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Abstract: There is conflicting evidence regarding the health implications of high occupational physical
activity (PA). Shoe-based accelerometers could provide a feasible solution for PA measurement
in workplace settings. This study aimed to develop calibration models for estimation of energy
expenditure (EE) from shoe-based accelerometers, validate the performance in a workplace setting
and compare it to the most commonly used accelerometer positions. Models for EE estimation were
calibrated in a laboratory setting for the shoe, hip, thigh and wrist worn accelerometers. These
models were validated in a free-living workplace setting. Furthermore, additional models were
developed from free-living data. All sensor positions performed well in the laboratory setting. When
the calibration models derived from laboratory data were validated in free living, the shoe, hip and
thigh sensors displayed higher correlation, but lower agreement, with measured EE compared to the
wrist sensor. Using free-living data for calibration improved the agreement of the shoe, hip and thigh
sensors. This study suggests that the performance of a shoe-based accelerometer is similar to the
most commonly used sensor positions with regard to PA measurement. Furthermore, it highlights
limitations in using the relationship between accelerometer output and EE from a laboratory setting
to estimate EE in a free-living setting.

Keywords: occupational health; cut-points; energy expenditure; biomechanics; workload; indi-
rect calorimetry

1. Introduction

Measurement of physical activity (PA) by accelerometers is common practice in clin-
ical and epidemiological research [1]. PA is generally associated with decreased risk of
cardiovascular disease and reduced mortality [2]. However, in workplace settings PA and
physical workload is associated with higher risk of sick leave as well as mental ill-health
and all-cause mortality [3,4]. Since most of the research on occupational PA relies on
self-reported measures of PA, more high-quality measurement of PA in workplace settings
is required to understand this relationship further [3].

In PA measurement, PA is typically quantified as either time spent at different activity
intensities (e.g., light or moderate) or activity types (e.g., sitting or walking) [1]. Measures of
PA intensity are the most common and the reference used for intensity is energy expenditure
(EE). PA is defined as “any bodily movement produced by skeletal muscles that results
in energy expenditure” [5] and is more closely resembled by intensity measures. In these
measures, bodily movement recorded as acceleration is aggregated or averaged over time
to represent volume and intensity of activity [6]. This is followed by applying calibration
algorithms to translate measured movement to EE [6]. Accelerometers are most often
positioned on the hip or on the wrist [1,6]. In addition, thigh positioning has also been
used for PA measurement [7,8]. However, when the validity of the most commonly used
positions are compared in free-living conditions, the hip position consistently outperforms
the wrist position whereas the wrist position seems to be superior to thigh [1,9].
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Shoe positioning of accelerometers has recently been introduced in PA measure-
ment [10,11]. Since safety-shoes are often required at workplaces, shoe positioning of
accelerometers provides a suitable solution for PA surveillance. However, so far only ac-
tivity type classification has been implemented for shoe-positioned accelerometers [10,11].
Nevertheless, this position could also be suitable for measuring PA intensity. The perfor-
mance of shoe accelerometers with regards to quantifying volume and intensity of PA have
not been investigated previously and no calibrations to EE are available. Further, validation
of calibration algorithms in real workplace setting is rarely performed. Development of
algorithms for PA intensity measurement from shoe-based accelerometers could facilitate
investigation of the association between occupational PA and health.

This study aimed to develop calibration models for estimation of EE from shoe-based
accelerometers and validate the performance in a workplace setting. In addition, the
performance was compared to the most commonly used accelerometer positions.

2. Materials and Methods
2.1. Design

The study was conducted in two parts. First, a calibration part where participants
performed structured activities wearing multiple accelerometers while EE was measured.
Second, a free-living validation part where participants worked in their usual occupation
wearing multiple accelerometers while EE was measured. Calibration models predicting
EE from accelerometer output were developed based on data in the first part. In the
second part, these models were validated using free-living data from industrial workers.
Furthermore, additional calibration models were derived from the free-living data.

2.2. Participants

In the calibration part, 34 participants were recruited among staff and students from
the Department of Food and Nutrition and Sport Science at the University of Gothenburg.
In the validation part, participants were recruited among workers at an industrial factory.
Fifteen participants were recruited among workers in industrial production and 14 partici-
pants were recruited among workers in logistics warehouse. Inclusion criteria were to be
between 18 and 65 years of age, and having no physical limitation, medical condition or
illness that would interfere with performing the activities in the calibration protocol and
working as usual at the workplace, and affect the measurement of PA or energy expendi-
ture. Written informed consent was retrieved from all participants and ethical approval
was granted from the regional ethics committee in Gothenburg (No. 765–18).

2.3. Protocol

Participants in the calibration part performed five different activities each according
to a structured protocol. Each activity was performed for four minutes in order to reach
a steady state for oxygen consumption [12]. The activities were sitting, standing, slow
walking, brisk walking and running. During sitting and standing, participants were
instructed to solve Sudoku to closer simulate stationary work. The locomotive activities
were performed outdoors at a self-selected pace.

Participants in the validation part were instructed to work as normal while their PA
was measured. These measurements were performed for approximately 60 min.

2.4. Energy Expenditure

EE was measured using a portable indirect calorimetry system worn on the back
(Cosmed K5, Cosmed, Rome, Italy). Participants wore a mask covering the nose and mouth
to capture exhaled air while oxygen consumption was measured breath by breath. EE was
calculated as metabolic equivalents, which is the oxygen consumption of activity relative
to the resting metabolic rate. Resting metabolic rate was estimated as 3.5 mL·min−1·kg−1.
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2.5. Physical Activity

PA was measured by triaxial accelerometers (AX3, Axivity Ltd., Newcastle upon Tyne,
UK), set to record acceleration with a sample rate of 100 Hz and a range of ±16 g. A
range of ±6 g is typically used in PA measurement at the hip and wrist. However, 16 g is
required for capturing PA at the shoe because of higher acceleration peaks during normal
movement [13].

The accelerometer positions evaluated in the calibration and validation parts were
hip, wrist, thigh and shoe. The hip and wrist accelerometers were attached to an elastic
band positioned laterally above the right hip and left dorsal wrist respectively. The thigh
accelerometer was attached to the mid right anterior thigh using medical grade adhesive
film. These positions are normally used in clinical and epidemiological research [1]. All
participants wore the same shoe model (Ergo-Active Grant, Elten GmbH, Uedem, Germany)
that includes a rigid heel-cap. The shoe accelerometer was attached to the outside of the
rigid heel-cap on the dorsal side of the right shoe with non-elastic tape.

Raw accelerometer data was processed to remove the influence of gravity and noise
with the 10 Hz frequency extended method (FEM). FEM involves a band-pass frequency
filter with high-pass and low-pass components at 0.69 and 10 Hz respectively [14]. This
method has been shown to outperform the most commonly used method of data processing
in PA research from a biomechanical and physiological perspective since it accurately
captures the entire intensity range [14,15]. Output from the three axes were combined to a
vector magnitude.

2.6. Mechanical Workload

As a reference for mechanical workload, nine additional accelerometers were attached
to the body. These accelerometers were positioned to capture the movement of separate
body segments considered rigid: shank, thigh, lower arm, upper arm and trunk including
head. Accelerometers were positioned on both the left and right arm and leg laterally
as close as possible to their respective center of mass [16]. The trunk accelerometer was
positioned at the lower back. Accelerometer output from all sensors was processed as
above. Processed output was weighted by the approximate segment weight relative total
body weight [16]. Subsequently, weighted output from all accelerometers were summed
up to represent total body mechanical workload.

2.7. Statistical Analyses

Calibrations between accelerometer output and EE were performed by applying
smoothing splines to allow for non-linear relationships [7,14]. Smoothing splines were
implemented with a normalized smoothing parameter of 0.2. Model fit was evaluated by
explained variation (R2) in EE. In addition, the association between accelerometer output
from the four positions investigated and total body mechanical work was evaluated by
smoothing splines as above.

In the validation part, the calibration models derived from smoothing splines were
applied to the accelerometer data collected from the investigated positions to estimate
EE. Estimated and measured EE was compared by both participant mean and minute-by-
minute. The mean estimated and predicted EE from the entire measurement period was
compared for each participant. In order to compare EE minute-by-minute, measured EE
was averaged minute-by-minute whereas estimated EE was averaged over two minutes
with 50% overlap. Hence, one-minute mean measured EE was compared to a two-minute
mean estimated EE from the same and previous minute. The rationale for this was that
the measured VO2 response is not immediate in relation to mechanical work captured
by the accelerometer. However, considering the same and previous minute acceleration
(estimated EE) should be sufficient time for the measured EE to respond to the correspond-
ing workload [12]. The association between predicted and measured EE was assessed by
Pearson correlation (r) and visualized by scatter plots. Furthermore, the agreement was
assessed by root mean squared error (RMSE) and visualized by Bland—Altman plots.
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As an alternative solution to structured calibration, additional calibration models
were derived from the free-living data. These calibrations were generated, as above,
based on minute-by-minute accelerometer data and EE. The performance of the free-
living calibrations was assessed by leave one out cross-validation (LOO). Data from all
participants except one was used for calibration and the performance validated on the data
from the participant left out. This was repeated until all participants had been left out for
validation once. Free-living calibration was done both for data from participant mean and
minute-by-minute.

Cut-points representing 1.5, 3, 6 and 9 metabolic equivalents (METs) were derived
from the calibration models based on either structured or free-living data [2]. Differences
in participants’ characteristics between the participant groups were investigated by inde-
pendent t-tests and chi-square test for independence. All data processing and statistical
analyses were performed in MATLAB R2020b (MathWorks, Natick, MA, USA). The data
collected from laboratory and validation is available in Supplement Materials.

3. Results
3.1. Participants Characteristics

Participants’ characteristics are presented in Table 1. There were significant differences
(p < 0.05) between the laboratory participant group and the two workplace groups regarding
age and BMI. Furthermore, there was a significant difference in the proportion of females
between the laboratory group and the industrial production group.

Table 1. Participants’ characteristics.

N (Female %) Age (SD) BMI (SD)

Laboratory 34 (47%) 25.4 (6.1) 23.1 (2.3)
Logistics warehouse 15 (20%) 39.6 (11.9) 27.0 (3.9)

Industrial production 14 (0%) 37.6 (11.5) 26.5 (3.1)

3.2. Calibration

The explained variation (R2) of the smoothing spline-based calibration models be-
tween accelerometer output from the four sensor positions investigated and EE is presented
in Table 2. Calibrations were developed separately on laboratory and free-living data. The
calibration modes are visualized in Figure 1. R2 of all investigated positions was similar
in the laboratory setting whereas in free living, the hip position was best and wrist po-
sition worst. The most commonly used accelerometer cut-points for EE, retrieved from
the calibration models, are presented in Table 3. No cut-points above three METs were
derived from the free-living data, since no data was available for calibration at this intensity.
The cut-points derived from laboratory data were higher than the cut-points from the
free-living data.

Table 2. Performance of calibration models in laboratory and free living (95% CI).

Shoe Hip Thigh Wrist

Calibration
Laboratory R2 0.91 (0.93–0.95) 0.93 (0.92–0.96) 0.90 (0.91–0.95) 0.91 (0.85–0.92)
Free living R2 0.44 (0.33–0.42) 0.54 (0.46–0.56) 0.50 (0.39–0.49) 0.30 (0.23–0.32)

Validation of laboratory calibration
Subject mean r 0.72 (0.33–0.90) 0.73 (0.33–0.91) 0.73 (0.33–0.91) 0.53 (0.02–0.82)

RMSE (METs) 1.49 (1.16–2.07) 1.23 (0.90–1.73) 1.40 (1.04–1.99) 0.94 (0.67–1.33)
Minute-by-minute r 0.57 (0.52–0.61) 0.68 (0.64–0.72) 0.62 (0.58–0.66) 0.50 (0.45–0.55)

RMSE (METs) 1.75 (1.69–1.83) 1.37 (1.31–1.43) 1.58 (1.51–1.65) 1.19 (1.14–1.24)



Sensors 2021, 21, 2333 5 of 12

Table 2. Cont.

Shoe Hip Thigh Wrist

Validation of free-living calibration (LOO)
Subject mean r 0.64 (0.19–0.87) 0.72 (0.24–0.91) 0.67 (0.15–0.90) 0.34 (−0.21–0.73)

RMSE (METs) 0.74 (0.52–1.15) 0.74 (0.52–1.09) 0.71 (0.43–1.23) 0.92 (0.66–1.24)
Minute-by-minute r 0.58 (0.54–0.63) 0.66 (0.62–0.70) 0.64 (0.60–0.68) 0.39 (0.33–0.45)

RMSE (METs) 0.97 (0.93–1.03) 0.88 (0.83–0.92) 0.95 (0.90–1.00) 1.12 (1.06–1.17)

Workload
Laboratory R2 0.97 (0.98–0.99) 0.99 (0.99–0.99) 0.98 (0.98–0.99) 0.97 (0.95–0.97)
Free living R2 0.83 (0.79–0.85) 0.95 (0.94–0.95) 0.90 (0.88–0.91) 0.24 (0.25–0.34)

R2 explained variation, r Pearson correlation coefficient, RMSE root mean squared error, METs metabolic equivalents, LOO leave one out
cross validation.
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Figure 1. Calibrations between accelerometer output and energy expenditure (METs) in laboratory and free living based on
smoothing splines.

Table 3. Accelerometer cut-points for energy expenditure.

Energy Expenditure (METs) Shoe (mg) Hip (mg) Thigh (mg) Wrist (mg)

Laboratory calibration

1.5 43 1 7 1
3 575 168 265 154
6 1201 494 701 519
9 1623 816 1039 1038

Free-living calibration 1.5 1 12 10 36
3 122 75 89 158

3.3. Validation

The association between EE estimated based on the laboratory calibration model and
measured EE are shown in Figure 2. In addition, the agreement between estimated and
measured EE are shown in Figure 3. Correlation and agreement are shown for both minute-
by-minute measures and participant mean and are quantified in Table 2. The wrist position
displayed the weakest correlation between estimated and measured EE. On the contrary,
the wrist position displayed the highest agreement between estimated and measured EE.
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The correlation and agreement from the free-living calibrations based on LOO are also
presented Table 2. In the free-living calibration, the wrist position displayed the lowest
correlation and agreement.
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Figure 2. Correlation plots between estimated and measured energy expenditure (METs) based on minute-by-minute
measurement and participant mean (free-living part).
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3.4. Workload

Associations between single-sensor acceleration and full-body acceleration are visual-
ized in Figure 4 and R2 is presented in Table 2 (Workload). All sensor positions performed
similarly in the laboratory setting, whereas the performance of the wrist sensor was substan-
tially lower than the performance of the other sensors in the free-living setting. In addition,
the direction of the association between the wrist sensor and full-body acceleration was
substantially different between laboratory and free-living data.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 4. Association between single-accelerometer output and full-body acceleration in labora-
tory and free-living, based on smoothing splines. 

4. Discussion 
This is the first study to investigate the relationship between shoe-based accelerom-

etry and EE. With regard to measuring EE, the performance of the shoe position is com-
parable to the most commonly used sensor positions, which are the hip and wrist posi-
tions. Furthermore, the free-living validation of the laboratory-generated calibration mod-
els provides deeper knowledge on how different sensor positions and calibration proce-
dures affect the measurement of PA in a free-living setting. 

In general, all sensor positions performed well in the laboratory setting, both with 
regard to EE and mechanical work, with R2 consistently above 0.9. Hence, no conclusions 
on the performance of the different sensor positions can be drawn by the laboratory cali-
bration alone. In the validation part, on the other hand, the performance was more di-
verse, especially between the wrist sensor and the other positions investigated. In both 
the laboratory derived models and the models derived from free-living data, the correla-
tion between measured and estimated EE was weaker for the wrist position compared to 
the shoe-, hip- and thigh sensors. Figures 2 and 3 show how the estimated and measured 
EE are more randomly spread out with the wrist position compared to the other positions. 
The correlation between estimated and measured EE based on the free-living calibration 
was similar with the hip, thigh and shoe positions, whereas the wrist position performed 
worse when using free-living data for calibration. With regard to the agreement between 
estimated and measured EE on the other hand, the wrist position displayed the lowest 
error (RMSE) in the validation of the laboratory-calibrated model. Figure 3 suggests that 
this is mainly caused by the wrist position having the lowest mean bias of the positions 
investigated. The shoe-, hip- and thigh positions underestimated EE on most intensities 
except the lowest. However, with the calibration models derived from the free-living data, 
the wrist position displayed the largest error. 

0 200 400 600 800 1000

Shoe acceleration (mg)

0

200

400

600

Fu
ll 

bo
dy

 a
cc

el
er

at
io

n 
(m

g)

Shoe

0 100 200 300 400

Hip acceleration (mg)

0

200

400

600

Fu
ll 

bo
dy

 a
cc

el
er

at
io

n 
(m

g)

Hip

Free-living

Lab

0 200 400 600

Thigh acceleration (mg)

0

200

400

600

Fu
ll 

bo
dy

 a
cc

el
er

at
io

n 
(m

g)

Thigh

0 200 400 600 800 1000

Wrist acceleration (mg)

0

200

400

600

Fu
ll 

bo
dy

 a
cc

el
er

at
io

n 
(m

g)

Wrist

Figure 4. Association between single-accelerometer output and full-body acceleration in laboratory and free-living, based
on smoothing splines.

4. Discussion

This is the first study to investigate the relationship between shoe-based accelerometry
and EE. With regard to measuring EE, the performance of the shoe position is comparable
to the most commonly used sensor positions, which are the hip and wrist positions.
Furthermore, the free-living validation of the laboratory-generated calibration models
provides deeper knowledge on how different sensor positions and calibration procedures
affect the measurement of PA in a free-living setting.

In general, all sensor positions performed well in the laboratory setting, both with
regard to EE and mechanical work, with R2 consistently above 0.9. Hence, no conclusions
on the performance of the different sensor positions can be drawn by the laboratory
calibration alone. In the validation part, on the other hand, the performance was more
diverse, especially between the wrist sensor and the other positions investigated. In both
the laboratory derived models and the models derived from free-living data, the correlation
between measured and estimated EE was weaker for the wrist position compared to the
shoe-, hip- and thigh sensors. Figures 2 and 3 show how the estimated and measured EE
are more randomly spread out with the wrist position compared to the other positions.
The correlation between estimated and measured EE based on the free-living calibration
was similar with the hip, thigh and shoe positions, whereas the wrist position performed
worse when using free-living data for calibration. With regard to the agreement between
estimated and measured EE on the other hand, the wrist position displayed the lowest
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error (RMSE) in the validation of the laboratory-calibrated model. Figure 3 suggests that
this is mainly caused by the wrist position having the lowest mean bias of the positions
investigated. The shoe-, hip- and thigh positions underestimated EE on most intensities
except the lowest. However, with the calibration models derived from the free-living data,
the wrist position displayed the largest error.

There is a clear difference between the wrist position and the other positions inves-
tigated with regard to the relationship with measured EE in the validation part. This
difference is most likely caused by decoupling of the wrist sensor. Decoupling refers to
when the movement of the wrist is not representative to the movement of the rest of the
body [17]. The decoupling of the wrist sensor is apparent in Figure 4, where the direction
of the association between wrist and full-body acceleration is different between laboratory
and free-living data. The association between wrist and full-body acceleration is mainly
driven by the difference in acceleration magnitude between the stationary and locomotive
activities. However, since the participants were solving Sudoku during the stationary ac-
tivities, some movement of the wrist was captured. This movement of the wrist during the
stationary activities is apparent in Figure 4 and the direction of the association while only
considering stationary activities is more in line with the free-living association. Varying
degrees of decoupling of the wrist sensor explain the more randomly spread out samples
of estimated and measured EE in Figure 2 and the lower correlations in general with wrist
sensors.

The activity types of the present sample in the free-living setting have been reported
previously [10]. Among the observed activities, 82% were considered either sitting or
standing. Sitting and standing are typically considered sedentary activities and are as-
sociated with an EE of below 1.5 METs [2,18]. In the validation part of this study, the
measured EE is considerably higher than 1.5 METs most of the time. However, this is in
line with previous research, where sitting and standing activities in a workplace setting
typically reach between 1.5 and 4.5 METs [18]. Similarly, when comparing previously
published accelerometer cut-points for EE, cut-points retrieved from calibrations based on
locomotive activities are higher than cut-points retrieved from household activities [19,20].
Previously published cut-points using the same data processing methods as in the current
study have all been using locomotive activities for calibration and the cut-points are similar
to the cut-points from the laboratory calibration in the current study [7,14]. This explains
the lower acceleration cut-offs for the hip, thigh and shoe sensors from free-living data
compared to laboratory data in Table 3.

In the free-living validation of the current study, EE is in the range between the
stationary activities and walking (Figure 1). The movement captured by the hip, thigh
and shoe accelerometers is lower in the free-living stationary activities compared to the
in-laboratory locomotive activities. With the wrist sensor, the captured acceleration is more
similar between laboratory and free living. This explains why hip, thigh and shoe sensors
tend to underestimate EE in free living (Figure 2). Furthermore, this also explains why
the wrist sensor displayed the lowest error with the laboratory calibration and why the
performance of the other positions was better when calibrating the model on the free-living
data.

We have only found one previous study comparing the performance of different
sensor positions in free living [9]. In this study, the wrist position performed better than
the thigh position when considering doubly-labeled water as the gold standard for EE.
Doubly-labeled water allows longer measurements of EE, but lacks the resolution that
indirect calorimetry provides [21]. However, the calibration procedure was not comparable
to the present study. The calibration of the wrist output was performed using free-living
data, with a multisensory solution combining a trunk positioned accelerometer and heart
rate monitoring as reference [22]. The thigh sensor, on the other hand, was calibrated based
on a separate free-living sample where the wrist sensor was used as the only reference [9].
Although a free-living calibration of the wrist sensor might be positive, indirect calorimetry
used in the present study is a better option for reference. Furthermore, the calibration of the
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thigh sensor using the wrist sensor output as reference is problematic, especially when the
aim was to compare the two positions. Other validation studies performed separately using
different sensor positions suggest that the hip is superior to the wrist [23,24]. However, the
performance varies with different processing methods of accelerometer data, which limits
comparability between studies [25].

The use of hip sensors was originally motivated by the position being close to the
body’s center of mass [26]. A positioning close to the center of mass was proposed since
this should represent the whole body movement as accurately as possible when just using
one sensor. The present study supports this by showing the strongest relationship between
single sensor and full body acceleration in free living with the hip position. Interestingly the
thigh and shoe positions are more representative of the full body movement compared to
the wrist position, despite being more distal to the center of mass. This could be explained
by the shoe and thigh sensors capturing acceleration related to ground reaction forces
reasonably well [27]. The intensity specific cut-points presented in Table 3 are decreasing
from shoe to thigh and hip the further away from the ground the movement is measured.
This is due to the dampening effect of the joints that the ground reaction force travels
through from the ground and upwards [13].

A possible solution for improving the prediction of EE from accelerometer data is the
use of machine learning by artificial neural networks (ANN) for calibration. ANN enables
utilization of more information from the accelerometer signal than only the magnitude of
the movement [28]. The performance of wrist sensors have been improved substantially by
applying ANN calibration [29]. However, ANN calibration does not seem to improve the
performance of hip and thigh sensors. Since the performance of the shoe sensor was similar
to the hip and thigh sensor in the present study, it is unlikely that this performance would
be substantially improved by ANN calibration. Nevertheless, most large-scale studies
using wrist sensors analyze PA intensity by simple cut-points derived in a similar way as
in the current study [30,31].

Previously, shoe sensors have mainly been used in PA measurement for activity
classification. These classification algorithms have been developed using machine learning
techniques such as decision trees and random forest classifiers [10,11,32]. In general, the
accuracy of activity classification methods is well above 90% when cross-validated on
unseen data from the same dataset that was used for calibration. Similar to the results in
the current study, different sensor positions all perform similarly well in these settings [32].
However, the accuracy drops substantially when the models are validated in a separate
dataset of structured activities [33], and even more so when validated in a free-living
setting [10]. In addition, thigh sensors are more commonly used for activity classification [8].
Thigh sensors are especially useful for distinguishing sitting from standing, since the
angle of the thigh differs between the activities. Activity classification could be used in
combination with EE estimation in order to get at deeper understanding of the PA intensity
of sitting and standing, which could be of particular importance in workplace settings [34].

A limitation apparent in the current study is that the activities included in the calibra-
tion protocol were different from the activities performed by participants in the free-living
validation. In addition to sitting and standing work, participants were instructed to both
walk slow and walk fast. However, the slow walking performed was in most cases more
intense than the intensity of any of the free-living activities. Therefore, activities that are
more diverse should be used in the calibration protocol. Nevertheless, the recommended
and most commonly used calibration cut-points mainly use locomotive activities for cal-
ibration [6]. The calibration models developed from the validation data overcome this
limitation to a large degree, but come with a couple of other limitations. The validation
data based on participant mean provide relatively few data points since there were only
15 participants. The minute-by-minute measurements, on the other hand, provide much
more data points, but EE does not respond instantaneously to mechanic work [12]. In the
present study, this has been addressed by comparing the minute-by-minute average EE to
the average acceleration of the current and previous minute. Figures 2 and 3 suggest that
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the minute-by-minute measurements are similar to the participant mean and that this way
of analyzing the data is reasonable. Moreover, it is problematic to validate the calibrations
derived from the free-living dataset in the same dataset, although LOO was applied. LOO
handles the issue with individual variation, but not the issue with the specific activities at
the current workplace. This limits generalizability to other free-living settings. A further
limitation of the current study is that the two workplace setting groups were on average
older and had a higher BMI than the laboratory group. There was also a larger proportion
of men in the industrial production group than in the laboratory group. These differences
could have contributed to decreasing the performance of the laboratory-derived calibra-
tions in the free-living setting. There is previous research suggesting that the relationship
between accelerometer output and energy expenditure could differ between men and
women [35].

The research about the relationship between occupational PA and health is inconclu-
sive. There are conflicting results, where some studies suggest occupational PA is favorable
for workers health and some studies suggest it might be detrimental [3]. One proposed
explanation is that fitness plays a key role in the relationship by high fitness reducing
the risks associated with high workload [36]. Nevertheless, more high quality measure-
ments of occupational PA are required to investigate this relationship further. However,
with occupational PA measurements becoming more widespread, ethical problems with
surveillance of workers should be considered [37].

5. Conclusions

The shoe-positioned accelerometer performed similarly to the most commonly used
sensor positions when measuring PA in a workplace setting. The performance of the
shoe sensor was more similar to the hip and thigh positions, whereas the wrist position
performed differently with regard to measuring laboratory and free-living activities. Using
calibrations derived from laboratory data for estimating EE in free living, the hip, thigh and
shoe positions displayed stronger correlations but weaker agreement between estimated
and measured EE compared to the wrist position. When free-living data was used for
calibration, the agreement from the hip, thigh and shoe sensors improved and outper-
formed the wrist sensor. This study highlights limitations in using the relationship between
accelerometer output and EE from a laboratory setting to estimate EE in a free-living setting.
Free-living calibrations appear superior to laboratory calibrations. Furthermore, the results
suggest that shoe-based accelerometers could be suitable for PA measurement in workplace
settings.
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