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SUMMARY

Normal synapse formation is fundamental to brain function.We showhere that an apical-basal polarity

(A-BP) protein, Lgl1, is present in the postsynaptic density and negatively regulates glutamatergic

synapse numbers by antagonizing the atypical protein kinase Cs (aPKCs). A planar cell polarity pro-

tein, Vangl2, which inhibits synapse formation, was decreased in synaptosome fractions of cultured

cortical neurons from Lgl1 knockout embryos. Conditional knockout of Lgl1 in pyramidal neurons

led to reduction of AMPA/NMDA ratio and impaired plasticity. Lgl1 is frequently deleted in Smith-Ma-

genis syndrome (SMS). Lgl1 conditional knockout led to increased locomotion, impaired novel object

recognition and social interaction. Lgl1+/� animals also showed increased synapse numbers, defects

in open field and social interaction, as well as stereotyped repetitive behavior. Social interaction in

Lgl1+/� could be rescued by NMDA antagonists. Our findings reveal a role of apical-basal polarity

proteins in glutamatergic synapse development and function and also suggest a potential treatment

for SMS patients with Lgl1 deletion.
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INTRODUCTION

Glutamatergic synapses are the major class of excitatory synapses in the mammalian central nervous sys-

tem (Collingridge et al., 1983; Monaghan et al., 1989; Watkins and Evans, 1981). Normal development and

plasticity of glutamatergic synapses are essential to the emergence of normal behavioral functions, the

disruption of which causes various neurological and neuropsychiatric disorders. A recent study showed

that components of planar cell polarity (PCP) signaling pathway are key regulators of glutamatergic syn-

apse formation (Thakar et al., 2017). Celsr3 is essential for glutamatergic synapse formation, whereas

Vangl2 negatively regulates glutamatergic synapse formation. Therefore, PCP signaling components can

both positively and negatively regulate glutamatergic synapse numbers.

Lethal giant larvae (Lgl1) is a key component of the highly conserved apical-basal polarity signaling

pathway, which polarizes epithelial cells along the apical and basolateral axis (Karner et al., 2006). Lgl1

forms the basolateral complexes with Scribble and Discs Large (Dlg) and mutually excludes and antago-

nizes the function of the apical complex, the aPKC/Par3/Par6 complex. Lgl1 has been implicated in polar-

ized exocytosis and is essential for establishing or maintaining apical-basal polarity (Betschinger et al.,

2003; Georgiou et al., 2008; Macara, 2004; Yamanaka et al., 2003, 2006). Dlg homologs are important post-

synaptic scaffold proteins, called MAGUKs (Zhu et al., 2016). MAGUK proteins play essential roles in post-

synaptic density organization and glutamate receptor trafficking and clustering. In addition, Lgl1 has been

shown to associate and co-traffic with FMRP (Zarnescu et al., 2005), a translational regulator of many syn-

aptic components. Apical-basal and planar polarity pathways are known to interact with each other. For

example, apical-basal polarity signaling has been recently shown to regulate the location of PCP signaling

(Chuykin et al., 2018).

Here we report that conditional knockout of Lgl1 from postnatal day 7 (P7) in hippocampal pyramidal neu-

rons, before the peak of glutamatergic synapse formation, resulted in increased glutamatergic synapse

density. In aPKC double conditional knockout (KO) (dcKO), glutamatergic synapse numbers were initially

normal (at P14) but were reduced in adulthood. Triple conditional KO (tcKO) of Lgl1 and aPKCs rescued

the defects of synapse numbers in Lgl1 cKO. In the synaptosome fraction of cultured Lgl1�/� neurons

Vangl2 was found decreased. Lgl1 cKO and aPKC dcKO led to opposite changes in ultrastructure, with
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loss of Lgl1 leading to a larger postsynaptic density and smaller synaptic cleft. Lgl1 cKO also showed

reduced AMPA/NMDA receptor ratio. Deleting Lgl1 in adulthood also led to increased synapse numbers

and a much greater reduction of AMPA/NMDA receptor ratio, as well as deficit in long-term potentiation.

These results suggest that Lgl1 regulates glutamate receptor trafficking, potentially through its binding

partners, the MAGUK proteins. Therefore, together with PCP signaling, apical-basal signaling also has a

profound influence on synapse formation, forming another layer of regulation, potentially allowing addi-

tional regulatory inputs.

Lgl1 is frequently deleted in a chromosome 17 p11.2 microdeletion disorder, called Smith-Magenis syndrome

(SMS) (Smithet al., 1986). SMS is adenovogeneticdisorder arising veryearly inembryonicdevelopment through

homologous recombination (Chen et al., 1997). A deletion interval of 3.5 Mb occurs in approximately 70% of

patients (Gropmanet al., 2007). Individualswith the deletion are frequently diagnosedwith autism spectrumdis-

orders (ASDs), attention-deficit/hyperactivity disorder, obsessive-compulsive disorder (OCD), or other behav-

ioral disorders (Dykens et al., 1997; Dykens and Smith, 1998; Laje et al., 2010; Martin et al., 2006; Smith et al.,

1998). Symptoms vary between individuals despite common deletions (Edelman et al., 2007; Potocki et al.,

2003), and multiple genes likely contribute to the syndrome (Girirajan et al., 2006). Recent work has implicated

Rai1 in non-ASDsymptomsof SMS (Huanget al., 2016). The locus for Lgl1 lieswithin a refined consensusdeletion

site of�950 kb for SMS that has been reported in genetic studies of patients carrying the chromosomal deletion

(Vlangos et al., 2003). Fluorescence in situ hybridization probes targeting the sequence for the human homolog

of Lgl1 fail to hybridize with one of the copies of chromosome 17 in patients with SMS (Koyama et al., 1996). The

functional role of Lgl1 in SMS has not been reported.

We found that Lgl1 conditional KO in excitatory neurons from early postnatal stages (P7) resulted in behav-

ioral deficits in adulthood, such as hyperactivity, cognitive impairment, and social interaction defects. We

found that Lgl1+/� animals also had higher synapse numbers and showed impaired social interaction and

increased stereotyped repetitive behaviors. Patients with SMS show either seizures or abnormal electroen-

cephalography (EEG) without overt seizure (Chen et al., 1996; Greenberg et al., 1996). We found that

Lgl1+/� animals have lower seizure threshold. Because our electrophysiological and biochemical results

suggest higher NMDA activity in Lgl1 mutants, we tested whether NMDA blockers could rescue any of

the behavioral deficits and found that low-dose ketamine, MK801, and memantine could rescue the social

interaction deficit of Lgl+/� animals. Therefore, apical-basal cell polarity signaling components are also

essential for normal synaptic function and the loss of their function may cause neuropsychiatric disorders;

these NMDA blockers may help alleviate certain behavioral symptoms of SMS patients with Lgl1 deletion.
RESULTS

Increased Glutamatergic Synapse Numbers and Reduced AMPA/NMDA Ratio in Lgl1

Conditional Knockout In Vivo

Glutamatergic synapse formation starts shortly after birth. Lgl1 has roles in earlier stages of development,

including neurogenesis. To avoid early developmental defects, we conditionally knocked out Lgl1 in hip-

pocampal pyramidal neurons from postnatal day 7 (P7) using an inducible Cre line, SLICK-H (Figures S1A–

S1C) (Heimer-McGinn and Young, 2011). Tamoxifen was injected intraperitoneally on P7 and postnatal day

8 (P8) and animals were euthanized and perfused on postnatual day 14 (P14) for electron microscopy. We

counted asymmetric and symmetric synapses in the stratum radiatum. Images were taken 150–200 mm from

the CA1 cell body layer in brain slices. We observed a 28.7% increase in the density of asymmetric (excit-

atory) synapse that are formed on dendritic spines (Figure 1A). Axo-dendritic synapses show no change in

density. No significant change was observed in symmetric (inhibitory) synapse density in these slices.

Todeterminewhether the increasedsynapsespersist,wefixedslices from8-weekoldadultmice thathad tamox-

ifen injection at P7 and P8. In these animals, we observed an increase of 31.8% in asymmetric synapse density

150–200 mm from the CA1 cell body layer (Figure 1B). In contrast to juvenile animals, adult animals show a sta-

tistically significant 25.5% increase in density of symmetric synapses in the region 50 mm from the CA1 cell layer.

The delay in the increase of symmetric synapses suggests that it is not directly caused by the loss of function of

Lgl1, but possibly by a homeostatic response of the hippocampal circuitry. The number of asymmetric synapses

in the region 50 mm from the CA1 cell layer also shows an increase (Figures S1D and S1E).

To assess the function of the increased synapses, we recorded miniature excitatory postsynaptic currents

(mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) from acute brain slices from P14 and P15
26 iScience 20, 25–41, October 25, 2019
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Figure 1. Lgl1 Conditional Knockout in Pyramidal Neurons Led to Increased Numbers of Asymmetric Synapses

(A) Electron micrographs taken 150–200 mm (top) or 50 mm (bottom) ventral to the CA1 pyramidal neuron layer in the

schaffer collateral region of P14 mice. Red arrows denote asymmetric synapses. Black arrows denote symmetric synapses.

Scale bar, 500 nm. Quantification of synapse numbers corresponding to each region: N = 6 control, 6 Lgl1 cKO animals.

(B) Electron micrographs taken 150–200 mm (top) or 50 mm (bottom) ventral to the CA1 pyramidal neuron layer in the

schaffer collateral region of 8-week-old mice. Red arrows denote asymmetric synapses. Black arrows denote symmetric

synapses. Quantification of synapse numbers corresponding to each region: N = 5 control, 5 Lgl1 cKO animals.

(C) Representative traces of mEPSC recordings from acute slices from P13–P15 control and Lgl1 cKOmice. Quantification

of mEPSC frequency and amplitude: n = 22 control, 19 Lgl1 cKO neurons.

(D) Representative traces of mIPSC recordings from acute slices from P14 control and Lgl1 cKO mice. Quantification of

mIPSC frequency and amplitude: n = 20 control, 19 Lgl1 cKO neurons.

(E) Representative confocal images of oblique CA1 dendrites filled with Alexa Fluor 555 hydrazide. Scale bar, 10 mm.

(F and G) (F) Quantification of spine density and (G) distribution of spine morphology.

(H) Quantification of cumulative distributions of synapse ultrastructure measurements in P14 control and cKO animals:

n = 194 control, 174 Lgl1 cKO synapses. Quantification of cumulative distributions of synapse ultrastructure

measurements in 8-week old control and cKO animals: n = 194 control, 208 Lgl1 cKO synapses.

(I) Biochemical fractionation from wild-type P14 mice. P2, crude synaptosomal; SMF, synaptic membrane fraction; PSD,

postsynaptic density.

(J) Representative traces of NMDAR currents and combined AMPAR/NMDAR currents from acute slices taken from P14

control and Lgl1 cKOmice following Lgl1 deletion at P7. Scale bar, 100 pA (vertical); 100 ms (horizontal). Quantification of

the calculated ratio of AMPAR current to NMDAR current: n = 13 control, 13 Lgl1 cKO neurons.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
control and Lgl1 cKO animals. Quantification of frequency and amplitude of synaptic currents indicates that

mEPSC frequency was increased by 38%, whereas amplitude was not changed significantly, indicating an

increase in synapse number but similar AMPA-R composition (Figure 1C). No significant changes were

observed in mIPSC currents (Figure 1D), consistent with our electron microscopy data. Consistent with

this, cultured hippocampal neurons from mice carrying germline deletion of Lgl1 also showed increased

colocalization between PSD95 and vGlut1 puncta at 14 days in vitro (Figures S1F and S1G). mEPSC kinetics

did not show significant changes (Figure S1H), whereas mIPSC kinetics only showed a significant decrease

in decay time constant, but not in other measures (Figure S1I).

To determine whether dendritic spine density was affected, we filled neurons from fixed brain sections with

Alexa 555 dye to visualize spines in yellow fluorescent protein (YFP)-positive CA1 pyramidal neurons (Fig-

ure 1E). We found that overall spine density was indeed increased by 38% in Lgl1 cKO mice (Figure 1F). We

also characterized the morphology of spines at P14. Compared with control, Lgl1 cKO mice showed more

mushroom spines and a reduced proportion of stubby spines (Figure 1G). As mushroom spines represent

stabilized synapses and thin spines are unstable, this suggests that Lgl1 cKO led to functionally hypercon-

nected circuits. Consistent with this, we then quantified the ultrastructure from the electron micrograph

and found that the length of postsynaptic density (PSD) was increased and the gap of synaptic cleft was

reduced at P14 and at age 8 weeks (Figure 1H). As Lgl1 interacts with the MAGUK proteins, we determined

the subcellular localization and found that Lgl1 was present in the postsynaptic density (Figure 1I). We also

measured AMPA/NMDA ratio, and found that the ratio is decreased in the Lgl1 cKO, suggesting altered

glutamate receptor trafficking or function (Figure 1J).

Lgl1 Negatively Regulates Synapse Number by Inhibiting the Atypical PKCs

As Lgl1 and aPKC antagonize each other in cell polarity signaling, we asked whether Lgl1 may regulate syn-

apse formation by inhibiting the aPKCs. To validate whether Lgl1 also inhibits the aPKCs in neurons, we

tested their interaction in neural progenitor cells from E11.5 mouse telencephalon. Lgl1 cKO and control

cells were generated by treatment of cultures with AD5-CMV-Cre and Ad5-CMV-GFP adenoviruses (Vector

Development Laboratory, Baylor College of Medicine), respectively, and verified that Lgl1 protein was

completely lost in the cKO (Figure S2A). We then tested whether aPKC activity, as evident by association

with Par3, was increased in Lgl1 cKO. Activated aPKC (phosphorylated at T555) and aPKC interaction with

Par3 were found strongly increased in Lgl1 cKO, confirming the increase of apical signaling and decrease of

basal-lateral signaling.

There are two isoforms of aPKCs in mouse. We used the same strategy of tamoxifen-induced deletion of

aPKCs using SLICK-H to delete both isoforms of aPKCs, PKCi/l and PKCz, to eliminate the possibility of

compensation. Following this deletion, we counted asymmetric and symmetric synapses from the schaffer
28 iScience 20, 25–41, October 25, 2019
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Figure 2. Lgl1 Inhibits Synapse Formation by Inhibiting aPKC and Promotes the Expression of Vangl2

(A) Electron micrographs taken 150–200 mm (top) or 50 mm (bottom) ventral to the CA1 pyramidal neuron layer in the

schaffer collateral region of P14 mice. Red arrows denote asymmetric synapses. Black arrows denote symmetric synapses.

Scale bar, 500 nm. Quantification of synapse numbers corresponding to each region: N = 8 control, 5 aPKC dcKO animals.

(B) Electron micrographs taken 150–200 mm (top) or 50 mm (bottom) ventral to the CA1 pyramidal neuron layer in the

schaffer collateral region of 8-week-old mice. Red arrows denote asymmetric synapses. Black arrows denote symmetric

synapses. Quantification of synapse numbers corresponding to each region: N = 5 control, 8 aPKC dcKO animals.

(C) Quantification of cumulative distribution of synapse ultrastructure measurements in P14 control and cKO animals:

n = 194 control, 129 aPKC dcKO synapses. Quantification of cumulative distribution of synapse ultrastructure

measurements in 8-week-old control and cKO animals: n = 87 control, 168 aPKC dcKO synapses.

(D) Electron micrographs taken 150–200 mm (top) or 50 mm (bottom) ventral to the CA1 pyramidal neuron layer in the

schaffer collateral region of P14 mice. Red arrows denote asymmetric synapses. Black arrows denote symmetric synapses.

Scale bar, 500 nm. Quantification of synapse numbers corresponding to each region: N = 7 control, 6 Lgl1;PKCi/l;PKCz

tcKO animals.

(E) Electron micrographs taken 150–200 mm (top) or 50 mm (bottom) ventral to the CA1 pyramidal neuron layer in the

schaffer collateral region of 8-week-old mice. Red arrows denote asymmetric synapses. Black arrows denote symmetric

synapses. Quantification of synapse numbers corresponding to each region: N = 8 control, 10 Lgl1;PKCi/l;PKCz tcKO

animals.

(F) Levels of Vangl2 and JAM-C proteins in P2 fractions by Western blots.

(G) Quantification of Vangl2 and JAM-C protein levels in P2 fraction. N = 5 for Vangl2. N = 4 for JAM-C.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
collateral 150 mm from the CA1 cell layer of 2- and 8-week-old animals. At 2 weeks, we observed no signif-

icant difference in the number of asymmetric or symmetric synapses (Figure 2A). However, at 8 weeks, there

was a significant decrease (�16.1%) in the number of asymmetric synapses (Figure 2B). In the proximal re-

gion 50 mm from the CA1 cell body layer, we also observed a significant decrease at 8 weeks, but not at

2 weeks (Figures S2B and S2C). Therefore, aPKC is not essential for initial glutamatergic synapse formation

but required for their stability and maintenance. We then analyzed the ultrastructure and found that the

PSD width was reduced at 2 weeks and the synaptic cleft was increased at 2 weeks and that the magnitude

of this change increased at 8 weeks (Figure 2C). This suggests that aPKC is likely important for the stability

of synapses, the opposite of Lgl1 (Figure 1H).

We then asked whether simultaneous deletion of Lgl1, PKCi/l, and PKCz might lead to mitigation of the

effects observed in the Lgl11 conditional deletion experiments. In 2-week-old Lgl1:PKCi/l:PKCz tcKO an-

imals, we observe no significant change in asymmetric synapse number, suggesting that the increase of

synapse numbers in Lgl1 cKO may be partly due to the increase of aPKC activity (Figure 2D). However,

we observed a significant decrease (�25.9%) in the number of symmetric synapses. In 8-week-old

Lgl1:PKCi/l:PKCz tcKO animals, we observed no significant change in asymmetric or symmetric synapse

number (Figure 2E). No significant difference in asymmetric synapse density was observed in the proximal

region at 2 and 8 weeks (Figures S3A and S3B). Therefore, Lgl1 may negatively regulate glutamatergic syn-

apse numbers by inhibiting aPKC, which is required for the stability and maintenance of glutamatergic

synapses.

Because PCP proteins regulate synapse formation and apical-basal polarity signaling regulates the local-

ization PCP signaling components, we tested whether Lgl1 may regulate PCP components using synapto-

some fractionation. The SLICK-H line (inducible Cre) expresses Cre in only 60% of pyramidal neurons at P7.

Therefore, we cultured neurons from Lgl1 KOs, heterozygotes, and wild-type and extracted synaptosome

fraction. We found that Vangl2 protein levels are decreased in the P2 fractions of Lgl1+/� and Lgl1�/�
compared with that of the wild-type (Figure 2F), whereas the levels of an adhesion molecule Jam-C were

not affected (Figure 2G). This is consistent with the inhibitory function of Vangl2 in glutamatergic synapse

formation.
Lgl1 Controls Glutamatergic Synapse Number and Is Required for Synaptic Plasticity in

Adulthood

Because Lgl1 is highly expressed in the adult central nervous system, including the hippocampus, we next

characterized the role of Lgl1 in the adult brain. By early adulthood at age 6 weeks, synapse formation has

slowed considerably in the rodent hippocampus compared with postnatal development (Wang et al.,

2007). We conditionally knocked out Lgl1 by injecting tamoxifen at 6 weeks after birth in SLICK-H animals.
30 iScience 20, 25–41, October 25, 2019



We then used electron microscopy to assess the density of asymmetric and symmetric synapses in the

schaffer collateral in 10-week-old animals. Asymmetric synapse density in the region 150–200 mm distal

to the CA1 cell body layer was again increased by 28.6% on the dendritic spines (Figures 3A and 3B). A

similar increase was observed in the proximal region 50 mm from the CA1 cell layer (Figures 3C and 3D).

Symmetric synapses were again unaffected (Figures 3E and 3F). In addition, synapse ultrastructure was

altered in the adult deletion of Lgl1, with longer and wider PSDs (Figures 3G and 3H) and smaller synaptic

clefts (Figure 3I), possibly as a result of altered biochemical makeup of synapses. We performed patch

clamping with P42 slices to assess the synaptic receptor expression from animals with Lgl1 deleted begin-

ning at P28. We observed a severe reduction in the AMPA/NMDA ratio in neurons from Lgl1 cKOmice (Fig-

ures 3J and 3K), much greater than was observed at P14 following deletion of Lgl1 at P7/P8. These results

suggest that Lgl1 is also required for control of synapse number and quality in adulthood.

We tested synaptic plasticity using hippocampal slices from 10-week old mice following conditional Lgl1

deletion at age 6 weeks. Slices from Lgl1 cKO animals showed impaired long-term potentiation induction

in response to theta burst stimulation (TBS) (Figures 3L–3M). In addition, slices from Lgl1 cKOmice showed

impaired paired-pulse facilitation when stimuli were separated by 100 ms (Figure 3N), indicating altered

synaptic release.

Lgl1 cKO Mice Showed Behavioral Deficits

Lgl1 is frequently deleted in SMS. But the genes responsible for the behavioral symptoms of SMS have not

been well understood. To test whether deletion of Lgl1 in pyramidal neurons may contribute to the behav-

ioral deficits, we performed a number of behavioral tests. We assessed locomotor activity and exploratory

behavior using an open field test (Figure 4A; Gould et al., 2009). Lgl1 cKO animals showed increased loco-

motor activity, traveling 20% further during the 10-min test than control mice (Figure 4B). No significant

changes were observed in thigmotaxis, the preference for the outside of the field versus the center region

(Figure 4C). Animals did not show a difference in the amount of time spent self-grooming during the open-

field test (Figure S4A), but showed a significant increase in rearing activity, an exploratory behavior

(Figure S4B).

To assess cognitive function following conditional Lgl1 deletion, we tested the Lgl1 cKO crossed with

SLICK-H in the novel object recognition (NOR) paradigm. The NOR test assesses whether an animal can

distinguish a novel object from a previously explored familiar object. We calculated a preference index

from each animal by subtracting the familiar object interaction time from the novel exploration time and

normalizing to the total exploration time ((novel-familiar)/(novel + familiar)). During the sample phase,

when both objects were novel, animals showed no preference and would randomly explore both objects

(Figures 4D and 4E). When a novel object was introduced after a 2-min delay, control animals showed a

strong preference for the novel object, whereas Lgl1 cKO animals continued to explore randomly and

maintain a preference index close to zero (Figures 4F and 4G).

Brain hyperconnectivity has been associated with ASDs (Dominguez et al., 2013; Keown et al., 2013; Supe-

kar et al., 2013). Sociability in the three-chamber social interaction task has been used extensively to assess

social behavior in mice (Yang et al., 2011). We tested Lgl1 cKO mice crossed with SLICK-H to assess their

sociability (Figures 4H–4P). Before introduction of the target mouse, animals showed no preference for

either side, exploring the field randomly (Figures 4H–4J). When a mouse was introduced to one side of

the field, whereas an empty enclosure was introduced to the opposite side, control animals showed a

strong preference for interacting with the novel mouse. Lgl1 cKO animals showed no preference (Figures

4K–4M) and spent similar amount of time exploring the novel mouse and novel object. Interestingly, no sta-

tistically significant difference was observed in the final phase of the test where subject mice were given a

choice between a familiar and novel target mouse (Figures 4N–4P). Similar to controls, Lgl1 cKO mice still

appeared to show a preference for the novel mouse. Lgl1 cKO mice showed normal spatial memory by al-

ternations and entries in the Y-maze (Figures S4C and S4D) and normal visual performance (Figure S4E).

Hippocampal- and amygdala-dependent memory formation was spared in the conditioned fear task (Fig-

ure S4F). Nestlet-shredding activity was unchanged in the conditional deletion of Lgl1 (Figure S4G).

Atypical PKC Deletion Partially Rescued Behavioral Deficits of Lgl1 cKO

Having observed synapse phenotypes in the conditional aPKC deletion, we then tested whether the

changes would lead to behavioral deficits. In open-field test, PKCi/l and PKCz dcKO animals showed no
iScience 20, 25–41, October 25, 2019 31



Figure 3. Increased Synapse Numbers, Altered AMPA/NMDA Ratio, and Impaired Plasticity in Adult Conditional Knockout of Lgl1

(A) Electron micrographs of the schaffer collateral (SC) 150–200 mm ventral to the CA1 pyramidal cell layer of slices from 10-week-old control and Lgl1 cKO

mice following deletion of Lgl1 beginning at 6 weeks of age. Red arrows denote asymmetric synapses. Scale bar, 500 nm. N = 6 control, 8 Lgl1 cKO animals.

(B) Quantification of asymmetric synapse density of the region described in Figure 5A.

(C) Electron micrographs of the SC 50 mm ventral to the CA1 pyramidal cell layer in 10-week-old animals.

(D) Quantification of asymmetric synapses in the proximal region.

(E) Micrographs showing symmetric synapses (black arrows) in the proximal region of the SC.

(F) Quantification of symmetric synapses.

(G) Quantification of cumulative frequency for postsynaptic density (PSD) length.

(H) Quantification for PSD width.

(I) Quantification of synaptic cleft distance. n = 180 Lgl1 control synapses, 242 Lgl1 cKO synapses.

(J) Representative traces of NMDAR current and combined AMPAR/NMDAR current from acute slices taken from 6-week-old control and Lgl1 cKO mice

following Lgl1 deletion beginning at P28. Scale bar, 50 pA, 80 ms.

(K) Quantification of the calculated ratio of AMPAR to NMDAR current. N = 5 control, 7 Lgl1 cKO neurons.

(L) Representative traces of EPSPs before and after TBS stimulation was delivered to acute slices from control and Lgl1 cKO mice. Scale bar, 0.2 mV, 10 ms.

(M) Quantification of EPSP slope before and after theta burst stimulation (TBS). N = 5 Lgl1 control, 4 Lgl1 cKO.

(N) Quantification of paired-pulse ratio from control and Lgl1 cKO animals deleted at 6 weeks. N = 6 Lgl1 control, 6 Lgl1 cKO.

*p < 0.05; **p < 0.01; ****p < 0.0001.
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Figure 4. Lgl1 Deletion at P7 Produced a Subset of SMS-like Behavioral Phenotypes

(A) Open-field analysis following P7 deletion of Lgl1 showing representative trajectories (left) and heatmaps (right) of

control and Lgl1 cKO animals.

(B) Quantification of distance traveled during the test. N = 30 control, 27 Lgl1 cKO.

(C) Quantification of time spent in the outer region of the field (thigmotaxis) during the first and second 5-min periods.

(D and E) (D) Representative heatmap and quantification (E) of animal preference for objects during the sample phase of

the novel object recognition (NOR) test. N = 23 control, 19 Lgl1 cKO animals.

(F and G) (F) Representative heatmaps and quantification (G) of animal preference for objects during the test phase of the

NOR test. White asterisk denotes location of the novel object.

(H) Representative heatmaps from the habituation period of the social interaction (SI) test.

(I and J) (I) Quantification of time spent in and (J) preference for regions of interest (ROIs) representing future location of

novel mice and objects. N = 25 control, 24 Lgl1 cKO animals.

(K) Representative heatmaps during the social interaction phase of the SI test. White asterisk denotes location of the novel

mouse. Opposite chamber contains the object.

(L andM) (L) Quantification of time spent in and (M) preference for ROIs containing either the novel mouse or novel object.

Positive value indicates preference for the novel mouse. N = 25 control, 22 Lgl1 cKO animals.

(N) Representative heatmaps during the social novelty phase of the SI test. White asterisk denotes location of the novel

mouse. Opposite chamber contains the previously explored mouse.

(O and P) (O) Quantification of time spent interacting with and (P) preference for mice during the social novelty phase.

Positive value indicates preference for the novel mouse. N = 20 control, 14 Lgl1 cKO animals. NS, nonsocial; S, social.

*p < 0.05; **p < 0.01; ***p < 0.001.
significant changes in locomotor activity or thigmotaxis (Figures 5A–5C). We also assessed cognitive func-

tion and found that PKCi/l:PKCz dcKO were impaired in the novel object recognition test (Figures 5D and

5E). In the social interaction test, animals showed no preference before the introduction of the novel mouse

(Figures 5F and 5G). Littermate control animals preferred social interaction, spending more time with the

novel mouse versus the novel object, whereas PKCi/l:PKCz dcKO spent similar amounts of time interacting

with the novel mouse and novel object, maintaining a preference index close to 0 (Figures 5H and 5I). Pref-

erence for social novelty was unaffected by aPKC deletion (Figures 5J and 5K).

We then tested locomotor activity and observed no difference between littermate control and Lgl1:PKCi/l:

PKCz tcKO animals (Figures 5L–5M). However, triple conditional deletion of Lgl1, PKCi/l, and PKCz did

rescue cognitive deficit in the novel object recognition test, with Lgl1:PKCi/l:PKCz tcKO animals perform-

ing similarly to littermate controls and better than chance (one-sample t test, p = 0.0262) in the test (Figures

5N–5Q). Our observations showed that conditional deletion of Lgl1, PKCi/l, and PKCz corrects synapse

density changes observed and preserves cognitive function. In the social interaction test (Figures 5R–

5W), tcKO animals still showed impairment in the social interaction phase (Figures 5T–5U), but not the so-

cial novelty phase (Figures 5V–5W).

Lgl1 Heterozygotes Had Increased Synapse Numbers and Displayed Behavioral Deficits

Suggesting a Role in Smith-Magenis Syndrome

As SMS arises from heterozygous deletion of the critical region, we assessed the effects of germline het-

erozygous deletion of Lgl1 in our mouse (Klezovitch et al., 2004). We imaged hippocampal sections from

8-week-old control and Lgl1 heterozygous animals from the germline Lgl1 KO line using electron micro-

scopy. In these animals, the region 150–200 mm from the CA1 cell body layer showed an increase in asym-

metric synapse density, with a somewhat smaller but significant increase (22.6%; Figure 6A and proximal

region: S5A) compared with what was observed when both copies were deleted in the conditional KO.

Symmetric synapses were not affected. Analysis of synapse ultrastructure revealed longer and wider

PSDs and smaller synaptic clefts (Figure 6B).

In the open-field test, Lgl1+/� animals did not show a significant difference from control animals after

10 min (Figures S5B and S5C). During an extended observation period of 60 min in the open field (Fig-

ure 6C), Lgl1+/� animals showed increased locomotor activity by 12.0% overall.

We also tested stereotyped repetitive behavior and found that Lgl1+/� animals showed increased nestlet

shredding when given cotton nesting material in a novel cage (Figure 6D), shredding 59.4% more material

during the test. As this behavior was not observed in Lgl1 cKO, this is likely a result of Lgl1 deletion in het-

erozygotes in the subcortical areas that are not affected by the Thy-1-dependent deletion in the Lgl1 cKO

animals crossed with SLICK-H.
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Figure 5. Conditional Triple Knockout of Lgl1, PKCi/l, and PKCz Rescued Asymmetric Synapse Number and

Cognitive Deficit

(A) Open-field analysis following P7 deletion of Lgl1 showing representative trajectories (left) and heatmaps (right) of

control and aPKC dcKO animals.
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Figure 5. Continued

(B) Quantification of distance traveled during the test. N = 32 control, 26 aPKC dcKO animals.

(C) Quantification of time spent in the outer region of the field (thigmotaxis) during the first and second 5-min periods.

(D) Representative heatmap and quantification of animal preference for objects during the sample phase of the novel

object recognition (NOR) test. N = 26 control, 15 aPKC dcKO animals.

(E) Representative heatmaps and quantification of animal preference for objects during the test phase of the NOR test.

White asterisk denotes location of the novel object.

(F andG) (F) Quantification of time spent in and (G) preference for regions of interest (ROIs) representing future location of

novel mice and objects. N = 35 control, 26 aPKC dcKO animals.

(H and I) (H) Quantification of time spent in and (I) preference for ROIs containing either the novel mouse or novel object.

Positive value indicates preference for the novel mouse. N = 35 control, 27 aPKC dcKO animals. *p < 0.05; **p < 0.01.

(J and K) (J) Quantification of time spent interacting with and (K) preference for target mice during the social novelty

phase. Positive value indicates preference for the novel mouse. N = 35 control, 27 aPKC dcKO animals. *p < 0.05.

(L) Open-field analysis following P7 deletion showing representative trajectories (left) and heatmaps (right) of control and

Lgl1;PKCi/l;PKCz tcKO animals.

(M) Quantification of distance traveled during the test. N = 20 control, 14 Lgl1;PKCi/l;PKCz tcKO animals.

(N and O) (N) Representative heatmap and quantification (O) of animal preference for objects during the sample phase of

the novel object recognition (NOR) test. N = 21 control, 15 Lgl1;PKCi/l;PKCz tcKO animals.

(P and Q) (P) Representative heatmaps and quantification (Q) of animal preference for objects during the recognition test

phase of the NOR test. White asterisk denotes location of the novel object.

(R and S) (R) Quantification of time spent in and (S) preference for ROIs representing future location of novel mice and

objects.

(T and U) (T) Quantification of time spent in and (U) preference for ROIs containing either the novel mouse or novel object.

Positive value indicates preference for the novel mouse.

(V and W) (V) Quantification of time spent interacting with and (W) preference for target mice during the social novelty

phase. Positive value indicates preference for the novel mouse. N = 25 control, 19 Lgl1;PKCi/l;PKCz tcKO animals. NS,

nonsocial; S, social.

*p < 0.05; **p < 0.01; ***p < 0.001.
Preference for novel object recognition was spared in Lgl+/� animals (Figures S5E–S5H) following a 2-min

delay, suggesting that this cognitive task might be partially spared by either reduced impact on synapse

density or synaptic function due to the remaining copy of Lgl1. Therefore, we performed an additional

novel object recognition test, this time with a 24-h delay between the initial sample period and the

recognition test. After 24 h, control animals successfully discriminated novel and familiar objects, whereas

Lgl1+/� animals did not (Figure 6E). Patients with SMS demonstrate mild to moderate cognitive impair-

ment or developmental delay, and it is likely that the partially preserved recognition of novel objects re-

flects a mild cognitive impairment in the mouse model.

Similar to Lgl1 cKO animals, Lgl1+/� animals demonstrated deficient social interaction, but spared pref-

erence for social novelty (Figures 6F, S5I, and S5J), indicating that loss of one copy of Lgl1—as occurs in

SMS—may be sufficient to give rise to ASD-like behaviors. Lgl1+/� animals did not show a difference

from control littermates in age-dependent weight gain (Figure S5K).
Social Interaction Deficit in Lgl1+/� May Be Caused by Excessive NMDA Current

Because SMS often presents with either seizures or abnormal EEG without overt seizure (Chen et al., 1996;

Greenberg et al., 1996), we tested whether abnormally high synapse density and NMDA current would

lower the seizure threshold in response to the GABAA-blocking drug pentylenetetrazol (PTZ). Following in-

jection of 50 mg/kg PTZ, the occurrence and latency of activities indicating the onset of a seizure were re-

corded. All animals tested showed at least one instance of jumping or full-body jerking (Figure 7A), whereas

Lgl1+/� animals showed a shorter latency to the behavior following PTZ administration (Figure 7B).

Lgl1+/� animals also showed significantly higher occurrence and shorter latency to Straub Tail, indicating

persistent muscle contraction, and also showed a similar effect for the occurrence of clonic-tonic seizures.

The lower AMPA/NMDA ratio and unaffected AMPA current suggests that Lgl1 mutants may have exces-

sive NMDA current. We asked whether abnormal NMDAR-dependent signaling could underlie some of the

behavioral deficit, especially social interaction, that we observed. We used pharmacological blockers of

NMDARs and tested animals in the three-chamber social interaction test. Subanesthetic dose of ketamine

has been shown to provide rapid blockage of NMDAR-dependent signaling. We tested social interaction

with injection of 50 mL sterile saline and observed that control animals preferred social interaction,

whereas Lgl1+/� mice did not show a preference (Figures 7C–7E). Following injection of 30 mg/kg
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Figure 6. Lgl1+/� Mice Showed Increased Synaptic Numbers and SMS-like Behavioral Phenotypes

(A) Electron micrographs taken 150–200 mm (top) or 50 mm (bottom) ventral to the CA1 pyramidal neuron layer in the

schaffer collateral region of 8-week-old mice. Red arrows denote asymmetric synapses. Black arrows denote symmetric

synapses. Scale bar, 500 nm. Quantification of synapse numbers corresponding to each region: N = 10 Lgl1+/�, 7

Lgl1+/� animals.

(B) Quantification of cumulative distribution of synapse ultrastructure measurements in 8-week old Lgl1+/+ and Lgl1+/�
animals: n = 265 Lgl1+/+ synapses, 140 Lgl1+/� synapses.

(C) Representative heatmaps from the 1-h extended-duration open-field test for Lgl1+/+ and Lgl1+/� animals and

quantification for distance traveled in the extended open-field test. N = 30 Lgl1+/+, 33 Lgl1+/�.

(D) Quantification of nestlet-shredding activity. N = 19 Lgl1+/+, 30 Lgl1+/� animals.

(E and F) (E) Representative heatmaps from the recognition test phase of the novel object recognition (NOR) test 24 h after

the sample phase of the object. Quantification of object preference during the test phase 24 h after the sample phase.

N = 25 Lgl1+/+, 32 Lgl1+/�. (F) Representative heatmaps during the social interaction phase of the social interaction (SI)

test. White asterisk denotes location of the novel mouse. Quantification of interaction preference in the SI test. N = 25

Lgl1+/+, 33 Lgl1+/� animals.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 7. Decreased Seizure Threshold in Lgl1+/� Mice and Rescue of Social Interaction by NMDAR Blockade

(A) Quantification of the occurrence of jerking/jumping, Straub tail, and clonic-tonic seizures in Lgl1+/+ and Lgl1+/�
animals following 50 mg/kg PTZ administration. Fisher’s exact test.

(B) Quantification of the latency to the first observation of behaviors following 50 mg/kg PTZ administration. N = 17

Lgl1+/+, 15 Lgl1+/� animals. Mann-Whitney U statistic test.

(C) Representative heatmaps during the social interaction phase of the social interaction test following intraperitoneal

injection with 50 mL saline, 30 mg/kg ketamine, 0.3 mg/kg MK-801, or 20 mg/kg memantine. White asterisk denotes

location of the novel mouse.

(D and E) (D) Quantification of time spent in social (S) or nonsocial (NS) regions of interest and (E) interaction preference of

treated animals. N = (saline) 17 Lgl1+/+, 19 Lgl1+/� animals; (ketamine) 14 Lgl1+/+, 17 Lgl1+/� animals; (MK-801) 13

Lgl1+/+, 14 Lgl1+/� animals; (memantine) 19 Lgl1+/+, 17 Lgl1+/� animals.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
ketamine, Lgl1+/�mice showed a clear preference for social interaction similar to what was observed from

control animals (Figures 7C–7E). Preferences in habituation and social novelty phases are unaffected by sa-

line or drug injection (Figures S6A–S6D). Ketamine injection did not change nestlet-shredding activity (Fig-

ure S6E). In addition, we also tested MK-801 (dizocilpine) at 0.3 mg/kg and memantine at 20 mg/kg and

observed that Lgl1+/� strongly preferred social interaction, as did control mice (Figures 7C–7E). These re-

sults suggest that excessive NMDA current due to Lgl1 deletion may contribute to some of the behavioral

deficits and that inhibiting NMDARs may help alleviate some of the neuropsychiatric symptoms in SMS pa-

tients with Lgl1 deletion.

DISCUSSION

Although many of the proteins in glutamatergic synapses have been identified and their roles in synapse

formation and function have been studied, the signaling logic that orchestrates the assembly of hundreds
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of proteins into a highly organized and dynamic structure remains poorly known. We show here that

a conserved apical-basal polarity signaling component, Lgl1, is localized in the PSD and regulates synapse

numbers and compositions of key synaptic proteins and glutamate receptors, probably by inhibiting aPKC

activity and via interactions with its conserved binding partners, particularly the MAGUKs. Atypical PKC has

been studied for its role in memory formation and consolidation. Here we report that conditional deletion

of both isoforms of aPKCs at P7 and P8 led to a reduction in synapse number in adulthood and cognitive

and social deficits. The observation that deletion of Lgl1 or aPKC both lead to behavioral changes indicates

that synapse number must be optimally controlled for behavioral functions and changes in either direction

lead to impairment. Triple conditional knockout of Lgl1 and aPKC isoforms rescued the number of the

asymmetric synapses and cognitive function, supporting their antagonistic functions in synapse formation.

Lgl1 forms a basal complex with Discs Large, which is the homolog of MAGUKs, essential scaffold proteins

in the postsynaptic density, which regulate trafficking and clustering of glutamate receptors. Therefore,

loss of Lgl1 may lead to changes of MAGUKs and glutamate receptor compositions, such as the reduction

of AMPA/NMDA ratio. It should be noted that we also observed a decrease of paired-pulse ratio in Lgl1

cKO, suggesting that there may also be presynaptic defects (Figure 3N). The Cre line we used here,

SLICK-H, expresses CreERT2 in both CA3 and CA1 pyramidal neurons. Although Lgl1 was found to be pre-

sent in the postsynaptic density (Figure 1I), Lgl1 may also have a function on the presynaptic side. This

reduction of paired-pulse ratio may contribute to the altered synaptic function.

Lgl1 is frequently deleted in SMS; therefore, we performed a number of behavioral tests. cKO of Lg11 from

P7 and P8 led to behavioral deficits, including hyperactivity, cognitive impairment, and social interaction,

consistent with the autism-like symptoms in SMS. As SMS involves the microdeletion of one of the chromo-

somes, we analyzed the Lgl1+/� mice and found that Lgl1+/� mice had increased synapse numbers,

impaired social interaction, and increased stereotyped repetitive behavior, suggesting that Lgl1 is a candi-

date gene that contributes to the autism-like symptoms of SMS with Lgl1 deletion. Repetitive behaviors

involve the striatum, where CreERT2 is not expressed in the SLICK-H line. This may explain why repetitive

behavior defects were only observed in Lgl1+/�. There was a slowed habituation to the open field in

Lgl1+/� and defects in novel object recognition. In summary, loss of both copies of Lgl1 locally or only

one copy of Lgl1 globally could cause behavioral deficits related to a subset of autism-like symptoms of

SMS. Interestingly, Lgl1 cKO and Lgl1+/� animals did not show an increase in grooming behavior during

open-field observation or signs of excessive self-grooming while in their home cage that characterizes

other ASD-like mouse models (Peça et al., 2011). Lgl1 appears to be important to maintaining proper syn-

apse numbers and normal function of synapses even in adulthood as deleting Lgl1 at 6 weeks still lead to

increase of synapse numbers and changes of synapse structure and function. Lgl1 may be a key molecule

required for synaptic plasticity in adulthood as cKO led to impairment of long-term potentiation. Therefore

the loss of Lgl1 in SMS may underlie the neurobiological basis of behavioral symptoms. We propose that

Lgl1 is a candidate gene contributing to SMS. Our studies also give rise to a mouse model (Lgl1+/�mice)

for SMS for understanding disease mechanisms and development of treatment. Indeed, we found that

blockade of NMDARs rescues social deficits, suggesting that NMDARs may be promising therapeutic tar-

gets for SMS with Lgl1 deletion.

Limitations of the Study

In Figure 3K, the variability of the data is greater for the control compared to the Lgl1 cKO. This is a weak-

ness of our data. However, upon closer inspection of the results, all but one of the data points in the control

are higher than all data points from the conditional knockout. Therefore, while the data quality is not ideal,

we believe that the conclusion would hold even with a larger sample size.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.09.005.
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Methods 
 
All animal procedures were performed in accordance with protocols approved by the 
Institutional Animal Care and Use Committee at Univesity of California, San Diego. Both male 
and female animals were analyzed in roughly equal numbers. 
 
Electron Microscopy 
 
Lgl cKO or Lgl1+/- and littermate control mice were anesthetized i. p. with a ketamine/xylazine 
cocktail, and perfused with modified Karnovsky’s fixative (2.5% glutaraldehyde and 2% PFA in 
0.15 M sodium cacodylate buffer, pH 7.4) at room temperature. After postfixation in the same 
solution overnight at 4 °C, whole brains were cut coronally (200 µm) with a vibratome. Sections 
were postfixed with 1% osmium tetroxide for 1 h on ice. Following en-block staining in 2% 
uranyl acetate in distilled water for 1-2 h, sections were dehydrated in a graded ethanol series 
and then treated twice in acetone for 10 min each. Sections were infiltrated in Durcupan resin 
(Sigma-Aldrich) and were embedded at 60 °C for 48 h. Ultrathin sections from CA1 region were 
cut and stained with uranyl acetate and Sato's lead. Image acquisition used a FEI Tecnai Spirit 
G2 Spirit BioTWIN transmission electron microscope equipped with an Eagle 4k HS digital 
camera (FEI, Hilsboro, OR). 10-15 fields from the distal stratum radiatum (150-200 µm from CA1 
pyramidal cell bodies) and proximal stratum radiatum (40-50 µm from CA1 pyramidal cell 
bodies) were selected under 6800´ magnification, and synapses were counted in each field. 
Synapses that displayed polyribosomes and/or actin bundles were determined to be on the 
dendritic shaft while synapses lacking those structures were determined to be on the dendritic 
spines. For ultrastructure analysis, asymmetric synapses from the distal stratum radiatum area 
were imaged at 18500´ magnification. Only asymmetric synapses with a clearly recognized PSD 
and synaptic cleft were selected. The bouton area, cleft distance, reserve pool vesicles, docked 
vesicles, PSD width and PSD length were analyzed using Image J. Analysis of ultrastructure was 
done by experimenters blinded to animal genotype.  
 
Hippocampal primary cell culture 
 
Hippocampal neuron culture was performed as described below (Meffert et al., 2003). Glass 
coverslips were washed overnight in nitric acid and rinsed thoroughly and washed with 100% 
ethanol before being placed in a drying oven. The day before cell culturing, coverslips were 
coated with 80mg/mL Poly-D-Lysine (PDL) overnight at room temperature. Coverslips were 
washed and coated with 40mg/mL PDL with 2.5mg/mL Laminin for 3 hours at 37°C. 
Brains from E18.5 pups were removed in L15 media and hippocampi were dissected and placed 
in individual tubes. Hippocampi were washed twice with Mg/Ca free sterile PBS (CellGro) and 
incubated with Trypsin/EDTA solution (0.25% Trypsin, 2.2mM EDTA) for 15 minutes at 37°C. 
Trypsin was neutralized by the addition of 10% vol/vol heat-inactivated horse serum (Life 
Technologies). Resulting solutions were pelleted and resuspended in Neurobasal medium 
supplemented with 2% B27 (Invitrogen), 5% fetal bovine serum (Invitrogen), 
penicillin/streptomycin (Cellgro), and Glutamax (Invitrogen) and washed twice. Cells density 
was determined and cells were plated at a density of 2.5x104 cells/cm2. Half of the growth 



medium was exchanged every 3 days. Arabinofuranosyl Cytidine (Ara-C, 4 µM) was added at 
day 6 in vitro to prevent glial cell proliferation. Cultures were grown for 14 days at 37°C in a 5% 
carbon dioxide atmosphere.  
 
Behavioral assays 
 
For all behavioral assays, testing was performed during the light phase in a dimly lit room (<100 
lux) with indirect lighting on the testing area unless otherwise noted. Both male and female 
animals were tested in behavior tests.  
 
Open field test:  
The open field test is performed in a plastic 40cm x 40cm acrylic box (Stoetling) with dark walls 
with a non-reflective base plate. Spatial cues are placed on one wall of the field. Mice are 
placed in the center of the field and allowed to explore freely for 10 minutes. Mice are scored 
for distance travelled, time in the inner and outer regions of the field, time spent self-grooming, 
rearing activity, and jumping activity. Outer region is defined as the region within 5 centimeters 
of the edge of the field. A 60-minute variant of the test was applied to the Lgl1+/- mice and 
littermate controls with all aspects of the testing area identical to the 10-minute test. Animals 
that performed the 10-minute test were not used for the 60-minute test in order to avoid 
effects of prior exposure to the testing apparatus.  
 
Novel object recognition test: 
The novel object recognition test was performed as described below (Antunes and Biala, 2012) 
immediately following a 10-minute exploration period in an empty apparatus. Animals are 
placed in a field containing two copies of a novel object and allowed to explore freely. After the 
sample phase, animals were removed from the field and the objects were replaced with one 
copy of the previously explored object and a novel object in the same positions in the field as 
during the sample phase. Animals were allowed to explore freely for 5 minutes. For scoring of 
interaction time, ROIs containing the target objects were selected in MATLAB. ROIs were 
selected by experimenters blinded to the animal genotypes or virus treatment. 
 
Social interaction test: 
The social interaction test was performed as previously described below (Yang et al., 2011). The 
sociability apparatus (Stoetling) has 3 20cm x 40 cm chambers and 2 target enclosures 7cm in 
diameter and 15cm tall. During testing, the apparatus was surrounded by opaque panels to 
prevent mice from seeing out of the apparatus. 
 
Animals were placed in the center chamber of the 3-chambered sociability apparatus with the 
doors between chambers closed for 10 minutes to habituate to the testing conditions. The 
doors were removed and mice were allowed to explore the full field for 10 minutes. Non-
littermate strain- and age-matched target mice from a separate cage were introduced during 
the social interaction phase of the test. For the social novelty phase, target mice from the social 
interaction phase were kept in the same location and a novel target mouse was introduced to 
the opposite chamber. For scoring of interaction time, ROIs containing the target mouse and 



novel object were selected in MATLAB. ROIs were selected by experimenters blinded to the 
animal genotypes. 
 
Scoring for distance travelled and thigmotaxis during the open field test, as well as time spent 
interacting with objects in the Novel Object Recognition test and time spent interacting with 
target mice and objects in the Social Interaction test was performed using Autotyping 15.04 in 
MATLAB 2014b (Patel et al., 2014)(MathWorks). 
 
Nestlet shredding:  
Mice were removed from their home cage and placed individually into a clean novel cage 
containing a weighed piece of cotton nesting material of approximately 2.8g. Mice were left in 
the cage for 60 minutes. At the end of the testing period, mice were returned to their home 
cage. Shredded material was separated from the undisturbed portion, which was weighed(Li et 
al., 2006). 
 
Electrophysiology 
 
For Lgl1 cKOs and littermate controls at P13–15, mice were anesthetized by isofluorene. Mice 
were decapitated, and their brains were quickly removed and placed in ice-cold dissection 
buffer containing the following (in mM): 87 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 20 
glucose, 75 sucrose, 0.5 CaCl2, and 7 MgCl2, pH 7.35. Transverse hippocampal slices were cut in 
300 µm-thick sections on a vibratome (Lieca VT1200). Slices were allowed to recover at 35°C for 
20 min and then at room temperature for 1 to 6 hr in carbogenated ACSF, containing (in mM) 
124 NaCl, 2.5 KCl, 24 NaHCO3, 1.2 NaH2PO4, 2 CaCl2, 2 MgCl2 and 12.5 glucose, 5 HEPES pH 7.4. 
Individual slices were transferred to a recording chamber and then continuously perfused at a 
rate of 2–3 ml/min with ACSF containing 1 µM TTX (Tocris) and either 20 µM gabazine or 20 µM 
CNQX for mEPSC or mIPSC recordings, respectively. CA1 pyramidal cells were visualized by 
infrared differential interference microscopy.  
 
For mEPSCs, whole-cell recordings were made using 3–5 MΩ pipettes filled with an internal 
solution that contained (in mM): 145 CH3O3SCs, 5 NaCl, 10 HEPES, 5 EGTA, 0.3 Na2GTP and 4 
MgATP, (pH was adjusted to 7.3 and osmolarity was maintained at 280–290 mOsm). For mIPSC 
recordings, whole-cell recordings were made using 3–5 MΩ pipettes filled with an internal 
solution that contained (in mM): 135 CsCl, 4 MgCl2, 0.1 EGTA, 10 HEPES, 2 MgATP, 0.3 NaGTP, 
10 Na2Phosphocreatine (pH was adjusted to 7.3, and osmolarity was maintained at 280–290 
mOsm). 
 
Cells were voltage clamped at -70 mV. Recordings started after 5 minutes to allow for 
stabilization of the established whole-cell configuration. Signals were recorded with a 5× gain, 
low-pass filtered at 2 kHz and digitized at 5 kHz (Molecular Devices Axopatch 200B) with 
pCLAMP 10 software (Molecular Devices); analysis was performed with Clampfit (pCLAMP). The 
automatic detection was verified post hoc by visual inspection. Values are presented as mean ± 
SEM. Mann-Whitney U-statistic test was used to compare changes with the control. 



 
For LTP induction, transvers hippocampus slices were harvested from 9-10-week-old mice. 
Slices were recovered for at least 1 hour before moving to recording chamber in aCSF (in mM): 
NaCl 119, KCl 2.5, NaH2PO4 1, NaHCO3 26.2, Glucose 11, MgCl2 1.3 and CaCl2 2.5 bubbled with 
95% O2 and 5% CO2. Stimulus was given at 0.033 Hz to evoke field potential and the resistance 
of glass electrode was 1-2 MΩ with aCSF as internal solution. Input-Output were recorded by 
gradually increasing the strength of stimulus. After 30min stable baseline recording, LTP was 
induced by HFS or TBS. HFS was 100 pulses at 100 Hz. TBS contained four trains of theta bursts 
with 20 second intervals, each train had 10 burst with 0.2 interval. 
 
For AMPA/NMDA ratio determination, a broken glass pipette was used as a stimulus electrode. 
The resistance of patch the clamp pipette was 3-5 MΩ.  Internal solution: (in mM) CsMeSO4 
115, CsCl 20, Na phosphocreatine 10, MgCl2 2.5, Na2ATP 4, Na3GTP 0.3, EGTA 0.6, HEPES 10 
and QX-314-Cl 5. A cut was made between CA1 and CA3 to avoid epilepsy events. The position 
of stimulus electrode was gently adjusted to evoke a single peak EPSC. For AMPA current, 
holding potential was set at -70mV, and for NMDA current, holding potential changed to 
+40mV. We quantified NMDA current as the peak 100ms after stimulus artifact, where there is 
no AMPA current. 
 
Biochemical fractionation 
 
Subcellular fractionation was performed as previously described below (Cohen et al., 1977) 
with modifications. Forebrains from P14 wild type mice were homogenized to 10% (wt/vol) in 
ice cold 0.32M sucrose buffer containing 1mM MgCl2, 0.5mM CaCl2, 1mM NaHCO3 and 
protease inhibitors using 16 strokes with a glass dounce. The homogenates were spun at 710g 
for 30 min at 4C to pellet out nuclei and large debris. The supernatant was further centrifuged 
at 13800g for 10 min at 4C to get pellets (P2). P2 pellets were resuspended in the sucrose 
buffer and layered on top of a discontinuous sucrose gradient containing 1.0M and 1.4M 
sucrose in 4mM HEPES buffer pH 7.4. The gradient was centrifuged at 82500g for 1h at 4C. 
Synaptosomes were recovered from the cloudy band between 1.0M and 1.4M sucrose, 
resuspended in 1mM NaHCO3 (1:9 vol/vol), and lysed by hypo osmotic shock using 3 strokes 
with a glass dounce. The lysates were then incubated with an equal volume of 0.32M sucrose 
buffer containing 1% Triton-X shaking at 4C for 15 min and spun at 82500g for 1h. The PSD 
fraction was obtained from the resulting pellet. The synaptic membrane fraction (SMF) was 
precipitated from the supernatant using the methanol/chloroform/H2O method(Wessel and 
Flügge, 1984). Both the PSD fraction and SMF were solubilized in 3% SDS for western blot 
analysis. 
 
Western Blot 
Protein samples were separated by polyacrylamide gel electrophoresis on 5% and 8% 
acrylamide gels and wet transferred to Immobilon membranes (Millipore). TBST with 5% non-
fat dry milk (Apex) was used to block and primary antibody was diluted in blocking buffer for 
overnight incubation at 4°C. Blots were washed with TBST and incubated with HRP-conjugated 
secondary antibody for 2 hours at room temperature. Bands were visualized using West Pico 



Chemiluminescent Substrate and exposed to film at intervals ranging from 30 seconds to 2 
hours.  
 
Antibodies 
 
Primary antibodies were mouse anti-Lgl1 (gift of Valeri Vasioukhin), mouse anti-Lgl1 (Novus),  
Goat anti Vangl2 Antibody (N-13, Sant cruz, sc-46561), goat anti-JAM-C (R&D Systems), mouse 
anti-GAPDH (Abcam), and rabbit anti-GFP (Invitrogen), and chicken anti-MAP2 (Abcam). 
Secondary antibodies used in western blot were HRP-conjugated donkey anti-mouse, anti-goat, 
and anti-rabbit. For immunofluorescence, AF568-conjugated Donkey anti-Mouse (Invitrogen), 
AF488-conjugated Donkey anti-Chicken (Jackson Immunoresearch), AF488-conjugated Donkey 
anti-Rabbit (Invitrogen), AF647-conjugated Donkey anti-Rabbit (Invitrogen). 
 
 
Cell filling and spine analysis 
 
Mice were perfused, sectioned, and labeled with AlexaFluor Hydrazide as described below 
(Dumitriu et al., 2011). SLICK-H:Lgl1flox/flox pups were i. p. injected with tamoxifen at P7-8. At 
P14, pups were anesthetized with a ketamine/xylazine cocktail followed by transcardial 
perfusion with room temperature 4% PFA, postfixed for one hour in 4% PFA, vibratome 
sectioned at 100 μm, and then postfixed again for 10 minutes. AlexaFluor Hydrazide 555 
(Invitrogen, 10 mM in 200 mM KCl) was injected into dendritic segments ionophoretically by 
filling the cell with fluorescent dye. Sections were briefly fixed for 15 minutes to preserve the 
fluorescent label. Immunolabeling with GFP antibody (Invitrogen) was used to confirm that the 
fluorescently filled dendrite is YFP+. 30-40 µm segments of CA1 oblique apical dendrites, which 
are located 100-200 µm from the CA1 pyramidal neuron cell bodies in the stratum radiatum, 
were analyzed. These spines represented the postsynaptic structures of the Schaffer collateral-
CA1 synapses.  
 
The maximum spine length and head width were measured manually with Image J (NIH) to 
characterize spine shape as described below (Bochner et al., 2014; Calfa et al., 2012; Harris et 
al., 1992; Tang et al., 2014; Vogel-Ciernia et al., 2013). Spines with heads equal to or less than 
the head width were categorized as “thin”, and those with heads greater than the neck width 
were categorized as “mushroom”. Spines without a neck that had a width longer than their 
lengths were termed “stubby”. Spines with one neck and a branch point resulting in 2 heads 
were termed “branched”. Protrusions not clearly seen or with lengths > 5 μm were excluded 
from analysis. Both image acquisition and morphometric analyses were done by experimenters 
blinded to the genotypes of the animals. Results were compared between littermates and then 
pooled by genotypes to assess the influence of prenatal care.  
 
 
 
 



Tissue preparation 
 
Animals were anesthetized i. p. with a ketamine/xylazine cocktail and perfused with ice-cold 
PBS followed by 4% Paraformaldehyde (PFA). Brains were post-fixed in 4% PFA overnight and 
moved to 30% sucrose until equilibrated. Frozen section embedded in OCT medium and 
Sucrose were sectioned at 40μm on a Leica CM 3050 S cryostat. Slides were stored at 4°C until 
immunostaining. 
 
 
Immunostaining 
 
 For tissue sections, slides were rehydrated with 2 washed of PBS and permeabilized with 
PBS + 0.3% Triton X-100. Slides were blocked with 5% normal donkey serum for 2 hours at room 
temperature. Primary antibody was incubated at 4°C overnight and secondary antibody was 
incubated for 2 hours at room temperature. Slides were coverslip with Fluoromount-G 
(Southern Biotech) and stored at 4°C. 
 For cultured neurons, glass coverslips with primary cell cultures were washed with PBS 
and permeabilized with PBS + 0.1% Triton X-100. Coverslips were blocked with PBS containing 
2% BSA, 2% Fetal Bovine Serum, and 0.1% Triton X-100. Primary antibody was incubated at 4°C 
overnight and secondary antibody was incubated for 2 hours at room temperature. Coverslips 
were inverted onto slides with Fluoromount-G (Southern Biotech) and stored at 4°C. 
 
Statistical Analysis 
 
Statistical analysis was performed using Prism 6 (GraphPad). Student’s T-test with Welch’s 
correction was used for comparison between control and Lgl1 mutant animals unless otherwise 
noted. One-way ANOVA with Tukey’s multiple comparison test was used to test for statistical 
differences in interaction time during the social interaction test. Graphs of quantitative data 
present individual data points for animals with mean and standard error of the mean indicated 
unless otherwise noted. The Kolmogorov-Smirnov test was used to compare distribution of 
measurements of synaptic ultrastructure.  
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