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Abstract

From cooking a meal to finding a route to a destination, many real life decisions can be

decomposed into a hierarchy of sub-decisions. In a hierarchy, choosing which decision to

think about requires planning over a potentially vast space of possible decision sequences.

To gain insight into how people decide what to decide on, we studied a novel task that com-

bines perceptual decision making, active sensing and hierarchical and counterfactual rea-

soning. Human participants had to find a target hidden at the lowest level of a decision tree.

They could solicit information from the different nodes of the decision tree to gather noisy

evidence about the target’s location. Feedback was given only after errors at the leaf nodes

and provided ambiguous evidence about the cause of the error. Despite the complexity of

task (with 107 latent states) participants were able to plan efficiently in the task. A computa-

tional model of this process identified a small number of heuristics of low computational

complexity that accounted for human behavior. These heuristics include making categorical

decisions at the branching points of the decision tree rather than carrying forward entire

probability distributions, discarding sensory evidence deemed unreliable to make a choice,

and using choice confidence to infer the cause of the error after an initial plan failed. Plans

based on probabilistic inference or myopic sampling norms could not capture participants’

behavior. Our results show that it is possible to identify hallmarks of heuristic planning with

sensing in human behavior and that the use of tasks of intermediate complexity helps iden-

tify the rules underlying human ability to reason over decision hierarchies.

Author summary

Complex decisions are often broken down into a sequence of information-gathering

actions followed by reward-seeking actions. For example, a physician may conduct a series

of tests to diagnose a patient’s disease before suggesting a corrective action. How do peo-

ple decide what is the appropriate question (test, experiment, query) to ask next? Human

participants were presented with a binary decision tree that bifurcated three times. They

could solicit information from the bifurcation points to gather noisy evidence about the

location of a target. We identified the heuristics that people used to plan efficiently in this
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complex task. Participants exploited the hierarchical structure of the task and relied on

the confidence in past decision to inform the selection of subsequent actions. Our results

bear on how people plan efficiently in large partially observable domains, and have impli-

cations for the design of artificial agents that have to make decisions with active explora-

tion and for neurophysiological studies of planning in humans and other animals.

Introduction

Many real-life decisions are organized hierarchically in the sense that they are composed of

parts that themselves can be considered decisions. As an example, consider an engineer who

must diagnose the cause of failure at an industrial plant. The engineer might break down this

complex decision into a sequence of simpler ones (e.g., did the motor trip? If so, did a fuse

blow? If not, did the pump bearings fail?). These decisions are resolved by specific informa-

tion-seeking actions (i.e., tests), where the outcome of each test influences the subsequent

ones. Information-seeking actions are usually followed by reward-seeking ones. For example,

the engineer may conclude that the failure was due to wear of the pump bearings and decide to

replace them. Often, our actions do not lead to the desired outcome and we need to replan [1–

3]. For instance, if changing the pump’s bearings does not restore the plant’s function, the

engineer must determine the cause of her flawed reasoning and decide what action to take

next (e.g., conduct a new test, repeat an unreliable one, or replace a different component).

The example is representative of many decisions that comprise a hierarchy of sub-decisions

and where feedback does not allow the cause of errors to be unambiguously identified. They

appear in medical diagnoses, when choosing a career path or designing an experiment to

address a scientific question. These decisions are difficult to make optimally for three reasons.

First, the decision maker must choose which actions are most relevant at each step, which is

complex because the number of possible action sequences grows exponentially with the plan-

ning horizon and the value of an action may depend on the entire sequence of past actions and

observations [4, 5]. For example, the relevance of inspecting the pump bearings for wear

depends on whether a previous test pointed to the pumping system as a probable cause of fail-

ure. Second, some information-seeking actions may be more reliable or costly than others,

which should inform the selection of the next action [6, 7]. For example, if the engineer learns

that a test is unreliable but cheap, she may decide to perform it several times in a row to

increase her confidence in the outcome. Third, to disambiguate the negative feedback obtained

after a contingent action does not lead to the expected outcome, the decision maker must con-

sult a causal model of the problem under consideration [8, 9]. For example, the engineer must

use her knowledge about how the change of a component will impact the plant’s output to

select a subsequent test or remedial action.

Decisions that require disambiguating a latent state through a series of information-seeking

actions belong to the broad class of partially-observable Markov decision processes (POMDPs)

[4, 5]. For problems with fully observable states, like video games [10, 11] or route planning

[12], finding optimal actions boils down to a search over action sequences, in which the opti-

mal action ai at time step i only depends on the agent’s current state (e.g., the location in a

maze). While the search is often intractable because the number of possible paths grows expo-

nentially with the number of state variables and the planning horizon, advances in artificial

intelligence have identified clever heuristics that allow automated solvers to derive action poli-

cies directly from compact descriptions of the problem and scale up to problems involving

many millions of states (see [13] for a review). In contrast, in POMDPs the decision policies
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take the form of a sequence of actions and observations (a1, o1, a2, o2, . . .), and the next best

action aimay depend on the entire sequence, making these problems much more difficult to

solve optimally [14]. For small problems the usual approach is to transform the POMDP over

latent states into a fully-observable Markov decision process (MDP) over belief states–a proba-

bility distribution over the latent states–and solve it using Bellman’s equation [15, 16]. How-

ever, this solution works only for problems with few states and actions and a short planning

horizon; for more complex problems, efficient planning must rely on heuristic strategies and

relaxations that are less well characterized than their fully-observable counterparts.

Here we study how people decide which decisions to address to disambiguate a latent state

and replan when an initial plan fail. We build on studies of simple perceptual decisions. A

well-studied example is a decision about the net direction of motion of randomly moving dots

[17, 18]. In such binary decisions (e.g., left-right motion), humans and monkeys accumulate

noisy samples of evidence over time. This basic paradigm has been extended to study decisions

that are structured hierarchically. Lorteije et al. [19] trained monkeys to solve an explicit deci-

sion tree with stochastic evidence at every branching point. They found that the first level deci-

sions were biased towards the second level decision that was easier, which shows that the

different sub-decisions were not made independently but rather influenced each other to max-

imize the expected reward. Recent studies have shown that a graded expectation of potential

outcome (also known as confidence) plays a key role in action selection and credit assignment

in decision hierarchies. When two sequential decisions must be resolved correctly to receive a

reward, confidence in the accuracy of the first decision influences the speed-accuracy tradeoff

for the subsequent decision to maximize reward rate [20]. Confidence also helps disambiguate

the cause of errors when they may be due to misperception or a covert change in the stimulus-

response contingency [21, 22]. These studies are limited to the case of a single stream of evi-

dence and used tasks in which the decision makers had no control over the evidence that was

presented to them, and therefore these tasks do not require planning over sequences of

actions.

We studied a novel task in which participants made a series of binary perceptual decisions

arranged in a decision tree with stochastic evidence at each bifurcation. Decisions varied in

difficulty, and people had to explore the decision tree until finding a target hidden at one of

the lowest-level nodes of the decision tree (termed leaf nodes). Negative feedback obtained

after choosing an incorrect leaf node provided ambiguous evidence about the cause of the

error. Given the complexity of the problem (with 107 possible states), the task cannot be solved

by off-the-shelf POMDP solvers, but people were able to perform with high levels of accuracy.

They did so by adopting a planning strategy based on a small set of heuristics. These include

discarding information deemed unreliable to make a decision; a bias towards resolving uncer-

tainty locally, collapsing probabilistic information into a categorical decision rather than carry-

ing forward entire probability distributions; and the use of confidence to disambiguate

negative feedback after an error. These results extends the framework of perceptual decision

making to more complex decisions that comprise a hierarchy of sub-decisions.

Results

Hierarchical decision making task

Four human participants were presented with a binary decision tree that bifurcated three

times. They were tasked with finding a target hidden at one of the leaf nodes of the decision

tree (Fig 1A). Each internal node of the decision tree was assigned a direction of motion,

which could be rightward or leftward. The target was hidden at the leaf node identified by trac-

ing the path defined by following the correct direction of motion at each bifurcation, starting
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Fig 1. Hierarchical decision-making task. (A) Stimulus display. Participants had to identify which of the 8 lower-level nodes delivered a positive reward and ended

the trial. Directing the gaze to a node from the top three levels of the decision tree and pressing a key triggered a short pulse of random-dot motion. The direction (left

or right) and strength of motion assigned to each internal node were randomly selected in each trial. The target could be identified by following the correct direction of

motion at each bifurcation from the root node to a leaf node. Participants were free to explore the decision tree as they wished to maximize the number of points

earned. (B–C) Correct direction of motion at each internal node for two example trials. The true direction of motion is indicated by the horizontal arrows shown below

each internal node. The numbers assigned to the nodes do not represent spatial positions but depend on the correct direction of motion at each bifurcation (as

explained in the next panel). (D) Adopted nomenclature. Levels 1 to 3 are internal nodes. The leaf nodes are those at the lowest level of the decision tree. Nodes are

numbered depending on the correct direction of motion at each bifurcation. If rightwards were the correct direction of motion at every bifurcation (as indicated by the

horizontal arrows), the number assigned to each node would increase from top to bottom and from left to right, as indicated in the panel. (E) Example of sequence of

choices from two representative trials. The vertical arrows indicate when a node of the decision tree was queried. The numbers above the arrows identify the node that

was queried, following the convention described in panel D.

https://doi.org/10.1371/journal.pcbi.1009688.g001
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from the root node of the decision tree. Fig 1B and 1C illustrates two example configurations,

where the arrows (not shown to the participants) indicate the correct direction of motion at

each bifurcation.

The participants were not informed about the correct direction of motion at each bifurca-

tion, but they could infer it by querying the internal nodes of the decision tree. When partici-

pants directed their gaze to one of the internal nodes followed by a button press, they were

presented with a short pulse (227 ms) of random dot motion (Fig 1A). The net direction of

motion of the dots was either rightward or leftward, and coincided with the true direction of

motion assigned to that node.

The difficulty of motion discrimination could vary from node to node. As usual in experi-

ments using the random-dot motion stimulus, difficulty was controlled by the probability that

each dot is displaced in the direction of motion as opposed to randomly. We refer to this prob-

ability as motion strength. The motion strength and direction (left/right) were sampled inde-

pendently for each internal node of the decision tree, and were fixed for the whole trial.

Choosing a leaf node did not provide any motion information. Instead, if the chosen leaf

node was the target, the trial ended and participants received a positive reward. If the chosen

leaf node was not the target, the participant received negative feedback (a low-pitched sound)

and had to continue exploring the decision tree until finding the target. A screen recording of

the experiment is shown in a companion video (S1 Movie).

Participants were free to decide how to explore the decision tree to maximize the number

of points earned and were informed in advance about the reward contingencies. Participants

lost 1 point every time they queried an internal node for motion information, lost 3 points

every time they chose a leaf node and it was not the target, and earned 10 points when finding

the target. To encourage the search for strategies that lead to high rewards, participants

received feedback about how many points they obtained after each trial. Also, at the end of

each block of 50 trials, participants were informed about the total number of points obtained

in the block and in all previous blocks.

Throughout the manuscript, we use numbers to identify each node of the decision tree. The

numbers do not reflect spatial positions, but rather depend on the true direction of motion at

each bifurcation (Fig 1D). Nodes 1 through 7 are internal nodes and nodes 8 through 15 are

leaf nodes. Node 15 is the target, and nodes 1, 3, and 7 are the nodes at levels 1–3 that are on

the path to the target. A simple way of thinking about the numbering convention is that if the

true direction of motion were rightward at every internal node, then the numbers assigned to

each node would increase from top to bottom and from left to right (Fig 1D).

Fig 1E shows two trials that exemplify the sequence of choices within a trial. The trial at the

top illustrates a typical one, in which the participant made no errors before finding the target

but queried the root node twice. Fig 1E (bottom) shows a trial in which the participant made

multiple errors before finding the target, both at internal and leaf nodes. The four participants

made an average of 6.5, 7.7, 9.4, and 7.7 queries per trial, respectively (all standard errors

smaller than 0.2).

Motion choices depend on motion strength and tree level

Before analyzing how multiple decisions are chained into a sequence, we focus on the choices

made after querying the internal nodes of the decision tree. Almost all trials (>99.7%) started

with a query at the root node. The three most common actions after querying an internal node

were to query the same node again (which we refer to as a re-query), or to query one of the

two child-nodes (Fig 2A–2D). These actions represent the vast majority of the actions that fol-

low the query of an internal node (99%, 97%, 98% and 98% for participants 1–4, respectively).
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The action that immediately follows an error at a leaf node was less stereotypical and could be

directed to different nodes of the decision tree, including other leaf or internal nodes (Fig 2E).

In this section we focus on the subset of queries for which after observing the random-dot

motion stimulus, participants either chose one of the two child nodes or requested additional

information from the same node; as just mentioned, these are the most frequent actions after

querying an internal node.

The accuracy of the decisions made at internal nodes depends on the node’s motion

strength and its level in the decision tree. Accuracy was calculated from those queries that

were directly followed by the selection of one of the two child nodes: a motion choice is consid-

ered correct if the chosen child node is in the true direction of motion. Unsurprisingly, stron-

ger motion led to more accurate motion choices (Fig 3, top row) (Eq 6, β1 = 15 ± 0.6,

p< 10−8). More interesting is the lawful relationship between the accuracy of motion choices

and tree level. Motion choices were most accurate at the highest level of the decision tree, and

were least accurate at the lowest level of the decision tree (Fig 3, top row) (Eq 6, β2 = −2 ± 0.26,

p< 10−8). The relationship between accuracy and tree level cannot be explained by the proper-

ties of the motion stimuli, which were statistically identical across tree levels.

After querying an internal node, participants often queried the same node again (termed a

re-query). Just as the accuracy of the motion choices, the frequency of re-queries depended on

the strength of motion and tree level. Re-queries were more likely when the motion was weak

(Fig 3, bottom row) (Eq 7, β1 = −7 ± 0.17, p< 10−8). The frequency of re-queries also depended

on the level of the decision in the decision tree: participants were less likely to query the same

node again for decisions deeper in the decision tree (Fig 3, bottom row) (Eq 7, β2 = −0.7 ± 0.02,

p< 10−8).

Fig 2. Transition probabilities between nodes of the decision tree. (A) In all the panels, the nodes of the decision tree were re-arranged following the convention

depicted in Fig 1D. The re-arrangement can be interpreted as-if rightward were the true direction of motion at every bifurcation (indicated here by the right-pointing

arrows). (B-E) Red lines identify the most frequent transitions between pairs of nodes. Transitions from nodes at levels 1–3 are shown in panel B–D, and transitions

from leaf nodes are shown in panel E. The width of the line from node x to node y is proportional to the probability of transitioning from x to y given that last query

was to node x. Unlikely transitions (conditional probability< 0.075) were omitted. (B–D) After querying an internal node, the more frequent actions were choosing

one of the two child-nodes, or re-querying the same node. The ribbon corresponds to re-queries. Because of the notation convention, the true direction of motion is

rightward at every internal node. (E) From left to right, transitions from leaf nodes 8 to 14. We excluded the target (node 15) since querying it terminates the trial.

https://doi.org/10.1371/journal.pcbi.1009688.g002
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A detection model explains the decisions made at internal nodes

The solid lines in Fig 3 are fits of a detection model inspired by probability summation [23]

and early models of decision making [24]. A key aspect of these models is that a sample

of evidence from an evidence stream is compared to a criterion to decide if the evidence

sample is reliable enough to make a detection [23] or discrimination [24] judgment. If

the evidence exceeds a criterion, a choice is made; otherwise, the evidence sample is dis-

carded and a new sample is obtained from the evidence stream. We extended this class of

models to decisions involving active sampling of information from a decision hierarchy,

and compared the model to one in which evidence samples were integrated across succes-

sive queries as prescribed by optimal models of decision making [25]. To foreshadow our

results, they favor the model without integration, which we refer to as the detection model

[26].

We modelled the representation of the momentary motion evidence with a gaussian proba-

bility density function. The mean and the variance of the momentary evidence is a linear func-

tion of motion strength (Fig 4A). The sign of the mean depends on the true direction of

motion: positive for rightward motion, and negative for leftward motion. Two decision criteria

distributed symmetrically around zero (vertical lines in Fig 4A) divide the domain of the

momentary evidence in three regions. If the evidence falls below the leftmost criterion, the

decision maker interprets that the net direction of motion was leftward and descends a level

through the left branch of the decision tree. Likewise, if the evidence falls above the rightmost

criterion, the decision maker descend levels through the right branch. If the evidence falls

between the two criteria, the evidence sample is discarded, and the same node is queried

again.

In our model, the decision criterion depends on (i) the level of the decision in the decision

tree, and (ii) the number of successive queries at the node. We model this dependency as the

Fig 3. Motion choices depend on motion strength and tree level. The top row shows the proportion of correct motion choices as a function

of motion strength. The bottom row shows the proportion of queries that were followed by another query at the same node. Solid curves are

fits of a detection model. Decisions made at different levels of the decision tree are displayed in different colors. Each column shows data from

one participant (S1 to S4). Error bars indicate s.e.m.

https://doi.org/10.1371/journal.pcbi.1009688.g003
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product of a base criterion that depends on the level ℓ of the decision tree, ϕℓ, and a term that

decays exponentially with the number of re-queries (Fig 4A, bottom). The model has 6 param-

eters that were fit by maximum likelihood to the choices made after querying the internal

nodes of the decision tree.

The predictions of the best-fitting model are shown by the solid lines in Fig 3. The model

provides a very good fit to the behavioral data, capturing the influence of motion strength and

tree level on the proportion of correct motion choices and re-queries. In the best-fitting

Fig 4. A simple detection model explains the motion choices. (A) Distributions from which the momentary motion evidence were sampled.

The momentary motion evidence is normally distributed, with mean and variance that scale linearly with motion strength. The sign of the

mean depends on motion direction. The slopes were fit independently for each participant (here we show the distributions from participant 1).

The decision is made comparing an evidence sample against two criteria located at ±F. The criterion is given by the product of a base criterion,

ϕℓ, and a term that decays exponentially with the number of successive queries made at the node (nq). (B) Base criterion for every participant

and level of the decision tree, obtained from the best-fitting model. (C) The criterion, F, approaches zero exponentially as the number of

successive queries at a node (nq) increases. Decay rate is determined by λ. Each curve depicts the best-fitting exponential function for each

participant. (D) Frequency of re-queries, as a function of the number of previous successive queries at the node (nq). This proportion decreases

with nq and with the level of the decision in the tree (indicated by the different colors). Solid lines are predictions from the detection model.

Only the lower motion strengths (below 25.6%) were included in this analysis. Error bars indicate s.e.m. across participants.

https://doi.org/10.1371/journal.pcbi.1009688.g004
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model, the base criterion decreased with tree level for every participant (Fig 4B), implying that

stronger motion was needed at the higher tree levels to commit to a motion choice. This

explains why more re-queries were made at the higher levels of the decision tree (Fig 3, bottom

row) and why the motion choices made at the higher levels were on average more accurate

than those made at the lower levels of the decision tree (Fig 3, top row).

The criterion also depended on the number of re-queries. It becomes gradually closer to

zero as more queries were made at a node (Fig 4C). This explains why the probability of mak-

ing a re-query decreased with the number of past re-queries (Fig 4D). The effect is analogous

to the collapse of the decision bounds in reaction-time experiments, which is optimal when

the reliability of the evidence is unknown to decision makers [27].

No integration of motion information across re-queries

A strong assumption of the detection model is that weak motion evidence is discarded, unlike

optimal models of decision making which posit that all evidence bearing on a decision should

be integrated [25]. An analysis of the stimulus information used to make the decision—what is

known as psychophysical reverse correlation or kernel analysis [28, 29]—supports this hypoth-

esis. Fig 5 displays the degree to which the variability in the noisy display affects the left/right

choice made after querying an internal node. For motion choices made after just one query,

the psychophysical kernel was significantly positive (negative) for rightward (leftward) choices,

indicating that the choice was guided by the motion information in the stimulus (Fig 5A)

(p< 10−8, likelihood-ratio test,H0: β3 = 0, Eq 9). For motion choices made after two successive

queries, the psychophysical kernel calculated using the motion information from the second

query was also significantly different from zero (Fig 5B, right)(p< 10−8, likelihood-ratio test,

H0: β4 = 0, Eq 10). However, the motion information from the first of the two queries had no

influence on the eventual left/right choice (Fig 5B, left; p = 0.54,H0: β3 = 0, Eq 10) and a com-

parison of nested regression models favored the model without motion information from the

Fig 5. Only motion information from the last query informs the left/right choice. (A) Influence of motion energy residuals on the decision to

descend levels through the left or right branch. The residuals were calculated by applying a filter to the sequence of random dots and subtracting the

mean of all stimuli of the same motion strength and direction. Positive (negative) residuals indicate an excess of motion in rightward (leftward)

direction. For left/right choices made after a single query, the motion energy residuals were positive for rightward choices and negative for leftward

choices. (B) As panel A, except that we analyze the left/right choices made after two successive queries of the same internal node. The two panels show

the motion energy residuals obtained from the first and second queries, sorted by the left/right choice made after the second one. Only the motion

energy residuals from the second presentation distinguished between leftward and rightward choices, which indicates that the motion information from

the first query did not influence the ultimate choice. Shading indicates s.e.m. The latency introduced by the impulse response of the motion energy

filters explain the offset between the time of stimulus presentation (gray horizontal bars) and the onset of motion selectivity (Methods).

https://doi.org/10.1371/journal.pcbi.1009688.g005
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first motion pulse (Eq 10, ΔBIC = 7.4 supporting the model without the β3 term). A similar

conclusion was reached by analyzing the motion energy kernels separately for the 3 levels of

the decision tree (S1 Fig). Had motion information been accumulated over the two motion

pulses, both pulses should have been informative about the ultimate choice [30].

To confirm the results of the model-free analysis of the motion energy, we fit a model

identical to the detection model except that the motion evidence was accumulated over succes-

sive queries. For example, if the evidence obtained after a query, e1, falls between the two crite-

ria at ±Fℓ, the node is queried again and the decision is then based on e1 + e2, where e2 is the

evidence obtained from the second query. If e1 + e2 again falls between the two criteria, another

query is made (e3) and then e1 + e2 + e3 is compared against the criteria. The integration model

has the same number of parameters as the detection model. A comparison of the best-fitting

models favored the detection model over the integration model, confirming the results of the

model-free analysis (∑ ΔBIC = 43 across participants; S2 Fig).

We used model simulations to confirm that if participants were accumulating evidence

across successive pulses of motion, we would have observed an influence of a motion pulse on

choice even if it was followed by a re-query. To this end, we simulated the detection and inte-

gration models that best fit the data. As we did for the data, we select the subset of queries for

which a left/right choice was made after two successive queries, and repeat the regression anal-

ysis reported in the previous section. For simulations of the integration model, both pulses had

a significantly positive influence on the ultimate choice (both p0s< 10−4, Eq 10; ΔBIC = 5.5 in

favor of the full model). For the detection model only the last one was informative about the

ultimate choice (p1st = 0.71 and p2nd< 10−8, Eq 10; ΔBIC = 5.5 in favor of the model without

the β3 term). Together with the motion-free analysis of the motion energy and the formal

model comparison, the analysis supports the conclusion that participants did not integrate

motion information across re-queries.

We compared the detection model against other alternative models. A common assump-

tion in models of behavior in the random-dot motion task is that the variance of the momen-

tary motion evidence is independent of motion strength (e.g., [31]). We compared our

detection model against one in which the variance does not depend on motion strength. For

two of the four participants, a model comparison favored the detection model in which vari-

ance scales with motion strength; for the other two participants, the difference in BICs was too

small to favor any one model (S2 Fig). Using the Akaike Information Criterion instead of the

BIC led to the same conclusion. These data are consistent with previous studies that found that

scaling the variance of the noise with motion strength provides a slightly better fit to choice

[32] and response-time [33].

We also evaluated the possibility that tree level affects other parameters of the model besides

the criteria Fℓ. For instance, if participants paid more or less attention to a decision depending

on tree level, the signal-to-noise might differ across levels and contribute to the differences in

performance that we observed (Fig 3). We tested two alternative models in which the signal-

to-noise parameter (κ) was allowed to change across tree levels. In one, κ depended on the

level in the decision tree, but the criterion F was the same across tree levels (model ‘1F3κ’ in

S2 Fig). In another variant, both κ and F depended on tree level (model ‘3F3κ’, S2 Fig). A

model comparison favored the detection model over these two alternatives (S2 Fig).

Because participants start each trial exploring the decision tree from top to bottom, there is

a correlation between tree level and the order of a query in the trial. Therefore, it is possible

that query order (and not the level of the decision in the decision tree) influences the place-

ment of the criterion, F, that controls the probability of a re-query. To evaluate this possibility,

we fit an alternative model in which the placement of the criterion depends on the order of the

query in the trial. In the model, the criterion decreases exponentially from F0 to ϕ1. The
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decay rate, F0 and ϕ1 are free parameters of the model. A BIC analysis strongly favored the

detection model in which the criterion explicitly depends on tree level (S2 Fig). This conclu-

sion was also supported by a model-free analysis, which shows that the relation between tree

level and the probability of making a re-query is not mediated by query order or time elapsed

in the trial (S3 Fig). Taken together, the comparison against different alternative models sup-

ports the hypothesis that the differences in performance across levels of the decision tree is

explained by the influence of tree level on the placement of the criterion that determines if the

motion evidence is reliable enough to commit to a motion choice.

Failure of a probabilistic model to account for human behavior

We aimed to compare the participants’ behavior to that expected under the optimal policy.

However, finding the optimal policy in our task is computationally challenging. Since each

node can be in 10 states (5 motion strengths × 2 directions of motion) and there are 7 internal

nodes, the number of possible problem states is 107. Because the true state is not fully observ-

able, optimal decision-makers must represent a probability distribution over the problem

states, and update it with the motion information they gather and the errors they make as they

explore the decision tree. To find the action that maximizes the expectation of future rewards,

decision-makers should plan over a potentially infinite sequence of possible future actions and

observations. While for low-dimensional problems the optimal solution can be approximated

by transforming the POMDP over the unobserved states into an fully-observable MDP over

the belief states and solve it using Bellman equation, in our task the state space is too large for

this approximation to work.

Because of these challenges, we relied on simulations to approximate the optimal decision

policy. The Bayesian model represents a probability distribution over the problem states,

PðsjE;VÞ, where s is defined by the motion strength (c) and motion direction (d) at each of the

7 internal nodes, s = (c1, d1, c2, d2, . . ., c7, d7). The tuple E = (E1, E2, . . ., E7) contains all the

motion samples obtained from past queries at the 7 internal nodes; Ei is the set of motion sam-

ples obtained from queries at internal node i. V is the set of leaf nodes that were already que-

ried and turned out not to be the target.

Before an error at the leaf nodes (i.e., when V is the empty set), PðsjE;VÞ can be factorized

as,

PðsjE;VÞ ¼
Y7

i¼1

Piðci; dijEiÞ ; ð1Þ

where Piðci; dijEiÞ is the probability that internal node i has motion strength ci and direction di,
given the set of motion samples Ei obtained from previous queries at node i. The values of ci
and di are those that correspond to state s.

This factorization is no longer valid after an error at a leaf node (i.e., when V is no longer

empty). Leaf nodes are what in the language of Bayesian networks are called colliders, and con-

ditioning on one renders a statistical dependency between its otherwise independent parents

[9]. Because of this, the motion information obtained from one internal node should affect the

decision-maker’s beliefs about the direction of motion at other nodes of the decision tree. We

can illustrate this with an example, for the stimulus configuration shown in Fig 1B. Imagine

that the decision-maker is completely certain about the motion choices made at nodes 1 and 3.

If the decision-maker queries node 14 and receives negative feedback, then the decision maker

can be almost certain that the true direction of motion at node 7 is rightward, even if she has

not yet queried that node; the alternative is that the motion choices made at nodes 1 and 3

were wrong, but these choices were made with high certainty. The dependency between the
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motion direction at the different internal nodes introduced by the colliders renders the update

of PðsÞ with motion information less straightforward. In Methods we explain how we factorize

and simplify the update of PðsjE;VÞ when V is not empty; here we focus on the planning prob-

lem of how the Bayesian model selects the next best action.

Before the selection of every action, the agent uses an internal model of the task to estimate

how costly it will be to find the target starting from each of the 15 possible next actions. The

agent samples a state, s�, from the posterior distribution over states PðsjE;VÞ. It then assumes

that s� is the true state of the system. The state s� identifies the target, T�. The agent then simu-

lates random actions, starting with action a, until reaching T�, with the following constraint. If

a query is to be made at a leaf node, the leaf node to be queried is the one with the highest

probability of being the target. A copy of the posterior distribution over states PðsÞ is updated

after each imaginary observation, which the agent uses to determine which leaf nodes has the

highest probability of being the target. The agent repeats this process 2, 000 times for each of

the 15 possible next actions, a. For each simulation, the agent computes the cost incurred in

finding the target, and the action to execute next is the one for which the expected cost is

minimized.

All the process occurs ‘in the head’ of the decision maker, only once the next best action is

identified is the action executed ‘in the world’. Then the distribution PðsjE;VÞ is updated with

the observation obtained from the environment, and the whole simulation-based procedure is

repeated to determine the next best action.

In summary, we developed a method to approximate the optimal decision policy for our

task. While we cannot guarantee that the approach described above (and in more detail in

Methods) allowed us to find the optimal policy, the decision policies derived with it lead to sig-

nificantly higher rewards than those obtained by the participants (Fig 6A). Because the Bayes-

ian model uses the signal-noise parameters from the detection model fit to the data, the

difference in reward income cannot be explained by differences in sensitivity to motion infor-

mation but must be the result of differences in strategy.

We observed many qualitative differences between the behavior of the Bayesian model

and the data that explain the difference in reward. The Bayesian model made fewer queries

at internal nodes and more errors at leaf nodes than the participants (Fig 6B). That is, the

Fig 6. Comparison of average reward and number of queries between data and models. (A) Average reward per

trial obtained by the participants, the Bayesian model and the heuristic model. Error bars indicate s.e.m. across trials.

(B) Average number of queries per level and of errors at leaf nodes. The averages were first calculated per participant

and then across participants. Error bars indicate s.e.m. across participants. The predictions of the Bayesian model

(Heuristic model) are based on 2,000 (50,000) simulated trials per participants.

https://doi.org/10.1371/journal.pcbi.1009688.g006
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balance between information-seeking and reward-seeking actions was different for model

and data. Further, the Bayesian model almost never queries the same internal node more

than once in a row (Fig 7D, left), unlike the participants who made many re-queries (Fig 7A,

left).

Additional differences between model and data can be seen in Fig 8, which shows the tran-

sition probabilities between levels, obtained by grouping nodes within each level before calcu-

lating the transition probabilities. The width of the red lines is proportional to the transition

probability. Transitions from higher to lower levels are shown on the right of each graph, and

transitions in the opposite direction are shown on the left. In the data, the action that follows

an error can target different levels of the decision tree. After querying an internal node, transi-

tions are often to the same level or to the level immediately below. This is observed both before

and after an error at a leaf node. In contrast, the Bayesian model skips nodes from tree level 3,

going straight from level 1 or 2 to the leaf nodes. After an error at a leaf node, the Bayesian

model usually transitions to other leaf node and rarely goes back to querying an internal node

(Fig 8).

It may be surprising that the Bayesian model does not query level 3 nodes. We can provide

some intuition as to why this is optimal. Imagine that the probability of making a correct

motion choice is 0.8 after querying an internal node, and 0.5 (chance) if the node is not que-

ried. And let’s assume for simplicity that motion choices at levels 1 and 2 were made with full

confidence. Should the decision maker query a level 3 node before selecting a leaf node? If que-

ried, the expected cost is (1–0.8) × (-3) = -0.6, since there is a probability of (1–0.8) of picking

the wrong leaf node and lose 3 points before choosing the target. On the contrary, if the level 3

node is not queried, the expected cost is 0.5 � (-3) = -1.5, because on average half the time the

decision maker would choose the wrong leaf node and lose 3 points. The difference between

the two expected costs is less than the cost of making a query at the internal node (1 point), so

the best strategy in this case is not to query the node from level 3 of the decision tree. By a simi-

lar reasoning it can be shown that it is convenient to make queries at the nodes of level 1 and 2,

since these allow the decision maker (in the best of cases) to discard more than one leaf node.

Of course, the convenience of querying level 3 nodes depends on the payoff structure and the

sensitivity to motion information; later we will see a case in which the cost of querying the

internal nodes is reduced and the decision policy derived with the Bayesian model includes the

query of level 3 nodes.

A possible explanation for why the Bayesian model made fewer queries at internal nodes

and more errors at leaf nodes than the participants, is that subjective rewards were different

from the true ones. This would be the case if, for instance resolving uncertainty about motion

direction were considered rewarding regardless of the task goals (e.g., [34]). We reasoned

that the Bayesian model could behave more similarly to data if the cost of querying internal

nodes were reduced. To test this hypothesis, we applied the Bayesian model to a case in

which the cost of querying an internal node was only 30% of the value we used in the experi-

ment. In this case, queries at internal nodes were more evenly distributed between levels,

more similarly to what was observed in the data (S4(A) Fig). However, the Bayesian model

still behaved very differently from the participants. The Bayesian model performed very few

successive queries on the same internal node, frequently transitioned from lower-level to

higher-level internal nodes, and made lateral transitions between different nodes from the

same tree level (Fig 7E and S4(B)–S4(E) Fig). The differences between the data and the Bayes-

ian model are observed both before and after an error at a leaf node, which indicates that the

differences between them are not just due to differences in how blame is assigned after an

error (Fig 8A and 8D).
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Fig 7. Distribution of actions after the query of internal and leaf nodes. The left column shows the types of action

selected after a query of an internal node, and the right column shows those selected after an error at a leaf node.

Panels A–H represent different datasets, identified in each panel. We sorted the actions that follow the query of an

internal node into 3 categories: on-path queries, off-path queries, and queries that cannot be classified as neither on-

nor off-path (‘other’). We sorted the actions that follow an error at a leaf node into 6 categories: choosing the child

node that is in the true direction of motion (‘correct child’), the other child node (‘incorrect child’), querying the same

node again (‘re-query’), other nodes at the same level excluding re-queries (‘other, same level’), nodes of lower level

that are not direct child nodes (‘other, lower level’), and nodes located at higher levels of the decision tree (‘higher

level’).

https://doi.org/10.1371/journal.pcbi.1009688.g007
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A salient aspect of the data is that the participants made more re-queries at the higher levels

of the decision tree than at the lower levels (Fig 3, bottom row). This seems to be a sensible

strategy since misjudgments made at the higher tree levels can cause the decision maker to

spend a long time exploring the wrong branch of the decision tree. To determine if this is

indeed a sensible strategy, we solved the Bayesian model for a case in which the sampling cost

was reduced to 50% of its true value for queries of internal nodes and to 5% for re-queries. The

goal of this manipulation was to increase the number of re-queries made by the Bayesian

model to determine if it is better to make more re-queries at the higher levels or the lower lev-

els of the decision tree. As expected, changing the reward structure in this way led to more re-

queries, in a number comparable to those observed experimentally (Fig 7F). When analyzing

the number of re-queries by tree level and motion strength, we observed that the Bayesian

model performed more re-queries at the lower levels than at the higher levels of the decision

tree (S5 Fig). This is opposite to what we observed in the data. Therefore, if the large number

of re-queries that we observed in the data were due to their subjective cost being lower than

the query of other nodes, participants should have made more re-queries at lower levels of the

decision tree than at higher levels.

Taken together, these results show that the behavior derived from the Bayesian model is

qualitatively different from that shown by our participants. This failure motivated the develop-

ment of the heuristic model that we present below.

Shallow sampling norms

Given that the performance of the Bayesian model was superior to that of the participants, we

studied if simpler metrics could better capture the participants’ behavior. We adopted metrics

Fig 8. Participants and heuristic model made similar transitions between levels. Transition frequencies between levels of the decision tree, obtained by grouping

all nodes from the same level. The top row shows the transitions before making an error at a leaf node. The bottom row shows the transition after at least one error

at a leaf node. The width of the red lines is proportional to the transition frequency. The dashed lines are placeholders for infrequent transitions. The last column

corresponds to a Bayesian model in which the cost of querying internal nodes was reduced to 30% of its true value. In each of the 8 panels, transitions to a lower

level are shown on the right, and transitions to a higher level are shown on the left. The ribbon identifies transitions between nodes at the same level of the decision

tree (including re-queries). Transition probabilities were first calculated per participant, and then averaged across participant (see Methods).

https://doi.org/10.1371/journal.pcbi.1009688.g008
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frequently used in the active sensing literature to arbitrate between information-seeking

actions (see [35] for an overview). These metrics are myopic, shallow or greedy, in that they

only look one step into the future. They do not take into account information about the costs

and rewards of the different actions and outcomes; instead, actions are prioritized based on

the expected change in the posterior probability distribution over task-relevant categories. The

best next action is the one that maximizes a scoring function that is different depending on

which metric is used. We explore three well-studied metrics: probability-gain, information-

gain and impact.

These metrics were applied to the probability distribution BðTjE;VÞ, which is the belief

that leaf node T is the target given all past motion observations E = {E1, E2, . . ., E7} obtained

from the 7 internal nodes and the set V of leaf nodes that were already visited and turned out

not to be the target.

For probability-gain (PG) the score associated with each possible action is given by the

expected change in the peak of the posterior:

scorePGðajE;VÞ ¼ hmax
T
ðBðTja; o;E;VÞÞiPðoja;E;VÞ � max

T
ðBðTjE;VÞÞ; ð2Þ

where actions a are the 15 available actions and maxx is the maximum over the 8 leaf nodes.

The expectation is calculated over the possible observations o that follow action a. If a is the

query of an internal node, the observations o are motion samples. If a is the query of a leaf

node, the observations o can take only two values depending on whether the leaf node is, or is

not, the target.

The scoring function for information-gain (IG) is the expected reduction in the entropy of

BðTjE;VÞ following action a:

scoreIGðajE;VÞ ¼ H½BðTjE;VÞ� � hH½BðTja; o;E;VÞ�iPðoja;E;VÞ; ð3Þ

whereH denotes entropy (a measure of uncertainty [36]).

The scoring function for the impact metric (I) is given by the expectation of the sum abso-

lute change in BðTjE;VÞ after action a:

scoreIðajE;VÞ ¼
X

T

hjBðTja; o;E;VÞ � BðTjE;VÞjiPðoja;E;VÞ; ð4Þ

where || denotes absolute value and the summation is over the 8 leaf nodes.

None of these metrics led to behavior similar to that of the participants. The decision poli-

cies derived from probability-gain and information-gain ignored the internal nodes and

searched directly over the leaf nodes (Fig 7G). This strategy leads to low reward in our task

(-0.5 points per trial on average). Policies derived with the impact metric did much better,

leading to an average reward per trial of 2.06 ± 0.14 across participants. In this case, the strat-

egy consisted of making only one query at the root node, followed by randomly selecting leaf

nodes from the branch favored by the first query (Fig 7H). These strategies are clearly different

from that adopted by our participants.

Note that instead of applying the different sampling norms to the beliefs BðTjE;VÞ, we

could have applied them to the posterior probability over motion strength and direction at the

internal nodes, Pðc1...7; d1...7jE;VÞ. Then the sampling norms would favor the exploration of

nodes for which the uncertainty is high (i.e., the ones that have not been visited before). This

could be a sensible strategy if participants were asked to explore the decision tree freely without

any task instruction, but is clearly not the strategy followed by our participants and thus we

did not explore this possibility any further. Taken together, our analyses shows that the shallow
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sampling norms commonly used in the active-sensing literature could not account for the par-

ticipants’ behavior in our hierarchical decision-making task.

Heuristic model

In previous sections we saw that neither a Bayesian model nor one based on commonly used

sampling norms could explain the participants’ behavior in the task. In this section we present

an alternative model which is based on a small set of heuristics of low computational complex-

ity. The heuristic model extends the detection model with a mechanism to determine which

node to query after an error, and could account for most aspects of the participants’ behavior.

The negative (auditory) feedback obtained after an error at leaf node T provides ambiguous

evidence about the cause of the error. It informs the participant that an error was made in at

least one of the nodes that connect the root node to T (termed the error path, PT), but it does

not indicate which of these three choices were wrong.

We hypothesize that decision makers would use the confidence in the motion choices to

disambiguate the negative feedback obtained after an error at a leaf node. We define the confi-

dence in having made a correct motion choice at internal node i as the probability that the

choice is correct given the sample of motion evidence e obtained the last time that node i was

queried. The confidence in that rightward is the correct direction of motion (i.e., d = 1) can be

calculated using Bayes rule and marginalizing over motion strength c:

confþi ¼ Piðd ¼ 1jeÞ ¼
X

c

Pðejc; d ¼ 1ÞPiðc; d ¼ 1Þ

PðeÞ
: ð5Þ

Confidence in a leftward choice is simply conf �i ¼ 1 � confþi . The likelihood Pðejc; d ¼ 1Þ is

given by the probability density function of the normal distribution (Eq 14), and is plotted in

Fig 4A for different motion strengths.

The heuristic model compares the confidence in the motion choices to decide which node

to blame for an error and to choose a subsequent action. We define low-confidence choices as

those for which confidence is below a criterion ω. If two decisions from the error path were

made with low confidence, the model assigns the responsibility for the error to the highest

level node among those belonging to PT whose motion choices were made with low confi-

dence. For example, if an error was made at node 11, and the motion choices at nodes 2 and 5

were made with low confidence, then the model holds node 2 responsible for the error, since

(i) node 2 belongs to the error path PT, (ii) the motion choice was made with low confidence,

and (iii) node 2 is at a higher level of the decision tree than node 5. Then, the model performs

a query on the node that was blamed for the error (node 2 in this case). The rationale here is

that if the decision maker cannot determine with certainty which motion choice was incorrect

(since more than one motion choice was made with low confidence), it is reasonable to re-

query one of the nodes of the error path to resolve this ambiguity.

We use the term on-path to refer to those queries for which after an error at leaf node T, the

decision maker selects a node from the error path PT. For example, querying nodes 1, 2 or 5

after an error at node 11 would be considered on-path queries.

On the contrary, if only one (or none) of the motion choices along the error path were

made with low confidence, the model assigns responsibility for the error to the node belonging

to the error path PT for which the motion choice was made with the least confidence. For

example, if an error was made at node 11 and only the decision at node 2 was made with low

confidence, then the responsibility for the error is assigned to node 2. The next action is to

query the child node of the one that was held responsible for the error and that is not in the

error path PT. In the example, the decision maker would make a query on node 4 since it is the
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child of node 2 that was not on the path that led to the error on node 11. The logic here is that

if only one decision in the error-path was made with low confidence, then it is reasonable to

assume that the error was due to the choice made at that node and continue exploring the deci-

sion tree through the ‘counterfactual’ path (i.e., the path that would have been taken had the

motion choice at that node been different from the one that was actually made).

We use the term off-path to refer to those queries for which after an error at leaf node T, the

decision maker selects the child node of one of the nodes in PT that was not itself in the error

path. For example, querying nodes 3, 4 or 10 after an error at node 11 would be considered off-
path queries.

In summary, we have proposed a mechanism by which the confidence in the motion

choices is used to resolve the ambiguous feedback received after an error at a leaf node and

choose a subsequent action. An additional assumption incorporated in the heuristic model is

that once a node has been blamed for an error, that node cannot be blamed again until new

evidence is obtained from it. We adopted this ad-hoc modeling assumption because without it

there were instances in which the model repeatedly blamed the same node for an error, which

impaired performance. Because of this assumption, it may occur that no node from the error-

path can be blamed for an error, in which case the model chooses at random and with equal

probability any of the unvisited leaf nodes.

Once the model identifies which node to query after an error, it continues to follow the

rules of the detection model—just as before the error. The heuristic model has only one free

parameter (ω). It was fit to match the proportion of on-path queries between model and data

(purple bars in Fig 7A and 7B, right column). All other parameter values were inherited from

the fits of the detection model. By coupling the detection model with a mechanism to deter-

mine which node to query after an error, we obtain a model that can perform the task and

make behavioral predictions that we can contrast with the experimental data.

One prediction of the heuristic model is that the probability of assigning responsibility for

an error to a node depends on the strength of motion of the nodes in the error path. This pre-

diction is illustrated in Fig 9A. It shows the proportion of errors at leaf nodes in which the

model blamed a node of motion strength c (shown in the abscissa), when a node with motion

strength c was in the error path. The model was *4 times as likely to blame a node with the

weakest motion than a node with the strongest motion. This ratio would be close to 1 if the

blame were randomly assigned to any node in the error path. [Note that the proportions need

not add to one since not all motion strengths are present on every trial, and the same motion

strength could be present in more than one node.]

Another factor that ought to influence which node is blamed for an error is the level of a

node in the decision tree. The predicted relationship between tree level and the probability

that a node is blamed for the error differs for on-path and off-path queries. On-path queries are

more frequently directed to the higher tree levels (Fig 9B). This is because at least two low-con-

fidence decisions are required for the model to select an on-path query, and then the query is

directed to the higher level node out of those for which the motion choice was made with low-

confidence. In contrast, off-path queries are more frequently directed to the lower tree levels

(Fig 9C). This is because decisions at the lower levels are made on average with weaker evi-

dence than decisions at higher levels, since the criterion Fℓ decreases with tree level (Fig 4B).

As the blame for the error is assigned to the decision made with the least confidence, off-path
queries usually target the lower levels of the decision tree.

These predictions were verified in the data. The blame for the error was more likely to be

assigned to nodes with weak motion (Fig 9D)(p< 10−8, likelihood-ratio test,H0: β1 = 0, Eq

11). For on-path queries, the blame for the error was more likely to be assigned to the higher

levels of the decision tree (Fig 9E)(p< 10−8, likelihood-ratio test,H0: β2 = 0, Eq 11). In
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contrast, for off-path queries the lower levels of the decision tree were more likely to be blamed

for the error (Fig 9F)(p< 10−8, likelihood-ratio test,H0: β2 = 0, Eq 11).

As in the model, most actions that follow an error at a leaf node were either off- or on-path
queries. While off-path and on-path queries represent only 6 of the 14 actions available after an

error (excluding querying the same leaf node again), they represent most of the actions chosen

by the participants after an error (96%, 95%, 95% and 77% for participants 1 to 4 respectively)

(Fig 7A). In Fig 7, we use the term ‘other’ to refer to the actions selected after an error at a leaf

node that were neither on- nor off-path. They occur in the model because a node cannot be

blamed for an error twice unless new evidence is collected from it. These actions are always

directed at other leaf nodes. Intriguingly, participants also made a small fraction of actions that

Fig 9. Motion strength and tree level influence which node is blamed for an error. Panels A-C show the predictions of the heuristic model and panels D-F

correspond to the behavioral data. (A) Proportion of errors for which the blame was assigned to a node with the motion strength indicated in the abscissa,

given that a node with that motion strength was in the error-path. Note that proportions do not need to add to 1 since the error-path can contain up to three

different values of motion strength. (B) Proportion of errors that were followed by an on-path query to a node of level ℓ, given that level ℓ of the error-path

had the motion strength indicated in the abscissa. For example, if the root node had the weakest possible motion strength, the probability that an on-path
query is made at that node is *0.23. (C) Proportion of errors that were followed by an off-path query from a node of level ℓ, given that level ℓ of the error-

path had the motion strength indicated in the abscissa. For example, if the root (level 1) node had the weakest possible motion strength, there is a *0.25

chance that the root node is blamed for the error and an off-path query is made to its child that was not on the error path. Proportions were first calculated

per participant and then averaged across participants.

https://doi.org/10.1371/journal.pcbi.1009688.g009
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were neither off-path nor on-path, and most of them (72%) were also directed at leaf nodes

(Fig 7A).

The heuristic model also reproduced other aspects of the participants’ behavior. The aver-

age number of points earned per trial was similar for model and data, even though the average

reward was not used for model fitting (Fig 6A). Model and data also made a similar number of

queries per level, and made approximately the same number of errors per trial at leaf nodes

(Fig 6B).

The heuristic model allows us to distinguish between errors of perception and errors of

strategy. As can be seen in Fig 6A, the average reward was positive for all subjects except for

subject number 3. This is intriguing because this participant had better sensitivity to motion

discrimination than subjects 2 and 4, as can be seen by comparing the signal-to-noise parame-

ter of the model (κ, S1 Table). This dissociation between κ and the average reward obtained in

the experiment is explained by differences in strategy. Participant 3 is the one who showed the

highest proportion of on-path queries (Fig 7A, right column). On-path queries proved to be a

strategic mistake. We could verify this with a model identical to the heuristic model except

that it was fit to maximize reward. In this model, all the queries made after an error were off-

path (Fig 7C). This predicts that participants would have achieved higher average reward if

they would have made all the queries off-path, assigning the blame for the error to the decision

that was made with the least confidence out of those in the error path.

The heuristic model also reproduced the participants’ behavior when analyzing separately

the actions selected before and after an error at a leaf node (Fig 8). As observed in the data, in

the heuristic model the action that follows an error can target different levels of the decision

tree. After querying the internal nodes, transitions are often to the same level or to the level

immediately below it. This is observed both before and after an error at a leaf node.

In the model, what determines whether an off-path or on-path query is made after an error

at a leaf node is whether two or more decisions from the error-path were made with low confi-

dence. Because low-confidence decisions are more frequent when motion is weak, the motion

strength at the nodes not blamed for the error should be lower when participants made an on-
path query than when they made an off-path query. We tested this prediction using logistic

regression. If sn1 and sn2 are the motion strengths from the two nodes of the error-path that

were not responsible for the error, the product of both, sn1 � sn2, should be lower when the par-

ticipants did an on-path query instead of an off-path query after an error. This prediction is

verified in the data (S6 Fig) (Eq 8, β2 = −4.9 ± 0.9, p< 10−7), and provides further evidence in

favor of the mechanism we incorporated in the heuristic model to arbitrate between off-path
and on-path queries.

Learning

Although the analyzes and models that we presented assume that behavior is stable over trials,

given that the participants carried out multiple, long experimental sessions spread over several

days, it is likely that the decision strategies varied to some extent during the course of the

experiment.

We analyzed how different aspects of the decision strategy changed with experience. The

average reward and the number of re-queries increased gradually during the first *4–7 blocks

(of 50 trials each) (S7(A) Fig). Importantly, even on the first block of trials, participants made

more re-queries at the higher levels than at the lower levels of the decision tree (Eq 7,

β2 = −0.9 ± 0.14, p< 10−8), an effect which was amplified in later blocks (S7(A) Fig). An analy-

sis similar to that of Fig 8 conducted independently for the first and last 6 blocks of trials

showed similar transition probabilities between levels for these two sets of trials (S7(B) Fig).
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Although a detailed analysis of the learning dynamics in our task is outside the scope of the

current study, the analysis suggests that hallmarks of the heuristic strategy are already present

in the first blocks of trials.

Discussion

Adaptive behavior requires making accurate decisions, but also knowing what decisions are

worth making. To study how people decide what to decide on, we investigated a novel task in

which people had to find a target, hidden at the lowest level of a decision tree, by gathering sto-

chastic information from the internal nodes of the decision tree. Our central finding is that a

small number of heuristics explain the participants’ behavior in this complex decision-making

task. The study extends the perceptual decision framework to more complex decisions that

comprise a hierarchy of sub-decisions of varying levels of difficulty, and where the decision

maker has to actively decide which decision to address at any given time.

Our task can be conceived as a sequence of binary decisions, or as one decision with eight

alternatives. Participants’ behavior supports the former interpretation. Participants often per-

formed multiple queries on the same node before descending levels, and they rarely made a

transition from an internal node to a higher-level one before reaching a leaf node. This indi-

cates that participants made categorical decisions about the direction of motion at the visited

nodes before they decided to descend levels. This bias toward resolving uncertainty locally was

not observed in an approximately optimal policy (Fig 8), and thus may reflect more general

cognitive constraints that limit participants’ performance in our task [37]. A strong candidate

is the limited capacity of working memory [38]. By reaching a categorical decision at each

internal node, participants avoid the need to operate with full probability distributions over all

task-relevant variables, favoring instead a strategy in which only the confidence about the

motion choices is carried forward to inform future choices [39].

Participants often made many successive queries at an internal node. The number of que-

ries was not predetermined, but depended on the difficulty of the decision and the depth of the

decision in the decision tree. Participants requested more information when decisions were

difficult [40–42]. They also made more re-queries at the higher levels of the decision tree than

at the lower levels, which explains why the former decisions were more accurate (Fig 3). This

strategy may seem sensible since misjudgments made at the higher level of the decision tree

can cause the decision maker to spend a long time exploring the wrong branch of the decision

tree. As stated by John von Neumann [43], errors add-up during long calculations and those

committed early in the calculation are amplified at later portions of it. Surprisingly, however,

the solution of an optimal model—in which we modified the payoffs to encourage multiple

successive queries at the same node—shows that it would be more convenient to make more

re-queries at the lower levels of the decision tree, unlike what was found in the data. The opti-

mal strategy can be understood as follows. The optimal number of queries at a node depends

on the balance between the cost of sampling and the benefit derived from the increase in

expected accuracy. Since the decision maker does not know at the beginning of the trial the

difficulty of the decisions that will be encountered in the future, sampling the root node multi-

ple times can be sub-optimal because subsequent decisions may be difficult and thus other

strategies (like searching directly over the leaf nodes) may be more rewarding. However, upon

reaching the lower levels of the decision tree, a Bayesian decision maker can use the certainty

in the decisions made at the higher levels to better assess the benefit of repeatedly sampling a

low-level node, leading to an optimal strategy in which more queries are made at the lower lev-

els of the decision tree.
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An unexpected aspect of our results is that people did not accumulate motion information

across re-queries. Instead, evidence was discarded if deemed unreliable to make a categorical

motion choice. This conclusion—which contrasts with widely spread assumptions about the

decision process in simple perceptual and value-based decisions—is based on a model-free

analysis of how fluctuations in the stimulus motion information affect motion choices and on

a formal comparison between models with and without integration. Using a model-free analy-

sis similar to ours, Kiani et al. [30] showed that when participants are presented with two

motion pulses separated by a brief interval, both pulses contribute almost equally to the motion

choice. This result contrasts with ours in which only the second pulse had a significant effect

on the ultimate choice. In our experiment we do not expect all pulses to have the same influ-

ence on motion choices even if the integration were perfect, because when the participant

decided to consult a node again, it is likely that the evidence presented in the previous queries

was weak—otherwise, the participant would not have made a re-query. With simulations, we

verified that if a motion choice is made after two queries, the regression coefficient for the first

motion pulse should be significantly different from zero. In contrast, the data—and simula-

tions of the detection model—show no significant effect of the first pulse when a motion

choice was made after two successive queries. Taken together, the analyses support a model in

which only the last query informs the motion choice.

What explains the absence of integration in our task? One possibility is that participants

discarded information that they would have used if the did not have the possibility of making a

re-query. Alternatively, integration-free strategies may be more widespread than previously

acknowledged. Many perceptual and value-based decisions could be based on a single, highly

informative sample of evidence, but since experimenters do not know when this sample

occurred, reverse correlation analyses may lead to the conclusion that decision makers accu-

mulated information over longer periods of time than they actually did. While it may seem

that these two alternative mechanisms (evidence integration and extrema detection) should

lead to large differences in accuracy and response times, this is true only if the signal-to-noise

ratio were known (including the noise in the stimulus and in the brain), which is usually not

the case. If signal-to-noise is considered a free parameter that is fit to data, both models are

indistinguishable for many of the tasks commonly used in the perceptual decision literature,

including the random-dot motion discrimination task [26, 44–46].

Our results contrast with those that describe human decision making in terms of Bayesian

inference. We did not find evidence that participants represent a joint probability distribution

over all the decision-relevant variables. The Bayesian model, which does, yielded a perfor-

mance far superior to that observed experimentally and displayed qualitatively different behav-

ior. Because our task is more complex than those normally used in the perceptual decision

making literature (e.g., [47, 48]), it could be that people deviate from optimal behavior as the

decision problem becomes more complex. Alternatively, it is also possible that Bayesian and

non-Bayesian models behave similarly if task complexity is low [26, 49, 50], and that more

complex decisions are needed to reliably disambiguate between them.

Unlike the Bayesian model, which adapts its decision policy to any change in the reward

structure, the heuristic model is limited to the space of decision policies that can be derived by

modifying its parameters, such as the decision criteria and the ratio between on-path and off-

path queries. While less flexible than the Bayesian model, the heuristic model is more flexible

than the sampling norms commonly used in the literature (which we also explored in this

study) such as probability-gain and information-gain, that do not have free parameters that

can be adjusted to changes in the reward structure. Furthermore, it has been reported that peo-

ple’s planning strategies are relatively insensitive to changes in the reward contingencies [51],

and the tendency of people (and monkeys) to seek information even when it is detrimental to
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task performance can be interpreted as relative lack of sensitivity to reward information [34,

52]. A variant of our experiment in which rewards vary across blocks should be able to address

the question of how sensitive people’s planning strategies are to the reward contingencies.

Our data show that the confidence in the accuracy of the motion decision–or other graded

expectation of potential outcome–is carried forward in time to affect subsequent decisions.

Confidence, however, is not enough to make optimal decisions in our task. For example, the

confidence in a motion choice may be low because not enough information has been gathered,

or because the evidence obtained was weak. The best subsequent action may be different in

both cases: in the first case, it may be convenient to query the node again, while in the second

it may be convenient to not query it again in the trial because it can be inferred from past que-

ries that the source of evidence is unreliable. To distinguish between these strategies, it would

be necessary to carry forward other measures of uncertainty in addition to confidence (e.g.,

confidence about confidence).

In the detection model, re-query decisions are made by comparing the strength of sensory

evidence against a criterion. Identical results would be obtained if the criterion were set on

confidence instead of evidence strength because there is a monotonic relation between the

two. The placement of the criterion depends on tree level, which explains why performance

differs across tree levels. The criterion also depends on the number of times a node was sam-

pled in a row. Collapsing the criterion with the number of samples is a sensible strategy when

the difficulty of the decision is unknown a priori: if many samples were obtained from a node

and a decision has not yet been made, it is increasingly likely that the quality of the evidence is

low and thus it may be convenient to hasten the decision by collapsing the criterion. A similar

rationale justifies the use of collapsing decision termination bounds in reaction-time experi-

ments [27, 31].

Confidence also informed the solution to the causal inference problem introduced by the

ambiguous feedback delivered after an error. Participants’ behavior could be explained by a

model that compares the confidence of the decisions made along the error-path to determine

which decision is blamed for the error. If only one of decision was made with low confidence,

the decision maker assigned the responsibility for the error to that node; if at least two deci-

sions were made with low confidence, the highest-level node among them is queried again.

Previous studies in humans and monkeys showed that confidence is used to decide whether

the absence of reward was due to a perception error, or to a covert change in the stimulus-

response contingency rules [21, 22]. Our results extend the role of confidence in disambiguat-

ing the cause of an error to the case of active sampling in decision hierarchies.

In this study, we defined confidence as the posterior probability that a motion choice is cor-

rect, calculated with Bayes rule. The posterior probability has proven to be a good proxy for

confidence (up to a monotonic transformation) in previous studies using the random-dot

motion task [20, 32, 33, 53, 54]. It is likely, however, that the posterior probability is only a

first-degree approximation to people’s sense of confidence. The high degree of individual vari-

ability in the confidence reports [55, 56], the influence of non-task factors such as mood or

personality traits [56, 57], experiments with subtle stimulus manipulations [58, 59] and model-

ing studies [60] suggest that there may be systematic deviations between confidence and the

posterior probability that a choice is correct. It remains to be determined if some of the

nuances in the computation of confidence, such as positive-evidence bias for confidence [58]

or confidence’s insensitivity to evidence variability [61], influence people’s planning behavior

in our task, and specially the assignment of blame after an error at a leaf node.

There are many differences between our study and previous planning studies in humans.

Most of these studies relied on tasks without uncertainty (Classical planning) or tasks in which

the uncertainty is limited to stochastic transitions between states (Markov Decision Processes,
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MDPs), and have focused on how people cope with the combinatorial explosion that occurs as

the planning horizon increases [62–64], the depth with which people plan [65, 66], or the

extent to which people use model-based or model-free strategies when learning from rein-

forcement [62, 67, 68]. The present study is different because we focus on how people disam-

biguate a single hidden state from a sequence of information-seeking and reward-seeking

actions. The task belongs to the class of Partially-observable MDPs, in which an observation

model is needed to make inferences about the current state from noisy or ambiguous observa-

tions. In this regard, our task is more similar to those used in the active sensing literature,

which focuses on how the senses are directed to extract decision relevant information (see [69]

for a review). Our study can be interpreted as extending the applicability of active sensing to

tasks comprising a hierarchy of sub-decisions of varying levels of reliability.

While a detailed analysis of learning in our task is beyond the scope of this study, an analy-

sis of how behavior changes with experience suggests that the basis of the heuristic strategy is

already established early on. This implies that participants either automatically derived the

heuristic strategy from the verbal description of the task, or learned it rapidly during the first

few trials. Experience in the task may then be used to fine-tune the parameters of this initial

strategy, rather than learning one ‘from scratch’. In this regard, the literature on program

induction and meta-learning (e.g., [70, 71]) may be more relevant to understand how people

derive appropriate control in our task than the literature on reinforcement learning that has

been so influential in the study of human planning.

Also relevant are the studies that presented monkeys or humans with decision trees with

stochastic information, in which the participants had simultaneous access to the evidence

from the different bifurcations [19, 72–76]. These studies (which did not have an active sam-

pling component) showed that lower-level decisions influence the decisions made at higher

levels, suggesting that the evidence from the various bifurcations is combined before reaching

a categorical decision for any one of them. An exception to the simultaneous presentation of

evidence from all bifurcations is the study by Van den Berg et al. [20] in which the evidence

for level-2 decision was presented only after a categorical decision was made at the root node.

Although this task did not have planning, replanning or active sensing components, the study

showed that level-2 decisions were made more quickly than level-1 decisions, consistent with

our observation that the criterion Fℓ becomes more liberal for decisions deeper in the decision

tree.

With our task, we intended to strike a balance between the highly simplified decision-mak-

ing tasks commonly used in systems neuroscience and the highly complex tasks used in psy-

chology and cognitive sciences. Adapting our task to be performed by non-human primates

may help elucidate the neurophysiological bases of active information sampling, heuristic

planning and belief propagation, complementing recent studies in non-human primates

trained in highly complex decision-making tasks (e.g., [77, 78]). Another potentially fruitful

direction for future research is to adapt the paradigm present here for massive online studies.

In addition to confirming the results presented in this study, based on a small number of

highly experienced participants, it will allow us to explore how people’s decision strategies

change with task variables such as the depth of the decision tree, the prior probability of differ-

ent alternatives and the reward structure, and with variables external to the task such as trait

measures.

Although our task was designed as a model of reasoning, many differences remain between

our task and those decisions in which the evidence for the different sub-decisions is generated

internally. An obvious difference is that while in our task the evidence for the different sub-

decisions can only be evaluated one at a time, the brain can represent many streams of evi-

dence simultaneously [79]. This difference may be less relevant that it may seem, because there
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is behavioral and neuroscientific evidence that even though the brain is capable of processing

multiple streams of evidence in parallel, only one of them can be used to update a decision var-

iable at each moment [39, 80, 81]. Therefore, the need to decide which memory, feeling or

thought to use to inform a decision may be subject to the same type of arbitration rules that we

have identified here. More fundamental differences are that the number of possible sources of

evidence bearing on a decision can be vast [82, 83], that the hypothesis space may need to be

expanded during the decision process [84, 85], and that richer internal models need to be que-

ried to relate individual evaluations to the agent’s goals [86]. It might be fruitful to extend the

paradigm presented here to approximate these more complex aspects of reasoning.

Methods

Ethics statement

The study was conducted at Columbia University (New York). All participants provided writ-

ten informed consent. The study was approved by the Institutional Review Board of Columbia

University Medical Center.

Participants

Four participants (1 male and 3 female) took part in the study. All had normal vision and were

naive about the purpose of the experiment. Three of the four participants took part in a previ-

ous study [33].

Apparatus

Visual stimuli were presented on a CRT monitor with a screen refresh rate of 75Hz. A headrest

and chin rest were used, and the eye position was monitored at 2,000 Hz using an Eyelink

1000 eye-tracker (SR Research Ltd., Mississauga, Ontario, Canada). The experiment was pro-

grammed in Matlab, using the Psychtoolbox library [87–89].

Experimental design

Each participant completed the experiment over 5 to 8 sessions, of approximately 1 hour each.

Participants completed 2–3 sessions per week, no more than one session per day. In a typical

session, they completed 3–5 blocks of 50 trials each. In total, participants 1 to 4 completed

1450, 700, 1050 and 975 trials, respectively. This corresponds to a total 7015, 3921, 7817 and

5304 random-dot motion presentations per participant.

Random-dot motion stimulus

The random dot motion stimulus was generated following methods described previously [48].

Each video frame shows one of three interleaved sets of dots. When replotted 40 ms later, each

dot could be displaced by ±Δx from its previous position, or it could be redrawn at a random

location. The probability that a dot was redrawn in the direction of motion was equal to the

motion strength. The displacement Δx was such that the apparent speed of motion was 5

degrees of visual angle per second. The sign of the displacement was determined the direction

of motion set for that node and trial. The dot density was 16.7/deg2/s, and the dots were visible

within a circular aperture of 4 degrees of visual angle.

The motion strength and direction were assigned randomly and independently to each

node at the beginning of the trial, and they remained constant throughout the trial. The

motion strength assigned to each node was sampled from the list [3.2,6.4,12.8,25.6,51.2] %.

Participants were presented with 227 ms of random-dot motion (17 video frames) every time
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they queried an internal node. Each random-dot motion movie was instantiated with a differ-

ent random seed, so if participants queried the same node multiple times in a trial they were

shown a different movie each time, albeit of the same motion strength and direction.

Task description

The sequence of events within a trial is shown in S1 Movie. The decision tree (spanning 28˚

width and 14˚ height of visual angle) was presented at the beginning of the trial, including the

15 nodes and lines that connect them. When the participant’s gaze was within 2.2˚ of one of

the nodes, it changed colors from red to pink. If then the participant pressed the keyboard’s

space-bar, he or she was presented with a short pulse (227 ms) of random-dot motion. Finding

the target finished the trial and delivered a positive reward. Selecting any of the other 7 leaf

nodes triggered a low-pitched sound that indicated to the participants that the chosen leaf

node was not the target.

Participants were informed that querying an internal node led to a loss of 1 point; selecting

the wrong leaf node led to a loss of 3 points; and finding the target delivered a positive reward

of 10 points. In all trials the participants found (eventually) the target, since it was the only way

to end the trial and move on to the next one. After each trial, participants received feedback on

how many points they scored in that trial, broken down by points lost for queries, points lost

for selecting the wrong leaf node, and points earned for finding the target (see S1 Movie). At

the end of each block, participants were shown a bar graph with the total number of points

earned in the block and in all previous blocks.

Data analysis

We used logistic regression to evaluate the influence of motion strength and tree level on the

choices made after querying internal and leaf nodes. We used likelihood-ratio tests for nested

models to evaluate the null hypothesis that one or more of the regression coefficients were

equal to zero. In all regression models we incorporate the data from the different participants

using indicator variables.

The logistic regression model used to determine the influence of motion strength and tree

level on the motion choices is:

logit½prightward� ¼ b0 þ b1sþ b2s‘þ
XNsubj � 1

i¼1

b2þiIsubj ; ð6Þ

where prightward is the probability of a rightward motion choice (i.e., descend a level through

the right branch), s is signed stimulus strength (positive for rightward motion, negative for left-

ward motion), ℓ is the level of the decision in the decision tree (with values 1 to 3 from the top

down) and Isubj is an indicator variable that takes a value of 1 if the trial was completed by sub-

ject subj and 0 otherwise. For this analysis we only included those queries that were directly

followed by a query at one of the two child nodes, which allow us to asses if the motion choice

was correct or incorrect.

We used logistic regression to evaluate if the probability of querying the same internal node

again (prequery) depended on motion strength and tree level:

logit½prequery� ¼ b0 þ b1cþ b2‘þ
XNsubj � 1

i¼1

b2þiIsubj ; ð7Þ

where c is the unsigned motion strength. For this analysis we included all queries that were fol-

lowed by the query of one of the two child nodes, or a re-query. As mentioned, these three
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type of choices correspond to the vast majority of the actions that follow the query of an inter-

nal node. The same regression model (using data from the first block of trials only) was used

to evaluate whether tree level had an influence on prequery on the first block of trials completed

by each participant.

To determine if the proportion of on-path queries after an error at a leaf node depends on

the motion strength of the nodes that were not blamed for the error, we used the following

logistic regression model:

logit½pon� ¼ b0 þ b1cb þ b2cn;1cn;2 þ
XNsubj � 1

i¼1

b2þiIsubj ; ð8Þ

where pon is the probability of doing an on-path query after an error at a leaf node, cb is the

motion strength of the node that was blamed for the error, and cn,1 and cn,2 are the motion

strength at the other two nodes from the error-path. The heuristic model predicts that β2

should be negative since on-path queries are more likely when the decisions along the error

path are made with low confidence, and low confidence choices are more frequent when

motion is weak. For this analysis, we included those errors at leaf nodes for which we could

classify the subsequent action as either an on-path or off-path query. Significance was evaluated

with a likelihood ratio test for nested models with and without the β2 term.

We used the following logistic regression model to determine if the motion information in

the stimulus had a significant leverage on the choice:

logit½prightward� ¼ b0 þ b1sþ b2‘þ b3mþ
XNsubj � 1

i¼1

b3þiIsubj ; ð9Þ

wherem is the motion energy obtained from the motion stimulus. The motion energy is

summed over time, thus it is only one value per query. The regression analysis includes those

queries for which a rightward/leftward choice was made after exactly one query.

To determine if the motion energy from queries that were followed by a re-query had an

influence on the ultimate choice, we used the following logistic regression model:

logit½prightward� ¼ b0 þ b1sþ b2‘þ b3m1st þþb4m2nd þ
XNsubj � 1

i¼1

b4þiIsubj : ð10Þ

It is identical to the Eq 9 except that it includes two motion energy terms,m1st andm2nd,

which are the motion energies obtained from the two times that a node was queried before

making a left/right motion choice. The analysis includes only those queries for which a right-

ward/leftward choice was made after exactly two queries.

In Fig 5 we show the time-course of the motion energy residuals. We calculate motion

energy using previously published procedures [90, 91]. Briefly, the sequence of random dots

presented on each trial was convolved with two pairs of spatiotemporal filters. Each pair is

selective to one of the two directions of motion. Direction selectivity is achieved by addition

and subtraction of the product of a temporal and a spatial filter. Opponent motion energy is

computed by subtracting leftward from rightward preferring responses. After averaging over

the two spatial dimensions, we obtain a time-varying signal which quantifies the fluctuations

in motion energy during the course of the trial. The impulse response of the filters introduce a

delay between the onset of the stimulus and response of the filters that is evident in Fig 5. The

average motion energy is a linear function of motion strength. To calculate motion energy

residuals, we subtract the expectation of the motion energy given by each node’s motion

strength and direction.
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The following logistic regression model was used to test whether the level of a node in the

decision tree had an influence on the probability of being blamed for an error at a leaf node:

logit½pblame� ¼ b0 þ b1cþ b2‘þ
XNsubj � 1

i¼1

b2þiIsubj ; ð11Þ

where pblame is the probability that the node with motion strength c from level ℓ completed by

subject Isubj is blamed for an error. In this analysis, each error at a leaf node contributes three

entries to the logistic regression model, one for each node in the error path. The dependent

variable takes a value of 1 for the node that was blamed for the error, and a value of 0 for the

other two nodes. The analysis was performed independently for on-path queries, off-path que-

ries, and the union of both, to estimate the influence of motion strength (β1 term) and tree

level (β2) separately for these conditions.

In Fig 2 we show the conditional transition probabilities between pairs of states. For each

subject u,Mu(i, j) is the number of times that node j was queried after a query at node i. We

calculate the conditional transition probabilitiesWu(j|i) diving each row inMu(i, j) by its sum.

Then we compute the expectation ofWu(j|i) over subjects, to obtainW(j|i). In the figures we

only show the transitions for which W(j|i) is greater than 0.075. Line widths are proportional

to W(j|i).
Fig 8 shows the (unconditional) transition probabilities between tree levels. For each subject

u, we count the number of times that a node from level ℓj was queried after querying a node

from level ℓi, which is denoted by Nu(ℓi, ℓj). To account for the difference in the number of tri-

als across participants, we normalize Nu(ℓi, ℓj) dividing it by the total number of queries

(minus one) completed by each participant. Finally, we average across participants to obtain

the normalized transition probabilities between levels, which we denote by N(ℓi, ℓj). The figure

only shows the transitions for which N(ℓi, ℓj) is greater than 0.05. Line widths are proportional

to N(ℓi, ℓj).

Detection model

We assume that the momentary evidence comprises samples from a gaussian distribution and

that the integration is unbounded for the duration of the stimulus. Therefore, the integral of

the momentary evidence is also normally distributed. Following previous studies using ran-

dom dot motion stimuli (e.g., [32]), the mean is assumed to be a linear function of motion

strength,

mc;d ¼ kdct ; ð12Þ

where κ is the signal-to-noise, d indicates the net direction of motion (-1 for leftward and +1

for rightward motion) c is the motion strength and t = 0.227s is the stimulus duration. By con-

vention, μ is positive for rightward motion, and negative for leftward motion.

The variance is also assumed to be a linear function of motion strength,

s2
c ¼ tð1þ cgÞ ; ð13Þ

which is known from previous studies to account for behavior better than a model with con-

stant variance. It is a reasonable assumption as the variance of the motion energy derived from

the stimuli increases with motion strength [33]. Slope γ is a free parameter of the model.
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Each query of an internal node gives rise to a sample of motion evidence,

e � N ðmc;d; scÞ ; ð14Þ

which depends on the node’s motion strength, c, and direction of motion, d.
The decision that is made after a query depends on the value of e. If e< −ϕℓ or e> ϕℓ, the

model considers that the direction of motion was left or right, respectively, and the next action

is the selection of the corresponding child node. On the contrary, if |e|< ϕℓ, the evidence sam-

ple e is discarded and a new sample is obtained from the same node.

The criterion Fℓ is a function of the level of the node in the decision tree, ℓ, and the number

of previous queries made at the node, nq,

F‘ ¼ �‘ð1þ e� lnqÞ ; ð15Þ

where ϕℓ is the base criterion which depends on level ℓ. Rate parameter λ controls how rapidly

F decays with nq.
The detection model has 6 parameters in total: θ = {κ, γ, ϕ1, ϕ2, ϕ3, λ}. The model was fit the

maximize the likelihood of the choices made after each query of an internal node,

ŷ ¼ argmax
y

XQ

q¼1

logðPðchoiceqjcq; dq; ‘q; yÞÞ

 !

; ð16Þ

where choices can be +, − or r for choosing the right bifurcation, the left bifurcation, or doing

a re-query, respectively. cq and dq are the motion strength and direction for query q, and ℓq is

the level (1 to 3) of the node in the decision tree. We fit the model to the subset of decisions

that were followed by a re-query or by a query at one of the two child nodes. As mentioned in

Results, this includes the vast majority of decisions that follow the query on an internal node.

The behavior of the model is governed by the probability of exceeding the criteria at ±Fℓ:

pþ ¼
1

2
1 � erfc

F‘ � mffiffiffiffiffiffi
2s
p

� �� �

ð17Þ

p� ¼
1

2
1 � erfc

F‘ þ mffiffiffiffiffiffi
2s
p

� �� �

ð18Þ

pq ¼ 1 � pþ � p� ð19Þ

where erfc is the complementary error function. The equations represent the probability mass

that exists beyond or between ±Fℓ.
The model was fit independently for each participant using a Bayesian Optimization algo-

rithm [92]. Solid lines in Figs 3 and 4 were generated with the best-fitting model for each par-

ticipant. S1 Table shows the parameter values for the best-fitting model.

Bayesian model

As mentioned in Results, the Bayesian model represents a probability distribution over the

possible states s of the problem, PðsjE;VÞ, conditioned on the motion samples obtained from

past queries at the 7 internal nodes, E, and the set of leaf nodes that were already visited, V.

Before the first error at a leaf node (i.e., when V is the empty set), the distribution PðsjE;VÞ
can be factorized as indicated in Eq 1. Piðc; djEiÞ in Eq 1 is the probability that the internal

node i has motion strength c and motion direction d, given the set of motion samples Ei
obtained from past queries at node i.
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After querying node i and obtaining motion observation e, the posterior over motion direc-

tion at node i is updated following Bayes’ rule:

Piðc; djEiÞ≔
Pðejc; dÞPiðc; djEiÞP
c;dPðejc; dÞPiðc; djEiÞ

; ð20Þ

where Pðejc; dÞ is the likelihood function, examples of which are shown in Fig 4A. Before the

first query, Piðc; dÞ is uniformly distributed.

The Bayesian model also represents the probability distribution BðTjE;VÞ, which is the

belief that the leaf node T is the target. If no error has yet been made at a leaf node (i.e., V is the

empty set), the belief BðTjE;VÞ can be calculated from the distributions PiðdjEiÞ, which are

easily obtained by marginalizing Piðc; djEiÞ over the motion strengths:

PiðdjEiÞ ¼
X

c

Piðc; djEiÞ : ð21Þ

Then, the probability that leaf node T is the target can be factored as the product of PiðdjEiÞ
for the three nodes i that are in the path that connects the root node to T (see S2 Table). For

example, the probability that target 10 is correct in Fig 1B is equal to the probability that the

net direction of motion is rightward (d = 1) at nodes 1, 2 and 5. That is,

BðT ¼ 10Þ ¼ P1ðd ¼ 1jE1Þ � P2ðd ¼ 1jE2Þ � P5ðd ¼ 1jE5Þ.

This factorization is no longer valid after an error at a leaf node, because the probabilities

PiðdÞ are no longer independent when conditioned on the error. We use the following proce-

dure to calculate the beliefs BðTjD;VÞ when the set V is not empty. First, we ignore the errors

at the leaf nodes and use all the observations in E to calculate PiðdjEiÞ for each internal node i,
as previously described.

With PiðdjEiÞ, we calculate the probability of the K = 27 possible combinations of motion

directions at the 7 internal nodes. The examples shown in Fig 1B and 1C correspond to two

such configurations. We use index k to identify a particular combination of motion directions

at the internal nodes of the decision tree; for instance k = 0 could be used to identify the config-

uration in which the true direction of motion at every internal node is leftward. Ignoring the

errors at leaf nodes, the probability of a particular combination k of motion directions at the 7

internal nodes is given by the product

Pk ¼
Y7

i¼1

PiðdijEiÞ ; ð22Þ

where di is 1 or -1 depending on whether, for combination k, the motion direction at node i is
rightward or leftward, respectively.

We then incorporate the errors at the leaf nodes. We can zero the probability of all combi-

nations k for which the correct leaf node is one of those that have already been visited and

turned out not to be the target. For example, if leaf node 14 was queried and it was not the tar-

get, the 16 combinations of motion direction for which node 14 is the target can be discarded.

For all combinations k that can be discarded by past errors at leaf nodes, we set the value of Pk
to zero, and renormalize such that the sum of the remaining Pk’s adds up to 1,

Pnorm
k ¼

0 if Tk 2 V

PkP
k0Pk01Tk0 2V

otherwise
;

8
>><

>>:

ð23Þ
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where Tk0 is the target for combination k and 1Tk0 2V is an indicator variable that evaluates to 1 if

the target for combination k0 is in the set V and to 0 otherwise.

Finally, we calculate the belief BðTjE;VÞ that leaf nodes T is the target. We do so for each

leaf node T by adding the values of Pnorm
k over the 16 combinations k for which the correct leaf

node is T,

BðTjE;VÞ ¼
X

k

Pnorm
k 1Tk¼T ; ð24Þ

where 1Tk¼T is an indicator variable that evaluates to 1 if T is the target for combination k, and

evaluates to zero otherwise.

So far we have explained how to update beliefs Piðc; djEiÞ and BðTjE;VÞ after a query at

any of the 15 nodes. But we have not addressed how to select which node to query. For this, we

used simulations.

Starting with each of the 15 possible actions, we evaluate the average cost that would be

incurred until finding the target. Of course, the decision-maker does not know which leaf

node is the target, so we implement the following procedure. The agent samples a state s� from

the posterior distribution over states, PðsjE;VÞ. Before an error at a leaf node, s� can be

obtained by sampling the motion strength and direction for each internal node i from the dis-

tribution Piðc; djEiÞ. To sample a state s� after an error at a leaf node, we first sample a combi-

nation of motion directions k� from the distribution Pnorm
k , and then sample a motion strength

for each node i from the distribution PðcijdiÞ, where di is the direction of motion at node i
determined by the combination k�. The agent assumes that the state s� is the true state of the

problem.

Then the agent simulates random actions until finding T�, the target corresponding to

state s�. With probability 7

15
the agent samples one of the internal nodes, chosen at random and

with equal probability. With probability 8

15
, the agent samples one of the leaf nodes. In the latter

case, the agent samples the leaf node that has the highest posterior probability of being the tar-

get. After each simulated action, the agent updates the distributions Piðc; djEiÞ and BðTjE;VÞ
(Eqs 20 and 24). The observations ei obtained after sampling an internal node are normally dis-

tributed with the parameters obtained from the fits of the detection model (Eq 14). The inter-

nal simulations of actions continues until finding the target T�. Once the target T� is found, the

agent computes the cost incurred in finding it, using the true payoffs of the experiment. Note

that this entire process occurs ‘in the head’ of the decision maker.

The process described above is repeated 2, 000 times starting with each of the 15 possible

next actions, for a total of 15 × 2, 000 rollouts. To select the next best action, the agent averages

the cost incurred in finding the target from each of the 15 possible next actions. The action

chosen is the one for which the expected cost is the lowest. After executing the chosen action,

an observation is obtained from the environment and used to update beliefs Piðc; djEiÞ and

BðTjE;VÞ. If the chosen node is not the target, the Bayesian decision-maker selects the next

action repeating the simulation-based procedure just described.

Heuristic model

The heuristic model extends the detection model with a mechanism to select which node to

query after an error. The expected accuracy of the motion choices made along the error-path

(or choice confidence) plays a key role in this process.

The confidence in having made a correct choice at internal node i is calculated using Bayes

rule based on the sample of motion evidence e obtained the last time that node i was queried.
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The confidence in that rightward is the correct direction of motion is:

confþi ¼ Piðd ¼ 1jeÞ ¼
X

c

Piðc; d ¼ 1jeÞ ¼
X

c

Pðejc; d ¼ 1ÞPiðc; d ¼ 1Þ
P
d0
P
c0Pðejc0; d0ÞPiðc0; d0Þ

; ð25Þ

and confidence in a leftward choice is simply conf �i ¼ 1 � confþi .

The likelihood Pðejc; d ¼ 1Þ is given by the probability density function of the normal distri-

bution (Eq 14). If many successive queries were made at an internal node, confidence is based

on the motion evidence from the last query. This assumption was adopted for consistency with

the detection model. After an error at a leaf node, the decision maker compares confidence for

the three decisions in the error path to determine the best next action. Whether we use the con-

fidence in a rightward or leftward choice depends on the directions of motion required to reach

the leaf node where the error was made. For instance, if an error was made at node 12 in Fig 1B,

then the confidence that we use for the decisions made at nodes 1, 3 and 6 is the confidence in a

leftward choice, because all these choices had to be leftward for node 12 to be the target.

We incorporated two additional assumptions in the heuristic model. One is that once an

internal node has been blamed for an error, it cannot be blamed again until a new sample is

obtained from it. Without this assumption the decision maker can blame the same node

repeatedly when only one of the decisions in the error-path was made with low confidence.

Because of this assumption, sometimes none of the nodes in path PT can be held responsible

for the error. In this case the decision maker queries a leaf node at random and with equal

probability from among those not yet visited. Another modeling assumption is that the deci-

sion maker can remember the leaf nodes already visited and thus does not query the same leaf

node twice in the same trial. If the model makes a motion choice at level 3 of the decision tree

that would lead to a leaf node that has already been visited in the trial, then the decision maker

selects the next action as if it had selected that leaf node and obtained negative feedback, with-

out having to query the leaf node again.

The only parameter of the heuristic model (ω) was fit to minimize the difference between

the proportion of on-path queries between model and data,

err ¼ jpmodel
on-path � p

data
on-pathj ; ð26Þ

where pon-path is the number of on-path queries divided by the total number of errors at leaf

nodes.

The results of heuristic model are based on 50,000 simulated trials per participant.

Shallow sampling norms

The criteria used to select actions using shallow sampling norms were described in Results.

The expectations in Eqs 2–4 are computed over the possible observations o than can follow

action a, p(o|a, E, V), where E and V contain the set of motion samples and already visited leaf

nodes, respectively.

If action a is the query of leaf node T, observation o can take two possible values corre-

sponding to target reached and not-reached. In this case the likelihood Pðoja; E;VÞ is given by

BðTjE;VÞ and ð1 � BðTjE;VÞÞ for positive and negative feedback, respectively.

Instead, if action a is the query of internal node i, then the observation o is a sample of

motion information, and computing its likelihood requires marginalizing over the possible

values of motion strength c and direction d:

Pðoja; E;VÞ ¼
Z

d

Z

c
Pðoja; c; d;E;VÞPiðc; djE;VÞ ; ð27Þ
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where

Piðc; djE;VÞ ¼ Piðcjd;EiÞPiðdjE;VÞ : ð28Þ

For the first term on the right side of Eq 28, the conditionalization on E and V can be sim-

plified to Ei because once we condition on motion direction (d), the probability of the different

motion strengths becomes independent of past errors and of the motion samples obtained

from other nodes. PiðdjE;VÞ is calculated from the enumeration of the k possible combina-

tions of motion direction at the internal nodes,

PiðdjE;VÞ ¼
X

k

Pnorm
k 1dki ¼d ; ð29Þ

where the sum is over all combinations k (as explained in the section on the Bayesian model)

and 1dki ¼d is an indicator variable that evaluates to 1 if for combination k the direction of

motion at internal node i is equal to d and evaluates to zero otherwise.

Supporting information

S1 Table. Best-fit parameters for the detection and heuristic models.

(PDF)

S2 Table. All paths PT from the root node to leaf node T. Pð‘ÞT represents the element of PT
from level ℓ. Node-numbering follows the convention of Fig 1D.

(PDF)

S1 Movie. Hierarchical decision making task. Screen recording of three trials of the experi-

ment. The cursor is used to simulate the participant’s gaze; it was not shown in the experiment.

(MP4)

S1 Fig. Motion energy kernels calculated separately for the three levels of the decision tree.

We analyze the left/right choices made after two successive queries of the same internal node.

The upper and lower rows show the motion energy residuals obtained from the first and sec-

ond queries, respectively, sorted by the left/right choice made after the second query. The deci-

sions made at each level of the decision tree were analyzed separately, and are shown here in

columns. Shading indicates s.e.m. A comparison of nested regression models favored the one

without the motion information from the first motion pulse (Eq 10, ΔBIC = 1.3, 6.5 and 5.4 for

levels 1–3 respectively, all supporting the model without the β3 term).

(PDF)

S2 Fig. Statistical comparison to alternative models. Difference in Bayesian information cri-

terion (BIC) between the detection model and five alternative models. Positive values indicate

support for the detection model. From left to right, the five alternative models are: (1) a model

in which the evidence from successive queries at an internal node are integrated, unlike the

detection model in which only the last query influences the left/right choice; (2) a model in

which there is a single common criterion ϕ for the three levels of the decision tree, but where

the signal-to-noise ratio (κ) could take different values for the three levels of the decision tree;

(3) similar to the previous model, except that ϕ could also take different values for each level

of the decision tree, as in the detection model; (4) model identical to the detection model

except that the noise was independent of motion strength (i.e., γ = 0); (5) model in which

the criterion ϕ depends on q—the order of the query in the trial—parameterized as: ϕ = ϕ1 +

(ϕ0 − ϕ1)eη(q−1), where η, ϕ0 and ϕ1 are fitted parameters.

(PDF)
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S3 Fig. The relation between tree level and the probability of making a re-query is not

mediated by query number or elapsed time. Proportion of queries that were followed by a

re-query, as a function of the order of the query (left panel), and the time of query in the trial

(right panel). The proportion of re-queries was calculated separately for the three levels of the

decision tree. Re-queries were more likely at higher levels of the decision tree, even for the

same query number or elapsed time. This indicates that neither query number nor elapsed

time can explain away the influence of tree level of the probability of a re-query. In the left

panel, we only include those conditions with at least 6 queries from each participant. The data-

points are averages across participants. Error bars represent s.e.m. across participants. In the

right panel, we calculate the proportions in sliding windows of 300 queries each, after sorting

the queries by elapsed time.

(PDF)

S4 Fig. Behavior of the Bayesian model with less costly sampling. The Bayesian model was

derived for the case in which the cost of querying the internal nodes of the decision tree was

reduced to 30% of its true value. (A) Average number of queries per trial at levels 1–3 and aver-

age number of errors at leaf nodes. The data is shown in green (similar to Fig 6A), and the

behavior of the Bayesian model with less-costly sampling is shown in orange. Error-bars indi-

cate s.e.m. (B-E) Similar to Fig 2, but for the actions selected by the Bayesian model with less

costly sampling. It shows the conditional transition probabilities from nodes of level 1–3 (pan-

els B–D), and from the leaf nodes (panel E). The width of the red lines is proportional to the

conditional transition probabilities between nodes.

(PDF)

S5 Fig. Proportion of correct motion choices and re-queries for the Bayesian model with

modified reward contingencies. Same as Fig 3, but the data-points were obtained from the

Bayesian model with cheaper sampling (50% of its true value) and even cheaper re-queries

(5%). Data-points are based on 2,000 simulated trials per participant. The solid lines are fits of

a detection model similar to the one used in Fig 3. Unlike the data, the Bayesian model does

more re-queries at the lowest level of the decision tree.

(PDF)

S6 Fig. The proportion of on-path queries depends on the motion strength at the nodes

not blamed for the error. The figure shows the proportion of on-path queries (sum of all on-
path queries divided by the sum of all on-path and off-path queries) as a function of the prod-

uct of the motion strength of the two nodes from the error-path that were not blamed for the

error. The heuristic model predicts that there ought to be fewer on-path queries when the

motion is stronger for the two nodes not blamed for the error. This prediction is verified in the

data (see statistical analysis in the main text). The dashed line is the fit of an exponential func-

tion to individual-trial data. Error bars indicate s.e.m.

(PDF)

S7 Fig. Dynamics of task performance. (A) Average reward residuals (top) and proportion of

re-queries (bottom) as a function of block number. The reward residuals are obtained sub-

tracting from the reward obtained on each trial, the expected reward given the trial’s motion

strength at each internal node. The reward expectation was calculated with a linear regression

model fit independently for each participant, using the motion strength at each of the 7 inter-

nal nodes (plus an intercept) as independent variables. The bottom panel shows the proportion

of re-queries at each level of the decision tree, calculated from the subset of queries in which

the query of an internal node was followed by a re-query or by the query of one of the two

child nodes. Each block has 50 trials. Data are averages across participants. Error bars indicate
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s.e.m. across participants. (B) As Fig 8, but calculated independently for the first and last 6

blocks completed by each participant. Transition probabilities between levels are largely simi-

lar for the two sets of trials.

(PDF)
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80. Kang YH, Löffler A, Jeurissen D, Zylberberg A, Wolpert DM, Shadlen MN. Multiple decisions about one

object involve parallel sensory acquisition but time-multiplexed evidence incorporation. Elife. 2021; 10:

e63721. https://doi.org/10.7554/eLife.63721 PMID: 33688829

81. Pashler H. Dual-task interference in simple tasks: data and theory. Psychological bulletin. 1994; 116

(2):220. https://doi.org/10.1037/0033-2909.116.2.220 PMID: 7972591

82. Moreno-Bote R, Ramı́rez-Ruiz J, Drugowitsch J, Hayden BY. Heuristics and optimal solutions to the

breadth–depth dilemma. Proceedings of the National Academy of Sciences. 2020; 117(33):19799–

19808. https://doi.org/10.1073/pnas.2004929117 PMID: 32759219

83. Moreno-Bote R, Mastrogiuseppe C. Deep imagination is a close to optimal policy for planning in large

decision trees under limited resources. arXiv preprint arXiv:210406339. 2021.

84. Christie S, Gentner D. Where hypotheses come from: Learning new relations by structural alignment.

Journal of Cognition and Development. 2010; 11(3):356–373. https://doi.org/10.1080/

15248371003700015

85. Kemp C, Tenenbaum JB. The discovery of structural form. Proceedings of the National Academy of Sci-

ences. 2008; 105(31):10687–10692. https://doi.org/10.1073/pnas.0802631105 PMID: 18669663

86. Coenen A, Nelson JD, Gureckis TM. Asking the right questions about the psychology of human inquiry:

Nine open challenges. Psychonomic Bulletin & Review. 2019; 26(5):1548–1587. https://doi.org/10.

3758/s13423-018-1470-5 PMID: 29869025

87. Brainard DH. The psychophysics toolbox. Spatial vision. 1997; 10(4):433–436. https://doi.org/10.1163/

156856897X00357 PMID: 9176952

88. Pelli DG, Vision S. The VideoToolbox software for visual psychophysics: Transforming numbers into

movies. Spatial vision. 1997; 10:437–442. https://doi.org/10.1163/156856897X00366 PMID: 9176953

89. Kleiner M, Brainard D, Pelli D. What’s new in Psychtoolbox-3? Perception. 2007;36(ECVP Abstract

Suppl)(14).

90. Adelson EH, Bergen JR. Spatiotemporal energy models for the perception of motion. Josa a. 1985; 2

(2):284–299. https://doi.org/10.1364/JOSAA.2.000284

91. Kiani R, Hanks TD, Shadlen MN. Bounded integration in parietal cortex underlies decisions even when

viewing duration is dictated by the environment. Journal of Neuroscience. 2008; 28(12):3017–3029.

https://doi.org/10.1523/JNEUROSCI.4761-07.2008 PMID: 18354005

92. Acerbi L, Ma WJ. Practical Bayesian optimization for model fitting with Bayesian adaptive direct search.

arXiv preprint arXiv:170504405. 2017.

PLOS COMPUTATIONAL BIOLOGY Reasoning in decision hierarchies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009688 December 31, 2021 39 / 39

https://doi.org/10.7554/eLife.17331
http://www.ncbi.nlm.nih.gov/pubmed/28648172
https://doi.org/10.7554/eLife.16650
http://www.ncbi.nlm.nih.gov/pubmed/28648171
https://doi.org/10.1016/j.cub.2012.07.043
http://www.ncbi.nlm.nih.gov/pubmed/22921368
https://doi.org/10.1038/328647a0
http://www.ncbi.nlm.nih.gov/pubmed/3614368
https://doi.org/10.7554/eLife.63721
http://www.ncbi.nlm.nih.gov/pubmed/33688829
https://doi.org/10.1037/0033-2909.116.2.220
http://www.ncbi.nlm.nih.gov/pubmed/7972591
https://doi.org/10.1073/pnas.2004929117
http://www.ncbi.nlm.nih.gov/pubmed/32759219
https://doi.org/10.1080/15248371003700015
https://doi.org/10.1080/15248371003700015
https://doi.org/10.1073/pnas.0802631105
http://www.ncbi.nlm.nih.gov/pubmed/18669663
https://doi.org/10.3758/s13423-018-1470-5
https://doi.org/10.3758/s13423-018-1470-5
http://www.ncbi.nlm.nih.gov/pubmed/29869025
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1163/156856897X00357
http://www.ncbi.nlm.nih.gov/pubmed/9176952
https://doi.org/10.1163/156856897X00366
http://www.ncbi.nlm.nih.gov/pubmed/9176953
https://doi.org/10.1364/JOSAA.2.000284
https://doi.org/10.1523/JNEUROSCI.4761-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18354005
https://doi.org/10.1371/journal.pcbi.1009688

