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Abstract: One of the most common lipids in the human body is palmitic acid (PA), a saturated
fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides
being a precursor of signaling molecules and protein tilting across the membrane. Although PA
plays physiological functions in the brain, its excessive accumulation leads to detrimental effects
on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors
(TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with
the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen
species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some
of the cellular changes induced by PA lead to an augmented susceptibility to the development of
Alzheimer’s and Parkinson´s diseases. Considering the complexity of the response to PA and the
intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular
effects of PA on different brain cells and their possible relationships with neurodegenerative diseases
(NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as
potential therapeutic approaches against NDs, as these fatty acids can counteract PA’s negative effects
on cells.

Keywords: palmitic acid; brain cells; neurodegenerative diseases; inflammation; fatty acids; neuro-
protection

1. Introduction

Lipids are key components of the structure and function of the brain [1–3]. They can
be used as an energy source and participate in different physiological processes, such as
cell transport, protein stabilization, cell signaling and transduction, and synaptic trans-
mission, among others [4,5]. Lipids, such as phosphatidylinositol, can act as signaling
molecules [6,7] modulating inflammation and other processes, such as cell survival and
senescence [2,8]. In the adult brain, most of the lipids are found in the myelin sheaths
formed by oligodendrocytes. The myelin sheaths have a higher ratio of lipids (70–80% of
its composition) compared with the other membranes in the brain, which are composed of
nearly 40% lipids. In all these membranes, the most abundant lipids are glycosphingolipids
(GSLs), cholesterol, and phospholipids [9,10]. In the case of the GSLs, they have two roles,
first as membrane receptors for an extracellular GSL binding ligand, functioning as antigens
or mediators of cell adhesion, and those in which membrane GSLs interact laterally with
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other components of the cell membrane, particularly growth factor receptors, to modify
signal transduction [11].

On the other hand, cholesterol is another lipid of importance in the brain (Table 1)
because it is the precursor of steroid hormones, such as testosterone and estrogen, which
exert protective effects and modulate several functions in the brain [12]. Additionally, it has
been shown that cholesterol interacts with phospholipids to influence their behavior [13].
Phospholipids can act as signaling molecules and have been implicated in membrane
fluidity along with fatty acids (FAs) (Table 1) [2]. Importantly, FAs are the building blocks
of phospholipids and are classified as unsaturated (monounsaturated (MUFAs), polyun-
saturated (PUFAs), and saturated fatty acids (SAFAs) [14]. PA is the most common and
predominant SAFA found in the human body and serves as energy storage. PA is also
involved in the regulation of membrane fluidity and the location of transmembrane pro-
teins through the process of palmitoylation [15]. Some studies using different rat tissues
reported that incubation with PA induced intracellular inflammatory signaling, mitochon-
drial dysfunction, and insulin resistance, showing the importance of its balance in human
cells [15,16].

Linked to this, it is known that a higher intake of PA for long periods, as observed in
obesity, generates metabolic impairment and a set of pathological mechanisms known as
lipotoxicity [17–19] that causes an increase in the inflammatory response of different cells.
In the brain, lipotoxicity causes microglial and astrocytic activation, ceramide formation,
oxidative stress (OS), and ER stress, [20–22]. There is evidence showing these hallmarks are
related to neurodegenerative pathophysiology, for instance, in Alzheimer’s disease (AD)
and mild cognitive impairment (MCI) [23]. Interestingly, several studies analyzing lipids in
the frontal and parietal cortex tissues of animals and humans suggest that an increase in
PA content could have a role in the neurodegenerative disease [24,25], cognitive decline,
and brain atrophy caused by excessive inflammation [26].

Previous works indicated PA induces a pro-inflammatory microenvironment, which
is critical to damaging blood-brain barrier (BBB) integrity [27,28]. In fact, after BBB break-
down, PA easily crosses this physical barrier, resulting in an increase in its concentration
in the brain, promoting harmful and deleterious effects to neurons and glial cells [27–30].
However, the whole process that triggers PA-induced damage in the brain, the mecha-
nisms underlying this phenomenon, and its relationship with ND progression are not fully
understood. In vitro studies suggested that PA induces tau hyperphosphorylation and
β-amyloid protein (Aβ) formation, as well as the promotion of mitogen-activated protein
kinases (MAPK) and the nuclear translocation of NF-κB in response to oxidative stress in
cortical neurons and astrocytes [31–33]. PA also increases α-synuclein (ASN) accumulation,
which is a signal related to Parkinson’s disease (PD) [34]. Despite these data suggesting
that there is a relation between PA and ND pathogenesis, the whole explanation of this
association is unknown.

Given the lack of effective treatments for NDs and the deleterious effects of PA,
there is a growing need for applied research focused on new alternatives to treat these
conditions [35–37]. Some FAs, such as the unsaturated FAs, and the small chain SAFAs,
have been shown to ameliorate the damage caused by PA accumulation in the brain [38–40].
For instance, unsaturated FAs reduced inflammatory responses, ROS production, palmitate-
induced cytotoxicity, and cell death in different models of brain damage induced by
PA [38,40–43] (Figure 1). Other kinds of FAs that have shown beneficial and protective
effects are the short and medium-chain SAFAs, including sodium butyrate (NaB), which
induces ketogenesis [44] and ameliorates damage in models of AD and Huntington’s
disease [45,46]. For this reason, our main aim in this review is to highlight the reported PA
mechanisms that trigger detrimental effects in the brain, contrast the evidence found on its
different types of cells, discuss the existing evidence of the relationship with NDs, establish
the essential role of PA in these diseases, and to offer some insights in possible therapeutic
alternatives using other kinds of FAs.
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Figure 1. Graphical abstract. This figure shows some of the most reported mechanisms of damage in
the different cells of the brain and how it affects neurons, revealing that neurons are prone to cell
death due to an increase in the concentration of PA, followed by microglia, and the most resistant cells
to PA are the astrocytes, which require higher concentrations of PA to induce cell death. Additionally,
this figure shows that, at concentrations where neurons are damaged, astrocytes and microglia are
turning more reactive, favoring the production of ROS, ceramides, and pro-inflammatory cytokines,
among other pathways that will be explained throughout the manuscript, that will lead to positive
feedback, accelerating the damage to the neurons, and promote the formation of the hallmarks of
NDs in neurons. The figure also shows the modulation of these deleterious effects using other fatty
acids, such as PUFAs, that showed promissory responses for attenuating the damage caused by PA,
reducing the inflammatory response, ROS production, cell death, and the induction of pro-apoptotic
pathways. Created with BioRender.com.

BioRender.com


Int. J. Mol. Sci. 2022, 23, 2577 4 of 32

Table 1. The role of the different lipids in the brain. A summary list of five of the most common lipid
types in biological organisms, triacylglycerols (TAGs), sterol lipids, sphingolipids, phospholipids,
and fatty acids, and their functions in the brain.

Lipid Function in the Brain Reference

TAGs Not present in the brain Hamilton et al., 2007;
Tracey et al., 2018 [1,2]

Sterol lipids

Precursor of sex hormones with protective effects in the CNS,
such as the estrogens and testosterone Liu et al., 2010 [12]

Gives stability and rigidity to the cell membrane and can give
thickness in certain areas, helping the formation of lipid rafts Song et al., 2014 [13]

Sphingolipids

Membrane receptor for an extracellular GSL binding ligand, usually
functioning as antigens or mediators of cell adhesion, and membrane
GSLs interact laterally with other components of the cell membrane,

particularly growth factor receptors

Lingwood et al., 2011;
tracey et al., 2018 [2,11]

Phospholipids and Fatty acids

Determine the fluidity of the membrane and have two tails of FAs Song et al., 2014 [13]

Determine the ubication of proteins across the membrane,
and participate in the formation of lipid rafts Carta et al., 2017 [15]

FAs can be used as an energy source Panov et al., 2014 [4]

Can act as signaling molecules or as the precursors of signaling
molecules, such as phospoinisitol-3 and ceramide

Carta et al., 2017;
Kim et al., 2014 [15,27]

2. Fatty Acid Roles in Non-Pathological Conditions

This FAs are of vital importance for the brain, since these are part of the cell membrane
composition [9,10]. Moreover, these molecules can be used to supply the metabolic de-
mands of the brain [4,47], where about 20% of the total energy required by the brain is met
through FA beta-oxidation. It has been suggested that this process is carried out mainly by
astrocytes [4,47], although with lower efficiency compared to other tissues and with high
energy turnover to avoid excessive OS [44,48]. It has been shown that FAs may regulate
neurogenesis, brain vesicular activity, mood, and cognition [38,41]. In this sense, FAs in the
brain regulate phosphoinositide 3-kinases (PI3K) [41], peroxisome proliferator-activated
receptor (PPAR) [49], G-protein coupled receptors (GPR) [50], protein kinase C (PKC), and
NF-κB [51], and all of these are implicated in cell development, growth, energy metabolism,
regulation of inflammatory responses and cell survival [52–54].

Another important function of FAs is to influence the rigidity of the membrane,
making it more flexible when the concentration of unsaturated FAs is increased [55]. Most
of the unsaturated FAs in the brain are PUFAs (25–30% of the total FAs in the brain) [2,56],
whose presence in all membranes provides more flexibility and stability by increasing
the degree of rotation around single bonds [38]. In the brain, they may be regulating
the function and structure of endothelial cells, glial cells, and neurons [41]. The most
abundant PUFAs in the brain are arachidonic acid (ARA) (ω-6) (8–10% of total FAs), which
is a potent signaling molecule in the brain regulating pro-inflammatory responses, and
docosahexaenoic acid (DHA) (ω-3) (12–14% of total FAs) [38,41,57]. Importantly, DHA has
a role in synaptic integrity and the assembly of the soluble NSF attachment protein receptor
(SNARE) complex [58]. It has been shown that DHA attenuates the altered expression
of postsynaptic dendritic proteins, including drebrin, postsynaptic density- 95 (PSD95),
N-methyl-D-aspartate (NMDA) receptors, and Ca2+–calmodulin-dependent protein kinase
2 (CAMK2) in a mouse model of AD [41,59,60].

Finally, it has been shown that SAFAs contribute to the stabilization of membranes
and proteins across the membrane. They could serve as an energy source in the brain and
can be the precursors of other signaling molecules [2] (Table 1). It has been shown that PA
has a key role in protein distribution across the membrane, which is mediated by a process
called palmitoylation [15]. This process will be addressed in the next section.
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Palmitic Acid: Physiological Role in the Brain

PA defines the location of several proteins through the membrane by a process called
protein palmitoylation and palmitoylethanolamide (PEA) biosynthesis [15,61,62]. PEA is
an endogenous amide that is used as a lipid mediator that exhibits neuroprotective, anti-
neuroinflammatory, immunoregulatory, and analgesic activities [15,63,64]. On the other
hand, S-palmitoylation is a covalent post-translational modification of proteins, which
consists of the reversible addition of PA to specific cysteines via a thioester bond. Its
reversibility makes it a form of lipidation, allowing its dynamic regulation [65]. Moreover,
S-palmitoylation also allows the fine-tuning of protein functions, such as phosphorylation
or ubiquitination [66]. Several mammalian proteins are targets of palmitoylation, many
of which are associated with cancer, diabetes, schizophrenia, and neurodegeneration,
including AD and Huntington’s disease, among other NDs [67–69]. Experimental evidence
suggests that palmitoylation acts on the neural cell adhesion molecule (N-CAM) [70,71],
CD36 [72], superoxide dismutase (SOD1) [73], leucine-rich glioma-inactivated 1 (LGI1),
Niemann–Pick C1 protein (NPC1) that is implicated in AD, the NMDA receptor in the
frontal cortex [69,74–78] and chaperones as the presynaptic co-chaperone Cysteine string
protein-α (CSPα) [15,79,80].

In addition, palmitoylation has important regulating roles in the central nervous sys-
tem (CNS), including neurotransmitter release through the 25 kDa synaptosomal-associated
protein (SNAP-25a/b). SNAP-25 a/b are SNARE proteins that are highly expressed in
the brain and are palmitoylated membrane proteins essential for the exocytosis of neu-
rotransmitters from synaptic terminals [81,82]. Palmitoylation and de-palmitoylation on
PSD95,which is the major density protein in the postsynaptic region at excitatory synapses,
regulates the number of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
receptors (AMPAR) [83,84]. Therefore, further analysis is necessary for a better understand-
ing of the functions of palmitoylation in the CNS [21].

It has been demonstrated that membrane protein palmitoylation promotes their asso-
ciation with cholesterol and sphingolipid-rich membrane microdomains or lipid rafts [85].
The lipid rafts seem to act as platforms by bringing together various signaling components
and facilitating their interaction, such as proteins involved in signal transduction. Palmi-
toylation can increase the affinity of proteins for these microdomains [15]. Nevertheless, it
is not well understood how palmitoylation influences the raft association of proteins. A
possible explanation may be the affinity of PA for these lipid domains causing its association
and generating the lipid rafts [86].

3. Fatty Acid Accumulation, Lipotoxicity, and Brain Dysfunction

Although the homeostatic balance of the lipids in the brain is highly regulated, a
long-term high-fat diet (HFD) with a high percent of SAFAs can alter the lipidic profile [87].
The constant exposure of the brain to large amounts of SAFAs, combined with a higher
ratio of intake over their oxidation, can cause cellular damage and influence a variety of
detrimental metabolic pathways that include inflammation and cell death. This condition
is defined as lipotoxicity [17,19,31,88,89] (Figure 2). Lipotoxicity is an allostatic state caused
by the constant accumulation of FAs in adipose and non-adipose tissues due to the caloric
surplus [19], causing dysfunction and even affecting the survival of cells, tissues, and
organs, such as the brain [17,19,31,88,89].
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Figure 2. Common mechanisms induced by PA in the brain. Graphical summary of the common
pathways in the different brain cells that promote cell damage after the exposition to toxic concen-
trations of PA explained in Section 4. This figure collects and highlights the common pathways that
are reported the most to produce damage in brain cells, showing that the formation of ceramides
is also linked to ER stress and the reduction of autophagy that will be derived on the activation of
apoptotic pathways and is potentiated by ER stress. Furthermore, autophagy impairment increases
ROS production and ROS increase, and the activation of pro-inflammatory pathways are linked.
These are the most frequently reported mechanisms that will induce a deleterious effect in the brain.
Created with BioRender.com.

The effects of SAFAs and their accumulation in the brain have been largely reported.
Obesity animal models have shown a disruption of BBB integrity, allowing more SAFAs
to pass into the brain [28]. Karmi et al., (2010) showed, using an intravenous injection of
radiolabeled PA in humans, that this FA can cross the BBB and reach the brain [90]. Within
this organ, PA accumulation in astrocytes induces the release of the pro-inflammatory
molecules tumor necrotic factor-alpha (TNF-α) and interleukin (IL)-6 [91]. It is speculated
that these two cytokines may be two of the main factors that cause the BBB disruption
and increased infiltration of immune cells into the CNS [92,93]. For example, monocytes
may infiltrate the mouse brain after 15 weeks of HFD, where a correlation between the
number of monocyte-derived macrophages in the brain and body weight is observed [94].
Moreover, in a study, they examine the BBB disruption in the offspring of animals fed
with HFD rich in PA, resulting in the offspring of HFD-fed mice showing an increase in
the BBB disruption, probably due to a reduction in the cell projections of a special type of
ependymal cells called tanycytes [95]. The tanycytic cell bodies are in the third ventricle
with their projections reaching the brain parenchyma, contacting the arcuate nucleus (ARC)
neurons and endothelial cells in this area [27], and they form a passive physical barrier that
prevents molecules in the median eminence from diffusing dorsally into the ARC [96].

BioRender.com
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Obesity and chronic HFD have been associated with reduced cognitive function in
animals and humans [28,97–102]. For instance, a study in mice showed that HFD feeding,
which contained approximately 40–45% fat composed mainly of saturated fatty acids,
triggered neuronal apoptosis and reduced the synaptic inputs in the ARC and the lateral
hypothalamus [28,103]. Mice infused with PA have developed impaired synaptic plastic-
ity, and their memory was affected by activated microglia and the release of TNF-α [26].
Moreover, orexin/ataxin-3 mice (transgenic mouse neurodegeneration models) fed with
HFD were submitted to a two-way active avoidance (TWAA) hippocampus-dependent
memory task that involves learning and the utilization of stimuli in the spatial environment.
This experiment showed a clear impairment in learning and an increase in the microglial
activation biomarker Iba-1, CX3 chemokine receptor 1 (CX3CR1), and TNF-α [104–106].
This was probably because neuronal populations within the hippocampus have a particu-
larly high metabolic demand, making them vulnerable to a variety of environmental and
biological factors [28]. Similarly, Giles et al., (2016) showed a relationship between the
plasma concentration of FA and two regions of the brain using a multivariate analysis. They
found that long-term enriched diets of SAFA in mice lead to changes in the hippocampus
and cerebral cortex lipidomes. Moreover, it has been found that PA levels increased in the
cerebrospinal fluids (CSF) in humans with obesity, which was inversely correlated with
cognitive performance [26]. Different studies have revealed that excess PA may trigger
different cellular pathways that could be implicated in cytotoxicity and cell death [107].

4. Pathways Involved in Palmitic Acid-Induced Toxicity

Some studies have associated SAFAs as a primary cause of cell death [108]. In this
regard, it has been reported that PA could affect the cell viability of different brain cells,
such as the neuroblastoma SH-SY5Y [109], glioblastoma T98G [110,111], microglial cells
BV-2 [112], primary microglia [40], primary neurons [31], and primary astrocytes [113–116].
Although it is known that the PA could affect different brain cells through different cellular
mechanisms, these are not clear. We will further describe the mechanisms to understand
more about what underlies the damage caused by PA in the different brain cells that have
been described to date (Table 2). This will be carried out to generate a better understanding
of the effects of PA in the brain and the possible implications that excess PA produce in
the brain, keeping in mind that this review also suggests the use of some other FAs to
ameliorate the damages caused by PA dysregulation in the brain.
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Table 2. List of the effects related to palmitic acid (PA) concentration and time of exposure to the insult in the different cells of the brain.

Reference Species Cell Model Concentration of PA (µM)
and Time Effects

Wong et al., 2014 [117] R Astrocytes Primary (P) In vitro 100 (24 h)
Observations included ROS formation in the mitochondria,

mitochondrial membrane potential (MMP) collapse, and
apoptosis, excluding the involvement of ER stress in PA toxicity.

Ramirez et al., 2019
[116] M Astrocytes P In vitro 100 (24 h) PA activated the Nrf2 pathway, reducing SOD activity and

cell viability.

Tu et al., 2019 [40] M Microglia BV-2 cells In vitro-
In vivo 200 (4 h); HFD 60% (4 w)

Increases were observed in IL-6, IL-1 β, TNF-α, and COX2
expression and the ratio of phospho extracellular

signal-regulated kinases (pERK)/ERK and a reduction of IkBα
an Nf-kB inhibitor was observed. The same effects were seen in

an animal model, plus the activation of microglia.

Sergi et al., 2020 [43] M Neurons P In vitro 200 (6 h and 24 h) PA induced the expression of IL-6 and TNF-α independent of
TLR4 but, partially, via ceramide synthesis.

Gupta et al., 2012 [91] R Astrocytes P In vitro 200 (18 h) Astrocytes liberated IL-6 and TNF-α via TLR4 but not c-Jun
N-terminal kinase (JNK) and TLR2.

Hidalgo-Lanussa et al.,
2018 [112] M Microglia BV-2 cells In vitro 250 (12 h) PA increased ROS production and Nf-kB expression and also

reduced MMP, cardiolipin, and cell viability.

Liu and Chan, 2014
[118] R Astrocytes and neurons P In vitro 400 (24 h)

Activation of IPAF-ASC inflammasome in astrocytes led to the
maturation of IL-1β, and neurons treated with the conditioned

media of astrocytes with PA increased amyloid β42.

Frago et al., 2017 [113] R * Astrocytes P In vitro 500 (24 h)

PA reduced the activation of ERK and Akt and the expression of
IL10 and aromatase. PA also, augmented the activation of P38
mitogen-activated protein kinases, JNK, and the expression of
IL-6. (C/EBP homologous protein (CHOP) and caspase 3are

related to endoplasmic reticulum stress.)

Gonzalez-Giraldo et al.,
2019 [119] H Astrocytes t98 g cells In vitro 1000 (24 h) PA increased IL6, TERT, TERC, DNMT3B, ESR1, and MIR155

genes and reduced CREB1, ALDH1L1, IL1B, and MIR125a.

Gonzalez-Giraldo et al.,
2018 [111] H Astrocytes t98 g cells In vitro 1000 (24 h) PA reduced MMP, cardiolipin, and cell viability
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Table 2. Cont.

Reference Species Cell Model Concentration of PA (µM)
and Time Effects

Yee-Wen et al., 2018
[120] H Astrocytes t98 g cells and

Neurons SH-SY5Y In vitro 100–500 (24 h and 48 h)

PA induced apoptotic cell death in the SH-SY5Y and T98G cell
lines, and treatment with similar concentrations of PA showed a
much lower percentage of apoptosis in the T98G line, indicating

that neurons are more susceptible to PA. These results were
associated with increased lipid peroxidation and ROS production.

Martin-Jimenez et al.,
2020 [121] H Astrocytes, Normal Human

Astrocytes primary In vitro 2000 (24)
Astrocytes treated with PA showeda reduction in cardiolipin and

MMP and an increase in superoxide production, nuclear
fragmentation, and cell death.

Hsiao et al., 2014 [109] H Neurons SH-SY5Y In vitro 100–500 (24 h and 48 h)

Neuronal cell apoptosis, cell cycle G2/M arrest, beta-amyloid
accumulation and the elevation of endothelial reticulum stress
were observed. All of these effects were reversed by inhibiting

protein palmitoylation.

Ortiz-Rodriguez et al.,
2018 [115] M * pre-natal Astrocytes P In vitro 250–500 (24 h)

PA reduced LC3-II, an autophagy marker, and incremented
expression of CHOP, IL-6, and, only in males, TNF-α. Increased

cell death was observed.

Wang et al., 2012 [122] M Microglia P In vitro 25–200 (6 h and 24 h)
PA increased the expression of IL-6 and the TLR4-mediated
activation of NF-kB, which was responsible for increases in

TNF-a, IL-1b, and NO production.

Yudkoff et al., 1989 [123] R Astrocytes P In vitro 360–720 (24 h) PA reduced intracellular glutamine concentrations and increased
leucine, isoleucine, and taurine.

Park et al., 2011 [31] M pre-natal Neurons neural progenitor
cells In vitro 50, 100, 200, and 400 (24 h)

PA was found to reduce NPC viability and proliferation by
elevating intracellular OS. Furthermore, short-term PA-rich HFD
impaired hippocampal neurogenesis by reducing the survival of

newly generated cells and BDNF levels in the hippocampus.

Ramirez et al., 2019
[116] M Astrocytes P In vitro 200 (2 h, 6 h, and 24 h); HFD

50% (8 w)
PA augmented ROS production and reduced SOD expression. In

addition, in the animal model a reduction of BDNF was seen.

Morselli et al., 2016
[124] M * Brain In vivo HFD 42% (16 w)

An HFD rich in SAFAs caused hypothalamic inflammation,
principally in males, which was related to the decrease of PUFAs

in the brain and the down regulation of PGC-1α/Erα.

Douglass et al., 2017
[125] M Brain In vivo HFD 60% (8 w) An HFD rich in SAFAs augmented hypothalamic inflammation

and astrocytosis through the activation of Nf-kB and IKKβ.
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Table 2. Cont.

Reference Species Cell Model Concentration of PA (µM)
and Time Effects

Blázquez et al., 2001
[126] R Astrocytes cortical In vitro 200 (24 h, 48 h, and 72 h) PA induced apoptosis and involved the de novo synthesis of

ceramide through the Raf-1/ERK pathway.

Escartin et al., 2007
[127] R Astrocytes P In vitro 200 (24 h) CNTF induced resistance to palmitic acid damage in activated

astrocytes by increasing beta-oxidation.

Patil et al., 2007 [32] R Astrocytes cortical In vitro 200 (24 h) PA reduced GLUT1 expression, glucose uptake, and lactate release.

Tracy et al., 2013 [128] R Microglia BV-2 cells In vitro 125 (24 h) PA induced the activation of microglia, augmenting the mRNA
levels of the proinflammatory cytokines Ia1β and IL-6.

Yan et al., 2016 [129] R Retinal ganglional cells
RGC-5 In vitro 100 (24 h) Cell death due to ROS levels rose.

Calvo-Ochoa et al., 2017
[130] R differentiated human

neuroblastoma cells (MSN) In vitro 200 (24 h) Inhibition of the insulin/PI3K/Akt pathway was observed.

Buratta et al., 2008 [131] H Glioblastoma GL15 In vitro 600 (36 h)
PA generated a loss of cardiolipin, which was related to

apoptosis via the release of cytochrome c and activation of
caspase 3.

Hernández-Cáceres et al.,
2019 [22] R hypothalamic cell line N43/5 In vitro 100 (24 h) PA activated (GPER40) and PA inhibited the autophagic flux and

reduced insulin sensitivity.

Portovedo et al., 2015
[132] R Brain In vivo HFD 35% 8–16 w

Intracerebroventricular injections of PA and HFD increased the
expression of inflammatory markers and the downregulation of

autophagic proteins.

M: mouse; R: rat; H: human; *: both sexes (male and female) cells tested; h: hours; w: weeks.
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4.1. Role of Ceramides in Lipotoxic States

The ceramide is the precursor of all sphingolipids complex. It is abundant on neural
cellular membranes and represents a potent regulator of brain homeostasis. However,
when these lipids accumulate above a critical level, metabolism energy results are impaired.
Intracellular levels of ceramide are fine-tuned, and alteration of the sphingolipid–ceramide
profile contributes to the development of age-related, neurological, and neuroinflamma-
tory diseases [133]. Several studies raise the possibility that ceramide accumulation in
the hypothalamus and the increase of this lipid causes an upregulation in the expression
and activity of serine palmitoyltransferase (SPT), neutral sphingomyelinase (n-mSMase),
and the expression increase of NF-kB through ER stress or downstream effects [134–136].
Ceramides within the CNS may modulate cell damage with pro-inflammatory kinases, such
as p38 mitogen-activated protein kinase and ceramide-activated protein (CAP) [108,137].
In PA-treated astrocytes, it has been reported that experimental downregulation of SPT
decreases ceramide levels, mitigating the production of IL-1β and TNF-α secreted by the
astrocytes [32]. As well as the direct effects on astrocytes, TLR2/4 factors activate microglia
to increase inducible nitric oxide synthase (iNOS) and superoxide, leading to peroxynitrite
that stimulates astrocyte sphingomyelinase (aSMase), leading to the production of longer
chain ceramides, which, at sufficient levels, can be pro-apoptotic. Moreover, changes in
astrocytes by ceramides have negative consequences on BBB integrity and affect oligo-
dendrocytes’ functions [138]. Another detrimental effect of ceramide in the brain is that
microglia increase the assembly of inflammasome that contains NOD, LRR, and pyrin
domains, increasing the production of pro-inflammatory cytokines IL-1β and IL-18 [139].
On the other hand, researchers treated immortalized mouse Schwann cells (IMS) and rat
primary Schwann cells with 500 µM PA, a ceramide analog (C2-ceramide), and inhibitors
of de novo ceramide synthesis (myriocin and fumonisin B1). Myriocin and fumonisin B1
significantly attenuated the apoptosis of IMS cells caused by incubation with palmitate for
48 h, suggesting that ceramide could be the cause of apoptosis [140].

In most reports, it has been shown that increases in ceramide levels generate ROS,
establishing a link between OS and sphingolipid metabolism with detrimental conse-
quences in the brain. In primary hippocampal cultures, ROS levels were also increased in
ceramide-treated cells in a dose-dependent manner [141]. In this regard, Darios et al., (2003)
evaluated ceramide-mediated cell death in PC12 cells and found increased ROS production,
a transient increase in cytosolic free calcium, and a long-lasting increase in mitochondrial
free calcium. Interestingly, mitochondrial calcium did not increase because cytosolic free
calcium levels rose [142].

4.2. Inflammation Pathways (TLR, NF-κB, and Cytokines)

In the brain, the inflammatory processes could be beneficial or detrimental, depending
on the strength and duration of the response. Likewise, very strong and chronic activa-
tion of glial cells drives pro-inflammatory cytokine production, which could be related
to NDs [23]. Some studies have suggested that CNS-expressed TLR4 may mediate the
hypothalamic inflammation induced by HFD [143–146]. Furthermore, Korbecki and Bajdak-
Rusinek (2019) described that TLR4 or TLR2 activation led to the activation of NF-kB that
produced the activation of NLRP3-inflammasome, inducing pro-inflammatory signals
and the recruitment to lipid rafts. Then, adding this to ROS generation will activate cas-
pase 1, triggering inflammasome assembly and the maturation of pro-IL-1β to IL-1β [136].
Similarly, Jang et al., (2016) demonstrated that NLRP3 inflammasome is involved in the
progression of NDs [147].

It has been shown that neurons can sense circulating free FAs and generate adap-
tive responses to high free FA levels through the expression of TLRs, such as TLR4 and
TLR2 [148]. Besides, in mHypoA-POMC/GFP-2 neurons, PA activates NF-κB through the
MAP kinases JNK and ERK [149], which is related to what was reported by Kwon et al.,
(2014), showing that cortical neurons treated with 300 µM PA for 24 h have higher levels
of IL-6 expression [150]. Moreover, an increase in IL-6 expression was seen in primary
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hypothalamic neurons treated with 200 µM PA for 18 h [151]. However, Sergi et al., (2020)
reported that the mHypoE-N42 hypothalamic neuron cell line, treated with 200 µM PA for
24 h, showed an upregulation IL-6 and TNF-α, but when the cells were treated with a TLR4
activator there was no change in the expression of IL-6 and TNF-α, suggesting that this
upregulation is due to ceramide accumulation rather than TLR4 [43].

On the other hand, a study evaluated the effects of excess PA on astrocytes, showing
that TLR4-dependent IL-6 and TNF-α release was independent of the presence of microglia
to generate the response [91], suggesting this as a differential response from glia and
neurons. Additionally, Chen et al., (2018) showed that hippocampal astrocytes treated
with 250 µM PA for 4, 8, and 12 h induced inflammation and apoptosis that was regulated
by the autophagic degradation of caveolin-1 [152]. Similarly, another study reported
that the astrocytes of mice submitted to an HFD of 60% fat showed that their astrocytes
activated their inflammatory response through the inhibition of the inhibitor of nuclear
factor kappa-B kinase subunit beta (IkkB)/NF-κB [139]. Moreover, it was shown that
PA activates IPAF inflammasome in primary astrocytes to release IL-1β, which damages
primary neurons [118]. The previous evidence confirms that astrocytes treated with high
amounts of PA will generate a strong inflammatory response that can affect neurons.

Like astrocytes, when microglia cells are treated with PA for 12 h, the expression of
the subunit p65 of NF-κB increases approximately 60% compared to their control [112].
Likewise, another study reported that PA treatment on microglia increases the expression of
interleukin-1 beta (IL-1b) and inducible nitric oxide synthase (iNOS). Then, PA induced the
TLR4-mediated activation of NF-κB, which is responsible for TNF-α, IL-1b, and nitric oxide
(NO) production [109]. This was confirmed with the results obtained by Tu et al., (2019),
finding that the same mechanisms were induced, plus the expression of IL-6. Moreover,
they validated their results with an animal model by obtaining similar results to the in vitro
studies [40].

4.3. Lipotoxic Oxidative Stress

ROS can have different functions in the brain; it is known that ROS generated by
microglia and astrocytes could modulate synaptic and non-synaptic communication be-
tween neurons and glia [153]. Moreover, different factors could generate an imbalance
in the production and metabolism of ROS, leading to pathological conditions [153]. For
instance, one of the main sources of OS is the activation of NADPH [154], which has been
proven in the brain in different models, such as inflammation after ischemia [155], PD [156],
and AD [157]. Notably, some studies show PA-induced activation of NADPH in different
cells, such as the endothelial cells [158], hepatic cells [159], and even in neurons [130].
However, the direct link between PA and NADPH production has not been reported in
other brain cells.

Different studies have demonstrated that a PA-rich HFD produces cellular damage
in neurons, astrocytes, and microglia that is, in part, due to increased OS related to the
overproduction of ROS, which can induce lipid droplet formation and accumulation, acti-
vating canonical inflammatory pathways and chronic inflammation [160,161]. Importantly,
signs of OS precede the development of NDs by an impairment in hypothalamic genetic
expression, as well as the downregulation of B-cell lymphoma-2 (Bcl-2) [162]. These OS
effects given by PA appear in a cell-specific manner [160]. For example, Park et al., (2011)
showed that neural progenitor cells (NPCs) are vulnerable to 200–400 µM PA, which causes
cell death due to increased ROS and reduced NPC viability and proliferation. Furthermore,
a short-term PA-rich HFD impairs hippocampal neurogenesis by decreasing the survival
of newly generated cells and the expression levels of brain-derived neurotrophic factor
(BDNF) [31]. Hsiao et al., (2014) showed PA-induced cytotoxicity in the neuroblastoma
cell line SH-SY5Y-γ and the glioblastoma T98G cell line, in a time- and dose-dependent
manner [109], revealing that PA induced apoptotic cell death in those cell lines, but the per-
centage of apoptosis was much lower in T98G with similar concentrations of PA treatment,
suggesting that neurons are more susceptible to PA-induced cytotoxicity than astrocytes
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(Figure 1) and that PA-induced apoptotic cell death was associated with increased lipid
peroxidation and ROS production.

Wong et al., (2014) showed that when cortical astrocytes from rats were submitted to
100 µM PA for 24 h, it triggered apoptotic cell death. However, in this study, PA-induced cell
death appeared to be unrelated to ER stress and perturbation in cytosolic Ca2+ signaling. It
was related to ROS production and a subsequent MMP collapse [117]. However, González-
Giraldo et al., (2018) found that when the T98G cell line was treated with 1 mM PA for 24 h,
it reduced cell viability by 50%; moreover, it reduced MMP by 56.1% and cardiolipin by
50%, but it did not generate an increase in ROS production, showing that PA treatment can
induce a wide variety of responses and that, in this study, the damage was independent of
ROS production [111]. Likewise, a study using PA on primary astrocytes showed that PA
treatment for 24 h did not produce a significant increase in peroxide ions but increased the
production of superoxide ions, which can be linked to the observed reduction of cardiolipin
and the loss of MMP [121]. These results suggest that PA responses are heterogeneous, and
it could be beneficial to not focus only on specific mechanisms as initial approaches but to
explore a broader panorama using systems biology.

On the other hand, Hidalgo-Lanussa et al., (2018) reported that microglia subjected
to PA damage for 12 h showed a reduction in viability, increased ROS production, and
reduced mitochondrial mass, and MMP [112]. Importantly, similar results were found
when studying the whole brain of rats, finding dysregulation on the primary antioxidant
enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and cata-
lase (CAT) [163]. Moreover, the antioxidative activity, such as SOD, CAT, and GPx, was
measured in the hippocampus and the cerebral cortex of rats under HFD, augmenting
the response of their activity. Nevertheless, this increase was not enough to prevent the
damage caused by OS [164].

4.4. Endoplasmic Reticulum Stress Pathways

Disturbances of the ER have also been revealed in CNS injury. The pathological signals
disturb protein post-translational modifications and disrupt homeostasis. This may result
in the accumulation of unfolded or misfolded proteins in the ER lumen, a condition known
as ER stress [165–168]. ER stress can be a result of high-caloric intake. This plays a key role
in alterations in the metabolic regulation of pathologies, such as obesity, type 2 diabetes
(T2D), prion diseases, PD, and AD [168–170].

PA-derived ER stress induces eukaryotic elongation factor (eEF) 1A-1, which affects the
integrity of the cytoskeleton, causing cellular death [108]. A study using male Wistar rats
fed an HFD showed that SAFAs activate ER stress in the hypothalamus [136,145]. Similar
results were obtained in SH-SY5Y neurons treated with 1000 µM PA for 24 h, triggering
ER stress, which was determined by the expression of spliced X-box binding protein-1
(XBP-1) mRNA and binding immunoglobulin protein (BiP). Furthermore, PA increased
JNK activation and tau hyperphosphorylation and inactivated adenosine monophosphate
(AMP)-activated protein kinase (AMPK) [171]. Hsiao et al., (2014) found that SH-SY5Y
cells treated with 300 µM PA for 24 and 48 h had significantly arrested their cell cycle
in the G2/M phase. This response was caused by ER stress, according to an increase in
eukaryotic translation inhibition factor 2α, an ER stress marker [109]. In a similar study
using SH-SY5Y and mouse Neuro-2a (N2a) neuroblastoma cells submitted to 100 µM
palmitate for 24 h and an animal model of C57BL/6J mice fed an HFD with 2.20% w/w
of PA, the PA caused ER stress in the mouse cortex and hippocampus in both cell lines.
PA induced ER stress via CHOP expression and caused the inhibition of leptin and IGF1
expression at the transcriptional level. Their dysregulation is linked with the progression
of different NDs [20]. This is related to the increase in CHOP generated by a PA treatment
in mHypoA-POMC/GFP neurons. This response was mediated through the MAP kinases
JNK and ERK, and the effects were dependent on palmitoyl-CoA synthesis [149]. On the
other hand, Ortiz-Rodriguez et al., (2018) reported that cortical astrocytes from post-natal
mouse males and females that were submitted to PA at 250 and 500 µM for 24 h showed
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an increase in the ER stress marker CHOP [115]. Interestingly, ER stress as a source of cell
damage by PA has not been reported in the other brain cells.

4.5. Apoptosis Related to PA

In normal conditions, apoptosis, or programmed cell death, in the brain helps to
regulate the development of the nervous system and the clearance of cells that are not
working properly [172]. However, it is known that exposure to high levels of SAFAs, such as
PA, triggers apoptosis in different brain cells [109,111,112,120,121]. It was shown that PC12
cells exposed to PA showed a reduction of cell viability after 24 h of treatment. The cell death
induced by PA was apoptotic, which was confirmed by morphological analysis and the
measurement of caspase-8 and caspase-3 activity. Moreover, western blotting showed that
PC12 exhibited the signature apoptotic cleavage fragment of poly (ADP-ribose) polymerase
(PARP) [173]. RT-PCR and RNA blot experiments showed an upregulation of the FA
receptor and ligand mRNA, suggesting a role in apoptotic death [173]. Similarly, Yuan et al.,
(2013) reported that PA significantly impaired cell viability via apoptosis of neural stem
cells (NSCs) in a dose- and time-dependent manner. Furthermore, they showed that there
were increased protein levels of Bcl-2-associated X protein (Bax) and cleaved caspase 3, plus
a reduced expression of Bcl-2 after PA treatment. Additionally, the expression of phospho-c-
Jun N-terminal kinase (p-JNK) was increased significantly. Nevertheless, the JNK inhibitor
effectively reduced the apoptosis of NSCs induced by PA [174]. It was shown that GL15
glioblastoma treated with PA generated a loss of cardiolipin that was related to apoptosis
through the release of cytochrome c following the activation of caspase 3. Nevertheless, the
cell apoptosis was not related to the ceramide pathway nor the mitochondrial pro-apoptotic
AIF or Bcl-2/Bax factors [131]. Is important to highlight that although many studies report
an increase in cell death after PA insult in brain cells, the exact mechanisms of death are not
yet well established.

4.6. Autophagy and Palmitic Acid

Autophagy is responsible for the degradation of damaged proteins and organelles
by surrounding the cytoplasmic components in the double-membrane vesicles called au-
tophagosomes [132]. It is important to highlight that autophagy plays a crucial role in
neuronal physiology, and the impairment of any step of the autophagic pathway usually
generates axonal defects that culminate in neuronal degeneration [175]. It was demon-
strated that the prolonged consumption of an HFD generates a blockade of autophagy
in the hypothalamus [115,176]. Besides, the hypothalamic cell line N43/5 was treated
with 100 µM PA for 24 h, activating the free fatty acid receptor 1 (FFAR1), also known
as G protein-coupled receptor 40 (GPR40), demonstrating that exposure to PA inhibits
autophagic flux and reduces insulin sensitivity [22]. Moreover, mice under an HFD for
8 or 16 weeks and in response to intracerebroventricular injections of PA showed that
chronic exposure to an HFD leads to an increased expression of inflammatory markers and
a downregulation of autophagic proteins. When autophagy was induced in obese mice, it
was shown to reduce JNK and Bax expression and increase Bcl-2 activity [132].

Finally, Ortiz-Rodriguez et al., (2018) found that the effect of PA in reducing cell viabil-
ity after 24 h was enhanced by the blockage of autophagic flux with hydroxychloroquine
(an inhibitor of autophagosome-lysosome fusion). This suggests that autophagy impair-
ment is involved in the effect of PA on astrocyte cell death [115]. It has been demonstrated
that astrocytes can modulate autophagy as a response to prevent the formation of protein
aggregates in neurons and to mediate mitochondrial repair from mitophagy [177,178]. On
the other hand, PA reduces autophagy in astrocytes, favoring ROS production, and those
factors make it more difficult for the recovery of a mitochondrial tubular structure [178].

5. Palmitic Acid and Neurogenerative Diseases

Neurodegenerative processes are characterized by morphological, anatomical, and
functional changes giving, as a result, an early chronic neuronal loss. Moreover, NDs
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have different causes, such as inheritance, environment, or a mix of both [23]. NDs
usually are characterized by the decline of cognitive functions, in most cases affecting
memory and learning processes, as well as a progressive degeneration that results in the
debilitating conditions of movement [179]. Some of these NDs are AD and other dementias,
amyotrophic lateral sclerosis (ALS), PD, and Huntington’s disease, where AD is the most
prevalent, accounting for 60–70% of dementia cases [23,179].

On the other hand, HFD is correlated with cognitive function decline [28,180]. It has
been shown that in different models the PA may accumulate in the brain and generate
inflammation processes [28]. In that sense, studies have shown that in obese people, the
inflammation affects the arcuate nucleus of the hypothalamus, which regulates satiety and
hunger, and generates a feeding loop [27,28,103]. Backing up this statement, Valdearcos
et al., (2017) found that mice under a 42% HFD, rich in PA for four weeks, had increased
levels of PA in the hypothalamus and that the enteral administration of palmitate-rich
milk fat led to a rapid accumulation of PA in the arcuate nucleus [181]. In this order of
ideas, increases in PA concentrations have been linked with different NDs [181]. Over
the review, we have discussed several mechanisms involved in the progression of many
NDs, where chronic inflammation, OS generated by the peroxidation of lipids, and PERK
activation by ER stress are key pathological events of most of the disorders previously
mentioned [136,138,182,183].

5.1. Alzheimer Disease

AD is the most common form of dementia and it is projected that in 2050 there
will be 100 million patients with AD in the world [184]. The early symptoms of AD
may include the loss of memory, apathy, and depression, while later symptoms include
communication disorders, confusion, and behavioral changes, such as dysphagia [185].
Although, the causes of AD are not fully understood, there is a consensus of many genetic
and environmental factors, including dietary FAs [20,34,186]. AD is associated with three
conditions: neurofibrillary tangles or plaques of tau protein, the presence of amyloid β-
protein (Aβ), and the proliferation of glial cells [186]. Abnormal tangles in the brain are
formed with tau protein in the hyperphosphorylated form they are unable to bind to tubulin
and microtubules, disrupting the neuronal cytoskeleton, as well as reducing microtubules
and neurofilaments [187,188]. The plaques are composed of Aβ, and dysregulation of Aβ
can generate insoluble aggregates of Aβ, which are toxic and are related to failures in cell-to-
cell communication and neuronal death [34]. In addition, dietary FAs, such as PA, influence
the inflammatory phenotype of glial and microglial cells [189]. As previously discussed, PA
affects the NF-κB pathway, TLR-4 receptors, induces pro-inflammatory cytokines (IL-1β,
IL-6, and TNF-α), and increases OS and ER stress, which are risk factors for AD [190,191].
Furthermore, these inflammatory responses lead to excessive glial activation that activates
the kinases and drives the pathological phosphorylation of tau [186] (Figure 3).

Interestingly, Nasaruddin et al., (2016) reported an increase of 25% of the PA concen-
tration in brains from people that had AD and an accumulation of 33% more in males com-
pared with females [192]. Moreover, a study with rats fed a 60% HFD for 8 weeks, found that
PA stimulates the expression of β-site amyloid precursor protein cleaving enzyme (BACE1)
and amyloid precursor protein (APP) [193]. On the other hand, Bhattacharyya et al., (2013)
and Zaręba-Kozioł et al., (2018), suggested that APP palmitoylation enhances Aβ peptide
production through the amyloidogenic pathway and the dysregulation of palmitoylation
in AD, due to Aβ oligomers being derived from the sequential proteolytic processing
of APP using different enzymes, including BACE1, β-secretase, and γ-secretase [84,194].
APP is enriched in membrane lipid rafts forming dimers that induce the elevation of
BACE1-mediated cleavage of the protein [84,194].
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Figure 3. PA in neurodegenerative diseases. This figure shows the reported changes in brain cells
induced by PA that are directly linked with the progression of Alzheimer’s and Parkinson’s diseases,
as explained in Section 5. This figure shows how the relationship of astrocytes and microglia treated
with PA will unleash a pro-inflammatory response that can induce the formation of hallmarks of
AD, such as Aβ tangles and tau hyperphosphorylation, and of PD, causing the appearance of Lewy
bodies, a reduction of dopamine, and ASN accumulation. Created with BioRender.com.

Cultures of primary cortical neurons treated with conditioned media from astrocytes
submitted to 200 µM PA for 12 h showed that calcium levels were augmented by calpain ac-
tivity, a calcium-dependent protease, which subsequently enhances p25/Cdk5 activity [195].
The authors showed that p25/Cdk5 uses STAT3 as a substrate. After phosphorylation
it becomes active and is translocated into the nucleus. An elevated pSTAT3 level in the
nucleus could transcriptionally upregulate both BACE1 and presenilin-1, enhancing the
production of Aβ, and this could trigger neurons to disrupt calcium homeostasis, which is
implicated in NDs, including AD [195]. Additionally, it has been shown that conditioned
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media of astrocytes submitted to PA induces AD-like hyperphosphorylation of tau in
primary rat cortical neurons [29,196].

Patil et al., (2008) compared astrocytes from mouse brains from two different re-
gions, the cortex (a region affected in AD) and the cerebellum (an unaffected region),
which were treated with 200 µM PA. The conditioned medium was then transferred to
the cortical neurons to study the possible effects on BACE1 upregulation and tau hyper-
phosphorylation [32]. It was found that the conditioned media from PA-treated cortical
astrocytes but not the cerebellar astroglia increased the phosphorylation of tau and BACE1
expression [32,33]. Nevertheless, PA does not directly induce the AD-like changes in neu-
rons, which could be explained by the low capability of neurons to take and metabolize
FAs [32,96,118]. Similarly, PA activates the NLRC4 inflammasome in primary astrocytes
to release IL-1β. When the levels of NLRC4 are reduced in the PA-treated astrocytes, it
significantly diminishes IL-1β production. In addition, NLRC4 levels are upregulated in
the brains of AD patients, suggesting a possible role of the NLRC4 inflammasome in AD
pathogenesis [118].

5.2. Parkinson’s Disease

PD is a chronic and progressive ND that mainly affects the elderly population. Its
symptoms appear gradually, and the early non-motor symptoms include hyposmia, fatigue,
depression, behavioral disorders, and constipation [197,198]. The primary motor symptoms
are bradykinesia, muscle stiffness, rigidity, and resting tremor. Later symptoms include pos-
tural instability, dysphagia, anxiety, orthostatic dizziness, urinary incontinence, sweating,
and salivation [197,198]. The etiology of PD is influenced by genetic and environmental
factors, and the symptoms of the disease are due to the degeneration of dopaminergic
neurons [197,198]. Interestingly, Lewy bodies are observed in the areas of the brain affected
by PD; it has been demonstrated that these bodies are primarily composed of ASN and
form deposits in the cytoplasm of nerve cells [34]. Extensive research has accumulated
evidence of the physiological function of ASN, based on its distribution in all major brain
cell types [180,199,200]. ASN is related to the transport and control of neurotransmitter
release, as well as modulating dopamine biosynthesis, the inflammatory response, the
mobilization of synaptic vesicles in the nervous system, and the regulation of lipid and
energy metabolism [199]. It has been found that only a small fraction of ASN (~4%) is
phosphorylated in healthy brains and that a substantial accumulation of ASN phospho-
rylated with serine-129 (~90%) is observed in brains with Lewy pathology, showing an
important association between this posttranslational modification and the accumulation of
ASN aggregates [201].

On the other hand, several studies have approached the relationship between PA
and PD [24,25,114,180,202]. In that sense, Shah et al., (2019) injected Sprague-Dawley rats
unilaterally with 6-hydroxydopamine into the medial forebrain bundle to induce a loss
of dopaminergic neurons in the substantia nigra, as a PD model. They found that PA
was significantly increased in the PD model [180]. Likewise, Fabelo et al., (2011) used the
human frontal cortex from people in the early motor stages of PD and incidental PD. They
analyzed their lipid composition and found that the lipid rafts from PD and incidental PD
cortices exhibit reductions in their contents of ω-3 and n-6 PUFAs. Importantly, the PA
concentration was significantly higher than in control brains [24]. Schommer et al., (2018)
found that a PA-enriched diet augmented ASN, which, combined with the depletion of
dopaminergic neurons in the substantia nigra, are hallmarks of PD. Besides, they showed
that the PA-enriched diet significantly reduced dopamine metabolites in m-Thy1 mice [25].
However, it was reported that mice with the ASN gene ablated reduced the incorporation
of PA in the brain by 36% [198]. This was confirmed later by culturing astrocytes isolated
from wild-type and ASN gene-ablated mice, showing a decrease in PA incorporation of
31% [203].

On the other side, recent evidence from Gonzalez-Riano et al., (2021), using a metabolomics
approach to find PD biomarkers in the Spanish population, found a significant reduction
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of plasma PA in pre-PD subjects and they hypothesized that it was due to an early and
progressive migration of PA from the plasma to the brain because ASN promoted the
uptake of PA into the brain [202]. Besides, a reduced expression of peroxisome proliferator-
activated receptor-gamma coactivator−1 α (PGC−1α) was found in affected brain tissue
from PD patients, and it was found that PA stimulates PGC−1α promoter methylation
in mouse primary cortical neurons, microglia, and astrocytes. PA caused PGC−1α gene
promoter non-canonical cytosine methylation, reduced expression of the gene, and reduced
mitochondrial content [204] (Figure 3).

5.3. Palmitic Acid and Other Neurodegenerative Disease

Multiple Sclerosis (MS) is an inflammatory, autoimmune, and chronic multifactorial
disease of the CNS, and its symptoms are found in the sensory, cognitive, motor, and
neuropsychiatric ranges [183,205]. It is caused by damage to the myelin sheath, leading
to the malfunction of nerve impulses [206]. In patients with MS, it was reported that long
SAFAs (>C16) were significantly lower, however, PA and palmitoleic acid were the only
SAFAs that maintained a high concentration compared to the control [207]. Nevertheless,
no significant differences were found in the analysis of the cerebrospinal fluid of patients
with MS and control [208]. On the other hand, lipid peroxidation, which is a hallmark for
many NDs, is one of the most important biomarkers in the pathogenesis of MS [183], where
it has been reported that excessive levels of metabolites of PA, caused by lipid peroxidation,
have been found in astrocytes and neurons [120,205]. Although, it would be interesting to
study the direct effects of PA in MS or the lipidic profile in MS.

Huntington’s disease (HD) is an autosomal dominant ND resulting from the mutation
in the huntingtin (HTT) gene that presents symptoms, such as cognitive, motor, and
psychiatric signs [209]. The main characteristics are the reduction of striatal volume and
the loss of medium spiny neurons of the striatum [210]. Huntingtin-interacting protein 14
(HIP14) is the most highly conserved of 23 human palmitoyl acyltransferases (PATs) that
catalyze palmitoylation. It has been observed that HIP14 is dysfunctional in the presence
of mutant HTT, and defective palmitoylation by HIP14 might be a relevant mechanism that
contributes to the pathogenesis of HD [210]. Although there is not a direct link between PA
treatment and HIP14, it could be an interesting topic for research because PA lipotoxicity
alters palmitoylation in different models. Baldwin et al., (2012) suggested that PA-induced
lipotoxicity is a consequence of uncontrolled protein palmitoylation, resulting in ER stress
and apoptosis [211]. Besides, in PA-treated osteoblasts, PA induces negative changes in gene
expression of palmitoyltransferase genes [212]. In SH-SY5Y cells, ER stress, cell cycle arrest,
and cell death were attenuated by 2-bromopalmitate, a protein palmitoylation inhibitor,
showing that palmitoylation plays an important role in the damage caused by PA-induced
lipotoxicity [109]. Moreover, recent findings describe that GluN2B palmitoylation by acyl
palmitoyl thioesterases (APTs) is reduced in the striatum in YAC128 mice and correlated
with early degeneration in HD by the susceptibility of striatal neurons [213]. The above
suggests that APTs could be agents that accelerate HD. This mechanism could be a potential
treatment in early HD; however, further work is required [213].

6. The Therapeutic Potential of Other Fatty Acid in NDs

There is a growing need for searching for alternatives to treat neurodegenerative dis-
eases because actual treatments have been proven ineffective or palliative [36]. Therefore,
FAs have been investigated to assess if they have protective effects in the brain [38]. The
PUFAs are a potential field of research, due to their relevant role in the CNS (neuropro-
tectants, fundamental in development, cell growth, and function). These PUFAs increase
membrane fluidity and flexibility, as well as help microglia to increase phagocytosis [186].
Several studies suggested the influential role of PUFAs on the brain by the expression of
phagocytic markers (CD206, Arg-1, and Ym-1) and anti-inflammatory cytokines (TGF-β
and IL-10) by glial and microglial cells [38,41,186]. However, other FAs, such as oleic acid
(OA) and linoleic acid (LA) exhibit neuroprotective effects in different models and could
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serve as potential therapeutic tools for NDs [40,43]. The experimental data is presented in
Table 3.

Table 3. Fatty acids (FAs) with protective effects in the brain against palmitic acid (PA)-induced damage.

Reference FA FA Concentration
and (Time) Model Cells Disease

Model Effects

Tang et al., 2014
[214] ARA 50 µM (24 h) M Neurons

PC12 PD
A 50 µM concentration showed protection
against MPP. However, 100 µM generated

cytotoxicity.

Marcheselli et al.,
2003 [215] DHA 100–200 ng

(24 h–48 h) M Brain LP

DHA generated neuroprotection,
inhibiting leukocyte infiltration, NF-κB,

and cyclooxygenase-2. It also inhibited the
signaling response to ischemia reperfusion.

Descorbeth et al.,
2018 [42] DHA 50 µM (48 h) R Schwann

cells LP
DHA reduced cell death generated by PA
through the activation of the PI3K/AKT

and mTORC2 kinase pathways.

Meng et al., 2010
[216] EPA 0.8% (6 w) M Brain PD EPA reduced the pro-apoptotic Bax and

caspase-3 mRNAs.

Luchtman et al.,
2012 [217] EPA 0.8% (6 w) M Brain PD

EPA reduced memory deficit and the
production of pro-inflammatory cytokines

in the striatum.

Luchtman et al.,
2013 [218] EPA 50 µM (48 h) H neurons

SH-SY5Y PD

EPA downregulated ROS and nitric oxide.
Besides, NADPH oxidase and COX-2

attenuated an increase in the Bax: Bcl-2
ratio, and cytochrome c release.

However, EPA did not prevent a decrease
in MMP.

Tu et al., 2019 [40] LA 15–30 (1 h) M Microglia
BV-12 LP

LA reduced the expression IL-6, IL-1 β,
TNF-α, COX2, reduced the ratio of

pERK/ERK, inhibited IkBα and NF-κB,
and reduced the activation of microglia.

Moazedi et al., 2007
[219] OA 10% (4 w) M Brain LP

Spatial learning and motor activity were
significantly increased in rats fed with OA

(10%) for 4 weeks compared to PA.

Kwon et al., 2014
[150] OA 300 µM (24 h) H Neuron N2a LP

OA pre-treatment attenuated PA-induced
mitochondrial dysfunction and insulin

resistance by inhibiting the phosphorylation
of mitogen-activated protein kinase and
the nuclear translocation of NF-κB p65.

Sergi et al., 2020 [43] OA 125 µM (6 h) M mHypoE-N42 LP

OA counteracted PA-induced intracellular
ceramide accumulation, leading to a

downregulation of IL-6 and TNF-α via
ceramide synthesis, with OA and EPA
being anti-inflammatory by decreasing

PA-induced intracellular ceramide
build-up.

Govindarajan et al.,
2011 [45] NaB 1.2 g/kg (6 w) M Brain AD

Sodium butyrate (NaB) generated a
recovery of memory function that was
correlated with elevated hippocampal
histone acetylation and increased the

expression of genes implicated in
associative learning.

Ryu et al., 2003 [46] NaB 1–30 mM (24 h) R Neurons P HD NaB reduced neuron death induced by OS
through the activation of Sp1.

ARA: arachidonic acid; DHA: Docosahexaenoic acid; EPA: eicosapentaenoic acid; LA: linoleic acid; OA: Oleic
acid; NaB: sodium butyrate; M: mouse; R: rat; H: human.

6.1. Poly-Unsaturated Fatty Acids (PUFAs)

PUFAs serve as precursors of second messengers, such as the eicosanoids and do-
cosanoids. For this reason, they are involved in the regulation of inflammatory response,
immunity, blood vessels, platelets, synaptic plasticity, cellular growth, pain, sleep, and other
processes [38]. Hence, many investigators have worked to determine the association of
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PUFAs with the protective pathways in the brain [41]. Moreover, experimental research of
PUFAs using in vivo, and in vitro models suggests promising opportunities for developing
therapies for AD, PD, HD, among other NDs [220]. For instance, Elharram et al., (2017) and
Raefsky et al., (2018) demonstrated that deuterium-reinforced PUFAs (D-PUFA) are more
resistant to lipid peroxidation mediated by ROS in comparison with regular hydrogenated
PUFAs [221] and that in mouse models of cognitive impairment, with AD-like biochemical
and structural pathologies, treatment with D-PUFA for 18 weeks showed a strong effect
in the hippocampus and cortex. An approximate 55% reduction of F2-isoprostanes [222],
which are biomarkers for OS in humans and are elevated in obesity [223], was observed.
Moreover, prostaglandin F2α was reduced [217] and this compound is associated with
neuropsychiatric and neurologic disorders [224]. Additionally, cells treated with MPP+
or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) presented an increase in OS and
reduced cell viability by ~70% and ~78.7%, respectively, compared to the control group.
Nevertheless, both LA-, ARA-, and D-PUFA-supplemented mice indicate a neuroprotective
role because PUFAs can inhibit MPP+ or MPTP in PC12 cells and may significantly slow
oxidative cellular damage [220].

On the other hand, ω-3 PUFAs are well known for their importance in neuronal
development and its neuroprotective function [225]. Indeed, it was reported that in mice
ω-3 PUFAs also regulate CB1 activity, which is associated with signaling pathways in the
prefrontal cortex and the nucleus accumbens [226,227]. DHA and eicosapentaenoic acid
(EPA) are the most important long-chain fatty acids for cell membranes, myelin sheaths,
oligodendrocytes, and nerve endings [225].

Additionally, protective effects exerted by PUFAs have been demonstrated in different
studies, showing that intracerebroventricular administration of DHA decreases stroke
volume and attenuates the induction of the pro-inflammatory signaling proteins NF-κB
and COX2 [41,215]. Besides, augmented levels of DHA in the brain normalize BDNF levels
in rats exposed to traumatic brain injury [228]. Consistent with this, the addition of DHA
increased BDNF levels in astrocytes in vitro, and DHA deprivation decreased BDNF levels
in the rodent brain [41,229]. Furthermore, there is evidence that 50 µM DHA ameliorates
and even reverses the damages generated by PA-induced lipotoxicity in Schwann cells.
This effect is mediated, at least in part, by the activation of the PI3K/AKT and mTORC2
pathways [42]. Moreover, neurons treated with TAG-DHA for neural viability, following
the application of the neurotoxin 6-hydroxydopamine, showed reduced neuronal death,
indicating that the use of TAG-DHA as a neuroprotective agent in PD may constitute a
promising pharmacotherapeutic strategy [230].

There is evidence in different cohorts of the protective effects of ω-3 PUFAs in the
brain. For instance, studies from organic milk demonstrated that it contains ~50% ofω-3
PUFAs, and that there exists a positive correlation between breastfeeding and cognitive
development [38,231]. Likewise, Cooper et al., (2015) showed that supplementation with
ω-3 PUFAs was significantly better for executive functioning and measures of IQ and
processing speed by comparing the supplementation with EPA + DHA vs. placebo in a
double-blind intervention [38,232]. Moreover, a 26-week randomized controlled trial gave
(EPA 1.3 g + DHA 0.9 g per day) to 65 healthy older adults, showing that ω-3 PUFAs
have beneficial effects on the brain and executive functions of cognition. Additionally, the
treatment prevented a decrease in grey matter volume compared to the placebo group,
and it had beneficial effects on the microstructural integrity of the white matter, carotid
intima-media thickness, and diastolic blood pressure [233]. However, excessive intake of
ω-3 PUFAs can have detrimental effects on the brain. For that reason, 3 g per day EPA +
DHA is considered a safe and recommended dose [38].

PUFAs can protect from the neurodegenerative damage observed in different NDs,
such as ALS. Fitzgerald et al., (2014) demonstrated thatω -3 PUFA intake was associated
with a reduced risk of ALS, showing a correlation with both α-linolenic acid and marine
n-3 PUFAs [234]. On the other side, brain slices of mice fed for 6 weeks with a diet that
provides 0.8% EPA, and treated with MPP (+), showed that EPA treatment attenuated the
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MPP (+)-induced increase in ARA content in the brain and prevented the increase in the
pro-apoptotic Bax and caspase-3 mRNAs [216]. Furthermore, the same group used the
mouse model of PD (MPTP)-probenecid (MPTP-P) and EPA treatment, showing that EPA
attenuated the MPTP-P-induced hypokinesia, ameliorated the procedural memory deficit,
and suppressed the production of striatal pro-inflammatory cytokines. However, EPA
did not prevent nigrostriatal dopamine loss [217]. After this, the same group evaluated
in vitro the mechanisms in MPP (+)-treated cells. In this experiment, they showed that
EPA attenuated the reduction of cell viability and prevented the presence of cytoplasmic
inclusions. EPA treatment also exerted protective effects, such as ameliorating the MPP
(+)-induced increase in tyrosine-related kinase B (TrkB) receptors, and downregulated ROS
and nitric oxide, probably due to the inhibition of neuronal NADPH oxidase and COX-2.
Similarly, EPA decreased the Bax: Bcl-2 ratio and cytochrome c release [218].

6.2. Linoleic Acid and Oleic Acid

There are other FAs with remarkable protective effects that could be used as a potential
adjuvant to treat several deleterious effects present on many NDs. It has been observed
that LA and alpha-LA (ALA) reduce the inflammatory response induced by PA treatment
in the microglial cells of mice fed an HFD for 4 weeks [40]. Likewise, there is evidence that
ALA and LA inhibit iNOS and COX-2 and ameliorated the cognitive dysfunction caused
by Aβ and PA [235].

Based on the potential neuroprotective effects of LA and ALA, Piomelli (2013) sug-
gested that OA ingestion stimulates oleoylethanolamide mobilization into the mucosal
cells of the gut, which activates a PPARα-mediated signal that travels through the afferent
vagus nerve to the hypothalamus, augmenting satiety, which has a beneficial effect for the
system [236]. Besides, OA and EPA reduce the PA-induced intracellular ceramide accu-
mulation, leading to a downregulation of IL-6 and TNF-α [43]. Indeed, co-administration
of PA and OA improved performance in spatial learning and motor activity compared to
the mouse that was fed only with PA [219]. Moreover, in mouse neuroblastoma Neuro-
2a (N2a) cells submitted to an OA pre-treatment attenuated PA-induced mitochondrial
dysfunction and insulin resistance by inhibiting the phosphorylation of mitogen-activated
protein kinase and the nuclear translocation of NF-κB p65 induced by PA [150].

6.3. Medium and Short Chain Fatty Acids

There is evidence that medium-chain triglyceride ingestion improves cognition with-
out adverse responses to hypoglycemia in intensively treated type 1 diabetic subjects [237].
These are a less harmful source for maintaining brain function because they are con-
verted to medium-chain FAs (MCFAs) [237]. MCFAs may serve as agonists of peroxisome
proliferator-activated receptors and are involved in several biological functions within
the brain as enhancers of insulin sensitivity and acute inflammation. Moreover, they are
involved in homeostatic functions, as well as energy processing, under pathological condi-
tions (PD, MS, and epilepsy, among others) [238,239]. Importantly, the brain can generate
ketone bodies through the oxidation of MCFAs [44]. Recent studies report the link between
the use of ketone bodies and the improvement of AD and PD patients. Studies of animal
models suggest that MCFAs can cross the BBB to be used by the brain and they do not
require chylomicrons for transport or carnitine to enter the mitochondria [240]. Further-
more, MCFA supplementation produced therapeutic effects, such as the improvement of
cognition in patients with AD and a reduction in neurodegeneration in a mouse model
of ALS [44,241]. Additionally, MCFAs modulate astrocyte metabolism, such as in the case
of decanoic acid, which induces metabolic changes, such as the acceleration of glycolysis,
enhancing the astrocyte–neuron lactate shuttle, and octanoic acid, which does not affect
lactate release but accelerates astrocyte ketogenesis [237]. Besides, the chain length of
SAFAs in isocaloric diets affects insulin sensitivity, lipid metabolism, and mitochondrial
fatty acid oxidation without influencing body weight. While dietary LCFA impairs insulin
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sensitivity and lipid metabolism, MCFA seems to protect from lipotoxicity and subsequent
insulin resistance without caloric restriction [242].

On the other hand, short-chain FAs (SCFAs), which are molecules containing 2–5
carbon units, have shown benefits to the brain and are part of the link between “gut-health”
and “brain-health” because they are naturally fermented by the gut flora, regulating ap-
petite [44]. A study used treatments with SCFAs to ameliorate encephalomyelitis and
reduce axonal damage via long-lasting imprinting on lamina-propria-derived gut T regula-
tory cells [243]. Nevertheless, more studies are needed to have a better understanding of
their role in the brain and the gut–brain axis.

7. Conclusions and Further Perspectives

In this study, we have focused on PA and its role in causing many detrimental effects
in the different types of brain cells. According to the literature, PA lipotoxicity involves
ER stress, ROS production, an inflammatory response, and autophagy impairment. It is
relevant to highlight that all the above factors can generate cellular damage and cell death.
Excess PA has been linked to the principal hallmarks of different NDs such as Aβ peptide
synthesis, tau hyperphosphorylation, calcium dysregulation, and ASN accumulation,
among others. Interestingly, in the brain tissue of patients that developed different NDs,
abnormally high concentrations of PA were found. These could suggest that PA is a
potential causal factor behind cellular damage and NDs and a possible therapeutic target
for multiple substances.

In that sense, there is growing evidence that other FAs can significantly ameliorate
the lipotoxic effects of PA through diverse pathways. In this review, we focused on those
FAs that exert neuroprotective functions and hold promise to treat the symptoms related
to NDs. In addition, there is a lack of information linked to the effects of PA over NADH
in the brain, very few studies using oligodendrocytes, and none applying 3D cell culture
or organoids and PA. Therefore, further studies are necessary to continue elucidating the
mechanism of PA’s effects in the brain and its relationship with neurodegenerative diseases.
Importantly, the damages caused by PA in the different brain cells involves a wide diversity
of mechanisms, activating different pathways in the same cells. Using holistic approaches,
such as systems biology, could help to obtain better insights of the mechanisms working
at a determined time. Finally, we found it necessary to continue exploring the potential
effects of non-saturated fatty acids, SCFA, and MCFA as possible therapies for NDs.
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220. Rozpędek-Kamińska, W.; Siwecka, N.; Wawrzynkiewicz, A.; Wojtczak, R.; Pytel, D.; Diehl, J.A.; Majsterek, I. The PERK-dependent
molecular mechanisms as a novel therapeutic target for neurodegenerative diseases. Int. J. Mol. Sci. 2020, 21, 2108. [CrossRef]
[PubMed]

221. Raefsky, S.M.; Furman, R.; Milne, G.; Pollock, E.; Axelsen, P.; Mattson, M.P.; Shchepinov, M.S. Deuterated polyunsaturated fatty
acids reduce brain lipid peroxidation and hippocampal amyloid β-peptide levels, without discernable behavioral effects in an
APP/PS1 mutant transgenic mouse model of Alzheimer’s disease. Neurobiol. Aging 2018, 66, 165–176. [CrossRef]

222. Elharram, A.; Czegledy, N.M.; Golod, M.; Milne, G.L.; Pollock, E.; Bennett, B.M.; Shchepinov, M.S. Deuterium-reinforced
polyunsaturated fatty acids improve cognition in a mouse model of sporadic Alzheimer’s disease. FEBS J. 2017, 284, 4083–4095.
[CrossRef]

223. Ma, E.; Ingram, K.H.; Milne, G.L.; Garvey, W.T. F2-Isoprostanes Reflect Oxidative Stress Correlated with Lean Mass and Bone
Density but Not Insulin Resistance. J. Endocr. Soc. 2017, 1, 436–448. [CrossRef]

224. Famitafreshi, H.; Karimian, M. Prostaglandins as the Agents That Modulate the Course of Brain Disorders. Degener. Neurol.
Neuromuscul. Dis. 2020, 10, 1–13. [CrossRef] [PubMed]

225. Joffre, C.; Dinel, A.L.; Chataigner, M.; Pallet, V.; Layé, S. N-3 polyunsaturated fatty acids and their derivates reduce neuroinflam-
mation during aging. Nutrients 2020, 12, 647. [CrossRef] [PubMed]

226. Lafourcade, M.; Larrieu, T.; Mato, S.; Duffaud, A.; Sepers, M.; Matias, I.; De Smedt-Peyrusse, V.; Labrousse, V.F.; Bretillon, L.;
Matute, C.; et al. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat. Neurosci. 2011,
14, 345. [CrossRef] [PubMed]

227. Larrieu, T.; Madore, C.; Joffre, C.; Layé, S. Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor
signaling pathway in the brain and associated anxiety-like behavior in mice. J. Physiol. Biochem. 2012, 68, 671–681. [CrossRef]
[PubMed]

228. Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary Omega-3 Fatty Acids Normalize BDNF Levels, Reduce Oxidative Damage, and
Counteract Learning Disability after Traumatic Brain Injury in Rats. J. Neurotrauma 2004, 21, 1457–1467. [CrossRef]

229. Rao, J.S.; Ertley, R.N.; Lee, H.-J.; DeMar Jr, J.C.; Arnold, J.T.; Rapoport, S.I.; Bazinet, R.P. n-3 polyunsaturated fatty acid deprivation
in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol. Psychiatry 2007, 12, 36–46. [CrossRef]
[PubMed]

230. Gómez-Soler, M.; Cordobilla, B.; Morató, X.; Fernández-Dueñas, V.; Domingo, J.C.; Ciruela, F. Triglyceride Form of Docosahex-
aenoic Acid Mediates Neuroprotection in Experimental Parkinsonism. Front. Neurosci. 2018, 12, 604. [CrossRef]

231. Kramer, M.; Mironova, E.; Vanilovich, I.; Platt, R.; Matush, L.; Igumnov, S.; Fombonne, E.; Bogdanovich, N.; Collet, J.-P.;
Chalmers, B.; et al. Breastfeeding and child cognitive development. Child Care Health Dev. 2008, 36, 591. [CrossRef]

232. Cooper, R.E.; Tye, C.; Kuntsi, J.; Vassos, E.; Asherson, P. Omega-3 polyunsaturated fatty acid supplementation and cognition: A
systematic review and meta-analysis. J. Psychopharmacol. 2015, 29, 753–763. [CrossRef]

233. Witte, A.V.; Kerti, L.; Hermannstädter, H.M.; Fiebach, J.B.; Schreiber, S.J.; Schuchardt, J.P.; Hahn, A.; Flöel, A. Long-Chain Omega-3
Fatty Acids Improve Brain Function and Structure in Older Adults. Cereb. Cortex 2014, 24, 3059–3068. [CrossRef] [PubMed]

http://doi.org/10.1093/hmg/ddu137
http://doi.org/10.1152/ajpendo.00519.2011
http://doi.org/10.1210/en.2013-1712
http://www.ncbi.nlm.nih.gov/pubmed/24169557
http://doi.org/10.3389/fnsyn.2019.00003
http://doi.org/10.1186/1476-511X-13-197
http://www.ncbi.nlm.nih.gov/pubmed/25522984
http://doi.org/10.1074/jbc.M305841200
http://www.ncbi.nlm.nih.gov/pubmed/12923200
http://doi.org/10.1016/j.ejphar.2010.09.046
http://www.ncbi.nlm.nih.gov/pubmed/20868657
http://doi.org/10.1016/j.bbr.2011.09.033
http://www.ncbi.nlm.nih.gov/pubmed/21971013
http://doi.org/10.1111/jnc.12068
http://www.ncbi.nlm.nih.gov/pubmed/23106698
http://doi.org/10.3923/PJBS.2007.3650.3655
http://doi.org/10.3390/ijms21062108
http://www.ncbi.nlm.nih.gov/pubmed/32204380
http://doi.org/10.1016/j.neurobiolaging.2018.02.024
http://doi.org/10.1111/febs.14291
http://doi.org/10.1210/js.2017-00006
http://doi.org/10.2147/DNND.S240800
http://www.ncbi.nlm.nih.gov/pubmed/32021549
http://doi.org/10.3390/nu12030647
http://www.ncbi.nlm.nih.gov/pubmed/32121189
http://doi.org/10.1038/nn.2736
http://www.ncbi.nlm.nih.gov/pubmed/21278728
http://doi.org/10.1007/s13105-012-0179-6
http://www.ncbi.nlm.nih.gov/pubmed/22707188
http://doi.org/10.1089/neu.2004.21.1457
http://doi.org/10.1038/sj.mp.4001888
http://www.ncbi.nlm.nih.gov/pubmed/16983391
http://doi.org/10.3389/fnins.2018.00604
http://doi.org/10.1001/archpsyc.65.5.578
http://doi.org/10.1177/0269881115587958
http://doi.org/10.1093/cercor/bht163
http://www.ncbi.nlm.nih.gov/pubmed/23796946


Int. J. Mol. Sci. 2022, 23, 2577 32 of 32

234. Fitzgerald, K.C.; O’Reilly, É.J.; Falcone, G.J.; McCullough, M.L.; Park, Y.; Kolonel, L.N.; Ascherio, A. Dietary ω-3 polyunsaturated
fatty acid intake and risk for amyotrophic lateral sclerosis. JAMA Neurol. 2014, 71, 1102–1110. [CrossRef] [PubMed]

235. Ali, W.; Ikram, M.; Park, H.Y.; Jo, M.G.; Ullah, R.; Ahmad, S.; Abid, N.B.; Kim, M.O. Oral Administration of Alpha Linoleic
Acid Rescues Aβ-Induced Glia-Mediated Neuroinflammation and Cognitive Dysfunction in C57BL/6N Mice. Cells 2020, 9, 667.
[CrossRef] [PubMed]

236. Piomelli, D. A fatty gut feeling. Trends Endocrinol. Metab. 2013, 24, 332–341. [CrossRef] [PubMed]
237. Thevenet, J.; De Marchi, U.; Domingo, J.S.; Christinat, N.; Bultot, L.; Lefebvre, G.; Sakamoto, K.; Descombes, P.; Masoodi, M.;

Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte–neuron lactate and
ketone body shuttle systems. FASEB J. 2016, 30, 1913–1926. [CrossRef] [PubMed]

238. Lalwani, A.M.; Yilmaz, A.; Bisgin, H.; Ugur, Z.; Akyol, S.; Graham, S.F. The biochemical profile of post-mortem brain from people
who suffered from epilepsy reveals novel insights into the etiopathogenesis of the disease. Metabolites 2020, 10, 261. [CrossRef]
[PubMed]

239. Kao, Y.C.; Ho, P.C.; Tu, Y.K.; Jou, I.M.; Tsai, K.J. Lipids and Alzheimer’s disease. Int. J. Mol. Sci. 2020, 21, 1505. [CrossRef]
[PubMed]

240. Page, K.A.; Williamson, A.; Yu, N.; McNay, E.C.; Dzuira, J.; McCrimmon, R.J.; Sherwin, R.S. Medium-chain fatty acids improve
cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute
hypoglycemia. Diabetes 2009, 58, 1237–1244. [CrossRef]

241. Zhao, W.; Varghese, M.; Vempati, P.; Dzhun, A.; Cheng, A.; Wang, J.; Lange, D.; Bilski, A.; Faravelli, I.; Pasinetti, G.M. Caprylic
Triglyceride as a Novel Therapeutic Approach to Effectively Improve the Performance and Attenuate the Symptoms Due to the
Motor Neuron Loss in ALS Disease. PLoS ONE 2012, 7, e49191. [CrossRef] [PubMed]

242. Wein, S.; Wolffram, S.; Schrezenmeir, J.; Gašperiková, D.; Klimeš, I.; Šeböková, E. Medium-chain fatty acids ameliorate insulin
resistance caused by high-fat diets in rats. Diabetes Metab. Res. Rev. 2009, 25, 185–194. [CrossRef]

243. Haghikia, A.; Jörg, S.; Duscha, A.; Berg, J.; Manzel, A.; Waschbisch, A.; Hammer, A.; Lee, D.H.; May, C.; Wilck, N.; et al.
Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 2015, 43, 817–829.
[CrossRef]

http://doi.org/10.1001/jamaneurol.2014.1214
http://www.ncbi.nlm.nih.gov/pubmed/25023276
http://doi.org/10.3390/cells9030667
http://www.ncbi.nlm.nih.gov/pubmed/32182943
http://doi.org/10.1016/j.tem.2013.03.001
http://www.ncbi.nlm.nih.gov/pubmed/23567058
http://doi.org/10.1096/fj.201500182
http://www.ncbi.nlm.nih.gov/pubmed/26839375
http://doi.org/10.3390/metabo10060261
http://www.ncbi.nlm.nih.gov/pubmed/32585915
http://doi.org/10.3390/ijms21041505
http://www.ncbi.nlm.nih.gov/pubmed/32098382
http://doi.org/10.2337/db08-1557
http://doi.org/10.1371/journal.pone.0049191
http://www.ncbi.nlm.nih.gov/pubmed/23145119
http://doi.org/10.1002/dmrr.925
http://doi.org/10.1016/j.immuni.2015.09.007

	Introduction 
	Fatty Acid Roles in Non-Pathological Conditions 
	Fatty Acid Accumulation, Lipotoxicity, and Brain Dysfunction 
	Pathways Involved in Palmitic Acid-Induced Toxicity 
	Role of Ceramides in Lipotoxic States 
	Inflammation Pathways (TLR, NF-B, and Cytokines) 
	Lipotoxic Oxidative Stress 
	Endoplasmic Reticulum Stress Pathways 
	Apoptosis Related to PA 
	Autophagy and Palmitic Acid 

	Palmitic Acid and Neurogenerative Diseases 
	Alzheimer Disease 
	Parkinson’s Disease 
	Palmitic Acid and Other Neurodegenerative Disease 

	The Therapeutic Potential of Other Fatty Acid in NDs 
	Poly-Unsaturated Fatty Acids (PUFAs) 
	Linoleic Acid and Oleic Acid 
	Medium and Short Chain Fatty Acids 

	Conclusions and Further Perspectives 
	References

