500 to 1,550, 1,150 to 1,170, and 1,000 to 1,020 cm21 (as caused by in-phase C=C
[v3], C–C stretching [v2] vibrations of the polyene chain, and in-plane rocking mode of
CH3 groups attached to the polyene chain [v1] [15, 22, 34, 35]), which can serve as dis-
tinct criteria for RACS (22, 23). In our soil samples, the carotenoid-producing cells
showed the characteristic Raman peak of v1, v2, and v3, as expected (Fig. 5A).

Here, similar to sorting metabolically active cells, individual carotenoid-producing
cells were isolated based on the characteristic peaks via RAGE from the same soil sam-
ples and then sequenced (Fig. 5B and Fig. S3C). One-cell genome assemblies of the
seven such cells (numbered CRG1, CRG2, CRG4, CRG5, CRG6, CRG7, and CRG11) pin-
point them as from Pantoea spp., Legionella spp., Massilia spp., Pseudomonas spp., and
Pedobacter spp., respectively (Table 2 and Table S1). GC% of the assembled contigs
(.200 bp; after decontamination; Materials and Methods) exhibits normal distribution
(Fig. S4B). In addition, the contigs of each cell show distinct clustering patterns charac-
teristic of the respective taxa of the cells, based on t-SNE projection via their 4-mer sig-
natures (Fig. 5C). These results support the integrity of the one-cell genome recon-
structions. Notably, of the seven cells, three were of low-abundance bacterial genera,
as suggested by relative abundance of 16S rRNA gene (,1%; Table 2). Moreover,
members of the five phyla were known to synthesize carotenoids (Table 2), which is
consistent with RAGE sorting criteria.

(i) Recovery of high coverage one-cell draft genomes. The overall success rate of
one-cell RAGE-Seq (i.e., number of successful experiments divided by total number of
attempts, with “success” defined as the ability to produce from the MDA product the
target 16S-rRNA via PCR and then verify by sequencing), at 63.64%, is much higher
than RACE-Seq (no success for one-cell reactions) (29) (Fig. 6A). To evaluate the com-
pleteness of reconstructed one-cell genomes, CheckM (38), which is based on lineage-

FIG 5 One-cell RAGE-Seq of carotenoid-producing microbial cells from soil. (A) Various carotenoid-producing microbes identified in the soil via
characteristic Raman peak of carotenoids and their corresponding SCRS. (B) SCRS of carotenoid-producing cells sorted via RAGE-Seq for single-cell
genomes, with sample names CRG1, CRG2, CRG4, CRG5, CRG6, CRG7, and CRG11, respectively. (C) The t-SNE projection of binned contigs from post-RAGE
single-cell sequencing reveals the taxonomical origin for the carotenoid-producing cells. Contigs are visualized based on 4-mer frequency features. Each
contig is colored based on its taxonomic annotation (here the family-level annotation was shown).
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specific marker genes, was employed, revealing estimated genome completeness of
12.23% to 58.66% (average of 29.65%, Table 2). Even though each of them is from just
one carotenoid-producing bacterial soil cell, genome completeness values of post-
RAGE-Seq cells are equivalent to those of RACE-Seq (each as a pool of 2 to 5 soil bacte-
rial carotenoid-producing bacterial cells; 17.03%; P=0.17; Wilcoxon test; Fig. 6B). In
particular, one-cell genome completeness via RAGE-Seq can reach 58.66% (for Pantoea
spp.), which is much higher than the best case for the optimized RACE-Seq, where
completeness from 2 to 5 carotenoid-producing soil cells was just 26.42% (one-cell
MDA reactions from RACE-Seq all failed for the soil samples) (29) (Table 2). As a result,
many more functional genes can be unraveled through RAGE-Seq than RACE-Seq, as
evidenced by average number of KO (KEGG Orthology, 625 versus 281; P=0.083; one-
sided t test; Fig. 6C) and unique KO (484 versus 239; P=0.087; one-sided t test; Fig. 6D).

(ii) Reconstructing carotenoid-biosynthetic pathways from RAGE-Seq-derived
one-cell assemblies. From contigs (.200 bp) of each of the seven RAGE-Seq-derived
one-cell assemblies (CRG1, CRG2, CRG4, CRG5, CRG6, CRG7, and CRG11), we recon-
structed the carotenoid-biosynthetic pathway by mapping the predicted gene sets to
the reference KEGG metabolic pathway (KO00906 and KO00900 [42]) based on
sequence homology. As a control, contigs of each of seven 2- to 5-cell-pooled samples
derived from an optimized RACE-Seq protocol (C2, C4, X18, X1, X17, X6, and R4) (29)
underwent an identical computational procedure for the pathway reconstruction.

The biosynthetic pathways for carotenoids are widely found in plants and bacteria
(43). Like all isoprenoids, carotenoids are synthesized from the production of isopen-
tenyl pyrophosphate (IPP), which primarily occurs through the methyl D-erythritol 4-
phosphate (MEP) module that begins with glyceraldehyde-3-phosphate (Fig. 7A). Then,
from four IPP molecules geranylgeranyl diphosphate (GGPP), which contains 20 carbon
atoms, is synthesized. By condensing two GGPPs, the first carotene precursor, phy-
toene, is produced by phytoene synthase. Phytoene is converted to lycopene in four
desaturation steps, and lycopene is then cyclized on both ends to form b-carotene
(Fig. 7B). Then, identical hydroxylation of both b-carotene rings yields zeaxanthin,
which can be epoxidated to form antheraxanthin or violaxanthin. Neoxanthin and
other pigments are derived from violaxanthin, zeaxanthin, or b-carotene from which,
e.g., astaxanthin is derived. In addition to the reconstructed MEP and b-carotene mod-
ules, our data reveal that the synthetic pathways of astaxanthin, a reddish keto-

FIG 6 Performance comparison between RAGE-Seq (one cell per reaction) and RACE-Seq (2 to 5 cells per reaction). For RAGE-Seq, each of seven
carotenoid-containing cells (CRG1, CRG2, CRG4, CRG5, CRG6, CRG7, and CRG11) was individually sorted from soil and separately sequenced (from precisely
one cell). For RACE-Seq, individual carotenoid-containing cells were ejected separately. However, one-cell sequencing of RACE-Seq suffered from a very low
success rate (and has not succeeded in past works); thus, the post-RACE cells were then merged into seven pools (C2, C4, X18, X1, X17, X6, and R4), each
containing 2 to 5 cells, prior to the MDA reaction. (A) Comparison of success rates in 16S rRNA gene PCR for the RAGE-sorted soil cells and RACE-sorted
soil cells (RACE for single cell, RACE* for 2- to 5-cell pools). (B) Completeness of the SAGs based on the evaluation using marker genes. (C and D)
Functional elements mined from the de novo assemblies: KEGG ontologies (C) and unique KOs (D).
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carotenoid classified as a xanthophyll found in various microbes (44), can also be recon-
structed (Fig. 7C).

Interestingly, in CRG1, which was assigned to Pantoea spp. (a member of the
Enterobacteriaceae family), the contigs from CRG1 were mapped to 0.19-Mb sequences
(33.16%) and 145 genes of a plasmid from Pantoea (accession number NZ_CP038854.1;
of 0.56Mb and harboring 516 genes in total) (Fig. 7D); this suggests the ability to (at
least partially) reconstruct mobile elements from one-cell RAGE-Seq assemblies. In
addition, many genes in the b-carotene and astaxanthin modules were found from the
sequences aligned to NZ_CP038854.1, suggesting their plasmid origin in CRG1.
Notably, Pantoea spp., due to their rich production of carotenoids, have served as a
model organism to provide pigment synthesis components (45–47): e.g., five biosyn-
thetic genes in the natural carotenoid cluster from the cultured Pantoea ananatis were
cloned and used to optimize zeaxanthin production in E. coli (48). Therefore, from just
one yet-to-be-cultured bacterial cell recognized as carotenoid producing (via its SCRS),
RAGE-Seq can recover the underlying biosynthetic genes, representing a new route to
mine functional genes and pathways in a function-based yet culture-free manner.

The one-cell RAGE-Seq assemblies support more complete and more in-depth dis-
covery of carotenoid-synthetic genes and pathways than 2- to 5-cell-pooled RACE-Seq
assemblies. (i) In the MEP module, all the enzymes were identified in the data set
merged from the seven RAGE-Seq-derived samples. Notably, each of CRG1 (Pantoea
spp.), CRG2 (Legionella spp.), and CRG4 (Legionella spp.), the ones with top estimated
genome completeness (58.66%, 34.99%, and 48.39%, respectively), was able to recon-
struct by itself the complete MEP module (Fig. 7A), with the exception of the ispA gene
in CRG4. In contrast, although each enzyme was found by at least one sample (except
dxr), none of the seven RACE-Seq samples alone can reconstruct the complete MEP
module (Fig. 7A).

(ii) In the b-carotene module, the first step unique to carotenoid synthesis is the
synthesis of geranylgeranyl diphosphate (GGPP) via the enzyme GGPP synthase. Then
it forms the phytoene, which is the precursor of all carotenoids. This reaction, catalyzed
by the phytoene synthase (crtB), is considered the main bottleneck in the carotenoid
pathway (49). However, only CRG2 from RAGE-Seq reports this enzyme (Fig. 7B). The
CRG1 sample from RAGE-Seq recovered crtI and lcyB enzymes (but no crtB enzyme).

FIG 7 Comparison of the reconstructed carotenoid synthesis pathway between RAGE-Seq (one cell per reaction) or RACE-Seq (2 to 5 cells per reaction)
from soil microbiome. (A to C) The modules of MEP (A), b-carotene (B), and astaxanthin (C) biosynthesis are shown. The seven RAGE-Seq-derived sequence
assemblies (1 cell per MDA reaction) are indicated as squares in the top row (left to right: CRG1, CRG2, CRG4, CRG5, CRG6, CRG7, and CRG11), while the
seven RACE-Seq-derived ones (2 to 5 cells per MDA reaction) are indicated as squares in the bottom row (left to right: C2, C4, X18, X1, X17, X6, and R4).
Red star, found in a RAGE-Seq assembly; green star, found in a RACE-Seq assembly. (D) In CRG1, all the recovered carotenoid-synthetic genes are mapped
to a plasmid from Pantoea vagans with accession no. NZ_CP038854.1, suggesting they are likely from a plasmid in the hosting cell. Those sequence blocks
in each contig that are aligned to NZ_CP038854.1 are shown as blue lines.
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Genes encoding all steps for carotenoid formation from GGPP were identified in collec-
tive one-cell assemblies from RAGE-Seq (Fig. 7B), and the most complete pathway
reconstructed was also in CRG1 (Fig. 7B). In contrast, RACE-Seq recovered crtB in only
three of the samples, and all the other enzymes in this module are missing in each
sample (Fig. 7B).

(iii) In the astaxanthin module, crtW encodes b-carotene ketolase, which is one of
the key enzymes in astaxanthin biosynthesis that catalyzes the formation of canthaxan-
thin from b-carotene via echinenone, while the crtZ gene encodes b-carotene hydrox-
ylase. For RAGE-Seq, CRG1 reports two astaxanthin biosynthetic genes of crtW and
crtZ, and both CRG2 and CRG4 report the crtZ gene (Fig. 7C). However, RACE-Seq
missed all the genes in this module (Fig. 7C).

Notably, cultured relatives of the individual cells characterized via RAGE-Seq were
potentially able to synthesize carotenoids (Table 2). Together with the SCRS-based cell
sorting criterion, these items of evidence support the ability of RAGE-Seq to link the ca-
rotenoid-synthetic phenotype with the underlying genomes at precisely one-cell reso-
lution from soil.

Links between the D2O intake and carotenoid-producing phenotypes among
soil cells. Interestingly, in the soil cell extracts, carotenoid-producing cells as recog-
nized by their pigment spectra can either have C-D peaks (metabolically active, Fig. 8A)
or not (metabolically inert, Fig. 8B). Thus, it is likely that many soil microbes that pro-
duce carotenoids might be metabolically dormant. This also suggests that cultivation-
based efforts that depend on metabolically active cells can miss many potential micro-
bial cell factories of carotenoids.

On the other hand, for those not showing carotenoid peaks in SCRS, both cells with
C-D peaks (Fig. 8C, suggesting active metabolism) and cells without C-D peaks (Fig. 8D,
inactive metabolism or dead cells) were found. Among the over 1,200 soil cells ana-
lyzed for SCRS in the replicated time course experiments, no correlation at the single-
cell level is apparent between carotenoid-synthetic phenotype and the phenotype of
general metabolic activity (i.e., D2O incorporation rate). This suggests the importance
of the single-cell phenome, i.e., simultaneous profiling of multiple phenotypes for a
given cell, in fully reconstructing “who is doing what” in soil.

DISCUSSION

For microbiomes that are functionally and genetically as diverse and heterogeneous
as soil, the phenotype-dedicated one-cell genome sequencing strategy of RAGE-Seq is
of particular importance to mechanistic dissection and functional-gene mining, where
both numerically abundant and rare taxa can play important roles in microbiome activ-
ity. In contrast, in metagenomic sequencing of soil, reconstructing the genomes of
functionally important members can be difficult, where sequence reads from numeri-
cally abundant species would dominate and, moreover, the difficulty in read binning
hinders reliable genome assembly. Moreover, the ability to link genome sequence to
an anabolic or catabolic activity (e.g., D2O assimilation or carotenoid synthesis) at pre-
cisely one-cell resolution is a pivotal advantage, since it provides one direct answer to
the ultimate question of “Who is doing what? Why?” for the microbiome.

Like RAGE-Seq, RACE-Seq (which ejects a cell from a solid surface) can also pheno-
type, sort, and sequence cells in an “index” manner (30), yet applications of RACE-Seq
to microbiomes from seawater (22, 23), soil (29), and humans (20) are limited by the
inability to produce high-quality genome sequence at the resolution of one cell (see
Table S2 in the supplemental material), likely due to the reduction or loss of cell vitality
when cells are air dried at a solid surface prior to Raman exposure, the direct exposure
of the cell to the Raman exciting laser, and the effect of the pulsed laser for cell ejec-
tion on the cell (29). Specifically, in RACE-Seq, for DH5a cells, the highest genome cov-
erage for five-cell pooled MDA reactions (after our optimization) was only 60%, and for
soil microbiome, the genome completeness was no more than 30% for 2- to 5-cell
pooled MDA reactions. As for precise one-cell reactions, the success rate of RACE-Seq
has been very low even for pure cultured E. coli (,10%), while for soil microbiome all
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one-cell reactions via RACE-Seq have failed (29). In contrast, our results on soil micro-
biota here showed that precisely one-cell RAGE-Seq of diverse soil microbes can pro-
duce genome coverage as high as ;93%. The ability of RAGE-Seq to support pheno-
typing-sorting-sequencing at the resolution of one bacterial cell is due to single-cell
indexing via precise single-cell capture and on-demand microdroplet encapsulation
and the full preservation of cell vitality via aqueous-phase Raman detection and sort-
ing, which ensures robust, high-quality sequencing and cultivation of the post-RAGE
cell by avoiding laser-induced damage (33). Therefore, RAGE-Seq is particularly suitable
for reliable metabolic phenotyping and sequencing of bacteria at precisely one-cell re-
solution from environmental samples (Table S2).

The RACS family includes additional tools that can potentially be coupled to down-
stream genome sequencing (14, 27). However, although the throughput of flow-mode
RACS such as RAMS (Raman-activated microfluidic sorting, ;60 cells/min for carote-
noid peaks in yeast [50]), RADS (Raman-activated droplet sorting, ;260 cells/min for
astaxanthin peaks in Haematococcus pluvialis [51]), or those based on optical tweezers
(3.3 to 3.8 cells/min for C-D peaks for mouse gut bacteria [21]) are higher than RAGE,
they have not yet demonstrated the ability to link the sequencing-based genotype to

FIG 8 Links between the D2O intake and carotenoid-producing phenotypes among individual soil cells. (A) A carotenoid-producing cell whose SCRS
harbors the C-D peak after the carotenoid peaks were quenched. (B) A carotenoid-producing cell whose SCRS does not harbor the C-D peak after the
carotenoid peaks were quenched. (C) A cell whose SCRS harbors the C-D peak but does not show carotenoid peaks (i.e., not producing carotenoids). (D) A
cell whose SCRS shows neither the C-D peak nor the carotenoid peaks.
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the SCRS-derived phenotype at the one-cell level, which can be a challenge as the
“index” of sorted cells is usually lost after the high-throughput flow sorting.

On the other hand, the current implementation of RAGE-Seq has several limitations.
First, the overall success rate of one-cell reactions, ;36% for the mock microbiota (45
MDA-positive cells in 126 sorted cells) and ;41% for the soil microbiota (14 MDA-posi-
tive cells in 34 sorted cells) here, should be improved. In fact, all the published RACS-
Seq studies so far have suffered from this problem (29, 30, 33). This is likely due to the
radiation of Raman laser during SCRS acquisition (29). In one-cell MDA, which is
another challenge (although not a problem of RACS itself), bias against high-GC-con-
tent DNA (52), hindering of reaction success by low-abundance templates (53), and
negative effect due to highly fragmented contaminant DNA (54) have been reported.
Thus, the overall success rate of RAGE-Seq can perhaps be elevated by reducing inci-
dent laser power and measurement time (29, 55) or by reducing the volume of MDA
reactions (56, 57). Second, among the WGS reads from one-cell RAGE-Seq reactions a
certain proportion of contaminating reads was present. This can be due to the environ-
mental DNA fragments (either sticking to the cell surface or floating in the surrounding
liquid setting) that were sorted together with target cell into the picoliter-level micro-
droplet by RAGE. Bias of MDA can magnify the proportion of such contaminating DNA,
which may exacerbate the situation. Therefore, further improvement of RAGE-Seq ex-
perimental workflow will be important, such as optimizing cell incubation and washing
process prior to SCRS acquisition and sorting (to reduce contaminating DNA fragments
which can readily attach to cell surface) (58) and further decrease of microdroplet vol-
ume (which reduces the amount of floating-environment-DNA templates in the MDA
reaction). Third, the relatively low throughput of RAGE-Seq in sorting (at 2 cells/min)
and MDA (one-cell-per-tube) at present has hindered time- and cost-efficient analysis
of hundreds or thousands of cells from a genetically and functionally diverse micro-
biome such as soil. This shortcoming, which led to the low microbiome sampling
depth here, has limited the scope and nature of ecological insights that can be derived
(i.e., findings from the sampling by RAGE-Seq of only a very small portion of cells in
consortium should be interpreted with caution). The sorting throughput can be
improved by adopting techniques such as surface-enhanced Raman scattering (SERS)
or stimulated Raman scattering (SRS) which offer much higher Raman signals and thus
reduce SCRS acquisition time, so that a much higher number of single cells can be effi-
ciently profiled for their metabolic phenotypes (and genomes once sorted) from each
microbiome. Flow-mode RACS methods can also potentially tackle this challenge (21,
59, 60) (Table S2), although solutions that couple the sequential SCRS-based sorting to
paralleled, indexed preparation of microbial one-cell sequencing libraries remain to be
developed. Finally, interpretation of findings from microbiome RAGE-Seq is also limited
by, and dependent on, sample pretreatment. For example, the extraction of cells from
their native microenvironment in soil prior to D2O feeding and Raman microspectroscopy
can alter both the in situ metabolic activity and relative abundance of soil cells. Therefore,
in addition to improving the throughput of RAGE-Seq, future efforts should include devel-
opment of microbiome-feeding and cell extraction methods that maximally preserve the
in situ population structure and metabolic activity of soil inhabitants.

Despite these challenges, the soil RAGE-Seq workflow introduced here is widely ap-
plicable, as the scope of metabolic phenotypes that can be derived from nonresonance
(e.g., the C-D band) or resonance peaks (e.g., carotenoid-related bands) in SCRS is rap-
idly expanding (14). For example, SCRS can detect not just D2O intake (and phenotypes
that are correlated with D2O intake such as antibiotic resistance) (17) but assimilatory
activity of carbon or nitrogen sources labeled by stable isotopes of C or N (19, 61).
Similarly, the ability to mine both the cellular carotenoids (in both abundance and
structure) and the underlying genotypes encoding biosynthetic pathways at the indi-
vidual cell level should allow mining for not just carotenoids but lipids, polysaccha-
rides, protein, and even antibiotics (24, 25, 62, 63). Therefore, it is possible that RAGE-
Seq would become a universal and highly versatile tool for precisely probing “who is
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doing what” and for mining cells or metabolites of interest, from soil and other com-
plex natural ecosystems.

MATERIALS ANDMETHODS
Bacterial species, media, and growth conditions. The series of mock microbiota all include the

three bacteria E. coli K-12 DH5a, H. pylori ATCC 26695, and S. elongatus PCC7942, and the one fungus S.
cerevisiae BY4742. Each of the strains was grown in pure culture. H. pylori ATCC 26695 (Qingdao
Municipal Hospital, China) was cultured in brain heart infusion (BHI) agar (Oxoid, Basingstoke, England)
supplemented with 7% defibrinated horse blood and incubated under microaerophilic conditions (85%
N2, 10% CO2, 5% O2) at 37°C. H. pylori ATCC 26695 was obtained by centrifugation at 8,000� g for 2min
and washed twice with BHI, and resuspended cells were diluted to an OD600 of ;0.5 and inoculated at a
ratio of 1:10 into 10ml of BHI broth with 10% fetal bovine serum (FBS). E. coli K-12 DH5a was cultured in
Luria-Bertani (LB) medium (tryptone, yeast extract, NaCl, pH 7.0) and incubated at 37°C. E. coli K-12
DH5a was diluted to an OD600 of ;0.5 and inoculated at a ratio of 1:10 into 4ml of LB medium. S. cerevi-
siae BY4742 was cultured in YPD medium (yeast extract, peptone, glucose, pH 6.5 to 6.8) and incubated
at 30°C. S. cerevisiae BY4742 was diluted to an OD600 of;0.5 and inoculated at a ratio of 1:10 into 4ml of
YPD medium. S. elongatus PCC7942 was cultured in BG11 medium and incubated under lighting at 28°C.
In these dilution experiments, we assumed a constant relationship of OD and cell concentration for all
the cell types; while this might not be correct for each of them, this assumption would not change our
experimental findings and interpretations. For deuterium isotope labeling, 50% (vol/vol) D2O (99.9 atom
% D; Sigma-Aldrich, Canada) was used in all the above media. To prepare the media for deuterium iso-
tope labeling, 2� medium was prepared with water and autoclaved and then diluted to 1� medium
with filtered pure D2O, so that the eventual level of D2O was 50%. Each of the microorganisms was incu-
bated in the respective medium containing 50% D2O until reaching the logarithmic phase, washed using
distilled water, and mixed to form the synthetic consortia with defined structure. The synthetic consortia
were then subjected to single-cell Raman spectroscopy and SCRS-based sorting, respectively.

Benchmarking performance of the one-cell RAGE-Seq method via mock microbiota. To semi-
quantitatively assess performance of the one-cell RAGE-Seq method, we performed replicated RAGE-Seq
experiments on the synthetic four-species mock microbiota. Three different sorting criteria were respectively
employed: criteria A (via cell morphology), B (D2O-peak-containing cells), and C (carotenoid-peak-containing
cells), which sorted and sequenced 20 cells, 11 cells, and 11 cells, respectively, per experiment. Within each
of the sorting criteria, three biological replicates were performed. Thus, on the synthetic four-species mock
microbiota, nine RAGE-Seq experiments in three biological replicates were performed, which sorted and
sequenced 126 individual cells in total. Method performance was then assessed via mapping rate (i.e., the
number of mapped reads/total sequencing reads), success rate (i.e., the number of 16S-sequencing-validated
SAGs/total sorted cells), and genome completeness (i.e., the percentage of aligned bases from assembled
contigs in the reference genome; a base in the reference genome is aligned if there is at least one contig
with at least one alignment to this base) of the one-cell sorting and sequencing results.

Extracting bacteria from soil and deuterium labeling of microbial cells. To extract the cells from
soil, the soil slurries, generated by adding 1 g soil into 5ml 1� PBS buffer supplemented with 25ml
Tween 20, were vortexed for 30min for freeing the particle-associated cells. In a new 15-ml centrifuge
tube, 5ml Nycodenz iohexol (1.42 g/ml; Aladdin, China) was added, and then the aforementioned super-
natant from soil slurries was slowly added to the top of Nycodenz. The tubes were centrifuged at
14,000� g for 90min at 4°C with slow acceleration and deceleration. At the middle layer, which is
between the clear PBS layer and the debris layer, a faint whitish band containing bacterial cells would
emerge (19, 64). This band was recovered and transferred into a new 1.5-ml Eppendorf tube with a pip-
ette. Then, 1ml double-distilled water (ddH2O) was added to resuspend the cells, and the cells were pel-
leted by centrifugation at 10,000� g for 10min at 4°C, 3 times. Finally, the cell pellets were resuspended
in 0.2ml ddH2O, which represented the “soil cell extracts.”

These soil cell extracts were then used for mining either carotenoid-producing cells or D2O-intake
cells (i.e., metabolically active cells). For SCRS acquisition or RAGE-Seq of carotenoid-producing cells, the
soil cell extracts were directly used. As for D2O-probed SCRS acquisition and RAGE-Seq experiments for
metabolically active cells, the soil cell extracts were then incubated in PBS with a final D2O level of 50%
at room temperature for a certain duration. To determine the sampling time point for RAGE-Seq of met-
abolically active cells, D2O-probed SCRS acquisition experiments were performed that temporally moni-
tored D2O intake by the soil cell extracts, where aliquots were taken at 6 h, 12 h, 18 h, and 24 h, respec-
tively, for Raman microspectroscopy. Based on the results, we chose 24 h for the RAGE-Seq experiments
that target soil cells that actively assimilate D2O.

Acquisition of single-cell Raman spectra. The RAGE-Seq procedure was performed in a RACS-Seq
instrument (Qingdao Single-cell Biotechnology, Qingdao, Shandong, China). Before the Raman test, the
bacterial samples were washed to remove residual medium and then resuspended by adding deionized
water to dilute them for performing the following Raman detection and sorting. The prepared bacterial
solution (;1ml) was hung up on the sample holder and then loaded into the RAGE chip. Raman spectra
were acquired with a modified confocal Raman microscope. A 50� dry objective (numerical aperture
[NA] = 0.65; Leica, Germany) was used for sample signal acquisition and optical tweezers, while a 10�
dry objective was used for observation of droplet generation and transportation. All Raman spectra
were preprocessed by background noise subtraction, baseline correction, and normalization to C-H
band via LabSpec5 software. Cells with a C-D band in SCRS were isolated using RAGE-chip as described
above. The selection of post-SCRS-acquisition cells to be sorted was based on a computer algorithm.
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Specifically, the sorting was based on C-D/(C-D 1 C-H); this ratio was calculated via dividing C-D peak
area from 2,040 to 2,300 cm21 by the sum of C-D area and C-H peak area from 2,800 to 3,100 cm21. The
whole pipeline used here has been made available on GitHub (https://github.com/gongyh/RamanD2O).
The tube which contained the target cells was then moved into a laminar hood, and buffer (Qiagen,
Germantown, MD, USA) was added into the tube for cell lysis.

Chip fabrication for Raman-activated gravity-driven cell encapsulation (RAGE). The RAGE chip
consists of two slides bound together with a semiopen design, as shown in Fig. S1 in the supplemental
material, one sample inlet, and one open well for oil storage and droplet generation. For the top entered
laser (laser entering from top slide), the microchannel was etched on the bottom layer slide. The channel
was sealed by a smooth slide with two holes, one hole (;0.5mm in diameter) for the inlet and one
(5mm in diameter) for the open well. With this design, the focus point and trapping force of lasers were
not affected after penetrating the top layer of the chip. The scale of the thin channel between detection
window and open well was adjusted for different sizes of cells. We used the 30-mm-width and 10-mm-
depth microchannel for the sorting of microbial cells in soil.

Isolation of target cells from the soil sample by RAGE. The cells in suspension were injected into
the chip with the height-adjustable sample holder. The well was filled with mine oil (2% wt EM90) when
the cell phase reached the open well. The height of the sample holder was adjusted to obtain a balance
between the water phase and oil phase. The cells located statically in the detection window were
trapped and analyzed with the 532-nm laser to identify target cells. The cell sorting can also be based
on visible phenotypes such as morphology or autofluorescence without the 532-nm laser. Then, a sec-
ond laser (1064 nm) was employed to trap and move the target cell to the tip of the aqueous phase. The
sample holder was elevated to generate only one droplet that encapsulates the cell and then lowered
to the original height. The single target cell was thus isolated and encapsulated in the droplet. As the
density of the oil used here is lower than water, the droplet stays statically at the bottom of the open
well. At the end, the droplet with the target cell can be easily taken out to a tube for downstream analy-
sis, with a pipette tip.

Notably, the bacterial cell adsorption onto the channel wall can be neglected here in our quartz
chip. Although the in-chip environment is a static mode, the majority of cells still show irregular move-
ments during sorting due to pedesis or flagellum effect. In addition, new cells can be injected into the
chip continuously by elevating the sample holder. The volume on the sample holder which is connected
into the sorting chip is usually 1 to 2ml, yet the volume of the chip is only,5ml; thus, all the cells in the
chip can be replaced hundreds of times when necessary, without the need for new loading. In our cur-
rent setting, the sorting throughput can be maintained for at least 3 h, and cell settling is not our major
concern.

Multiple displacement amplification. The REPLI-g single-cell kit (Qiagen, Hilden, Germany) was
used for the DNA amplification. Cell lysis was carried out at 65°C for 15min with 2ml lysis buffer for each
sample, followed by addition of 1ml stop solution to neutralize the lysis buffer. REPLI-g single-cell (sc)
reaction buffer and REPLI-g sc DNA polymerase were added, and the mixture was incubated at 30°C for
8 h with a 70°C hot-lid temperature for MDA reactions. Blank control (without any cells) was also
included to detect and quantify potential contamination. After that, the MDA products were processed
for 16S rRNA gene (with primers 27F [forward, 59-AGAGTTTGATCCTGGCTCAG-39] and 1492R [reverse, 59-
TACGGYTACCTTGTTACGACTT-39]) and/or 18S rRNA gene (with primers NL1 [forward, 59-GCATATCAAT
AAGCGGAGGAAAAG-39] and NL4 [forward, 59-GGTCCGTGTTTCAAGACGG-39]) PCR analysis and then
high-throughput sequencing.

Library construction and next-generation sequencing (NGS). (i) 16S rRNA gene sequencing.
Two grams of soil was frozen at 280°C prior to DNA extraction with three replicates. Total genome DNA
from the soil sample was extracted using the Magen Hipure soil DNA kit (lot no. HE280200) according to the
manufacturer’s protocols. DNA was quantified using the Qubit 3.0 fluorometer (Invitrogen, Carlsbad, CA,
USA). For each sample, 20 to 30ng DNA was used to generate amplicons using a MetaVx library preparation
kit (Genewiz, South Plainfield, NJ, USA). V3 and V4 hypervariable regions of prokaryotic 16S rRNA genes were
selected for generating amplicons and subsequent taxonomy analysis. The V3 and V4 regions were amplified
using forward primers containing the sequence CCTACGGRRBGCASCAGKVRVGAAT and reverse primers con-
taining the sequence GGACTACNVGGGTWTCTAATCC. At the same time, indexed adapters were added to
the ends of the 16S rRNA gene amplicons to generate indexed libraries ready for downstream NGS on
Illumina MiSeq. PCRs were performed in a triplicate 25-ml mixture containing 2.5ml of TransStart buffer, 2ml
of deoxynucleoside triphosphates (dNTPs), 1ml of each primer, and 20ng of template DNA. DNA library con-
centrations were validated by a Qubit 3.0 fluorometer. Sequencing was performed using a PE250 paired end
on an Illumina MiSeq instrument (Illumina, San Diego, CA, USA) by Genewiz.

(ii) One-cell genome sequencing. The target MDA products were treated with S1 nuclease (Thermo
Fisher Scientific, Waltham, MA, USA) to degrade the single-stranded nucleic acids and then purified by
Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, USA). Next-generation sequencing library prepara-
tions were constructed following the manufacturer’s protocol (NEBNext Ultra DNA library prep kit for Illumina).
For each sample, 1mg genomic DNA was randomly fragmented to,500bp by sonication (Covaris S220). The
fragments were treated with End Prep enzyme mix for end repairing, 59 phosphorylation, and dA-tailing in one
reaction, followed by a T-A ligation to add adapters to both ends. Size selection of adapter-ligated DNA was
then performed using AxyPrep Mag PCR cleanup (Axygen), and fragments of ;410bp (with the approximate
insert size of 350bp) were recovered. Each sample was then amplified by PCR for 8 cycles using P5 and P7 pri-
mers, with both primers carrying sequences which can anneal with a flow cell to perform bridge PCR and the
P7 primer carrying a six-base index allowing for multiplexing. The PCR products were cleaned up using
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AxyPrep Mag PCR cleanup (Axygen), validated using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA, USA), and quantified by a Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA, USA).

Then, libraries with different indexes were multiplexed and loaded on an Illumina HiSeq instrument
(Illumina, San Diego, CA, USA). Sequencing was carried out using a 2� 150 paired-end (PE) configura-
tion; image analysis and base calling were conducted by the HiSeq control software (HCS)1
OLB1GAPipeline-1.6 (Illumina). Samples were quantified using a Qubit 2.0 fluorometer (Invitrogen,
Carlsbad, CA, USA).

Sequencing data analysis. (i) 16S rRNA gene sequencing. The software package QIIME (version
1.9.1) (65) was used for 16S rRNA gene data analysis. The forward and reverse read pairs with minimum
overlapping bases of 20 bp were joined and assigned to samples based on barcode and truncated by
cutting off the barcode, primer sequence, and low-quality bases (59 end; quality score ,20). Quality fil-
tering on joined sequences was performed, and sequences which did not fulfill the following criteria
were discarded: sequence length.200bp, no ambiguous bases. Then, the chimeric sequences were
removed using the UCHIME algorithm (66). Putative contaminants were removed from data sets, as
were singletons. Subsequently, the remaining high-quality reads were grouped into operational taxo-
nomic units (OTUs) using the Vsearch algorithm (67) and aligned using default parameters against the
Silva_132 database (68). Representative sequences for the shared OTUs, as defined by 97% similarity,
were obtained. Relative abundances of the bacterial taxa at the phylum, class, order, family, genus, and
species levels were calculated and compared, respectively.

(ii) One-cell genome analysis. A dedicated computational pipeline for the single-microbial-cell ge-
nome was developed (https://github.com/gongyh/nf-core-scgs) to efficiently analyze single-cell amplified
bacterial genome (SAG) data sets by integrating various tools with Nextflow (69). Briefly, reads that passed
Illumina’s chastity filter were first quality checked using FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and then quality trimmed using Trim Galore (https://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/) in paired end mode for each sample. To detect contaminated DNA fragments, clean
reads were phylogenetically classified using Kraken (70). Clean reads were then assembled into contigs using
SPAdes (71) in single-cell mode. Taxonomic composition of assembled contigs (longer than 200bp) was
visualized using BlobTools (72). Assembled genomes were annotated using Prokka (73), KofamKOALA (74),
and eggNOG-mapper (75). Considering the possibility of DNA contamination for environmental samples,
assembled contigs were further split into bins by taxonomic annotations (in the genus level) for each SAG,
followed by estimation of genome completeness using CheckM (38). Since a fraction of contigs (espe-
cially fragments from plasmids) cannot be assigned to proper taxa, the whole SAG assembly was used
to recover metabolic pathways. For the SAG of CRG1, Quast v5.0.2 (76) was used to align contigs to
the reference plasmid (with parameters “-m 200 –min-identity 80”), and the alignments were visual-
ized by pyGenomeTracks (77).

To trace the originated species of the SAGs derived from the mock community, reads were also
screened using FastQ Screen (78) against a customized database which includes the genomic sequences
of E. coli K-12 (NC_000913.3), H. pylori ATCC 26695 (NC_000915.1), S. elongatus PCC7942 (NC_007604.1
and NC_007595.1), S. cerevisiae BY4742 (GCF_000146045.2), PhiX (NC_001422.1), Lambda, vector (the
UniVec database), and adapters.

Data availability. The sequence data reported in this study have been deposited to the NCBI SRA
database (PRJNA646329, PRJNA640996, PRJNA640983, and PRJNA669567).
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